Bulletin of the Iranian Mathematical Society Vol. 39 No. 3 (2013), pp 501-505.

MAXIMUM SUM ELEMENT ORDERS OF ALL PROPER SUBGROUPS OF PGL(2,q)

S. M. JAFARIAN AMIRI

Communicated by Jamshid Moori

ABSTRACT. In this paper we show that if q is a power of a prime p, then the projective special linear group PSL(2, q) and the stabilizer of a point of the projective line have maximum sum element orders among all proper subgroups of projective general linear group PGL(2, q) for q odd and even respectively.

1. Introduction

Let G be a finite group. Define $\psi(G) = \sum_{g \in G} o(g)$ where o(g) is the order of g in G. The function ψ was firstly defined by Amiri, Jafarian Amiri and Isaacs. In [1] authors proved that if G is a noncyclic group of order n (positive integer), then $\psi(G) < \psi(C_n)$ where C_n is the cyclic group of order n. In [2] the authors proved that the alternating group A_n has maximum sum element orders among all proper subgroups of the symmetric group S_n . In this paper we obtain similar result on all proper subgroups of projective general linear group of dimension 2. Note that if H_1 and H_2 are maximal subgroups of G with $|H_1| < |H_2|$, then it is not necessary that $\psi(H_1) < \psi(H_2)$. For example consider $G = C_{12} \times C_3$, $H_1 = C_{12}$ and $H_2 = C_6 \times C_3$.

MSC(2010): Primary: 20G40; Secondary: 20E28.

Keywords: Linear groups, maximal subgroups, element order.

Received: 22 September 2011, Accepted: 27 April 2012

^{*}Corresponding author

^{© 2013} Iranian Mathematical Society.

⁵⁰¹

2. Preliminaries

We recall that the group PGL(2, q) is the group of all fractional linear transformations

$$t_{a,b,c,d}: z \rightarrowtail \frac{az+b}{cz+d}$$

of the projective line $X = \{\infty\} \cup GF(q)$ where $a, b, c, d \in GF(q)$ with $ad - bc \neq o$.

First we quote two structural results which are used to deduce the main results of this paper.

Proposition 2.1. (Dickson, [3]) Let G = PGL(2,q) with $q = p^f > 3$ for some odd prime p. Then the maximal subgroups of G not containing PSL(2,q) are:

- (1) $C_p^f \rtimes C_{q-1}$, that is, the stabilizer of a point of the projective line,
- (2) $D_{2(q-1)}$ for $q \neq 5$,
- (3) $D_{2(q+1)}$,
- (4) $S_4 \text{ for } q = p \equiv \pm 3 (mod 8),$
- (5) $PGL(2, q_0)$ for $q = q_0^r$ with r an odd prime.

Proposition 2.2. (Dickson, [3]) Let $q = 2^f \ge 4$. Then the maximal subgroup of PSL(2,q) are :

- (1) $C_2^f \rtimes C_{q-1}$, that is, the stabilizer of a point of the projective line, (2) $D_{2(q-1)}$,
- (3) $D_{2(q+1)}$,
- (4) $PGL(2,q_0)$ for $q = q_0^r$ with r a prime and $q_0 \neq 2$.

Proposition 2.3. (Huppert, [4]) Let G = PSL(2,q) where q is a ppower (p prime). Then

- (1) a Sylow p-subgroup P of G is an elementary abelian group of order q and the number of Sylow p-subgroup of G is q + 1,
- (2) G contains a cyclic subgroup A of order $\frac{q-1}{2}$ such that $N_G(\langle u \rangle)$ is a dihedral group of order q-1 for every nontrivial element $u \in A$,
- (3) G contains a cyclic subgroup Bof order $\frac{q+1}{2}$ such that $N_G(\langle u \rangle)$ is a dihedral group of order q + 1 for every nontrivial element $u \in B$,
- (4) the set $\{P^x, A^x, B^x | x \in G\}$ is a partition of G.

502

3. Main results

Lemma 3.1. $\psi(PSL(2,q)) > (q^2 - 1)(q + 1).$

Proof. It follows from Proposition 2.3 that

$$\psi(PSL(2,q)) = \frac{q(q+1)}{2}(\psi(C_{\frac{q-1}{2}}) - 1) + \frac{q(q-1)}{2}(\psi(C_{\frac{q+1}{2}}) - 1)$$

$$+(q+1)(q-1)p+1$$

Since $\psi(C_n) > 2n$ for each positive integer n > 2,

$$\psi(PSL(2,q)) > \frac{q(q+1)}{2}(q-1) + \frac{q(q-1)}{2}(q+1) + (q-1)(q+1) = q(q^2-1) + (q^2-1) = (q^2-1)(q+1).$$

Here we state the main result about the proper subgroups of PGL(2,q) when q is odd.

Theorem 3.2. Let G = PGL(2,q) where q is a p-power and p is an odd prime. Then $\psi(PSL(2,q) > \psi(H))$ for every proper subgroup H of G different from PSL(2,q), the projective special linear group.

Proof. We may clearly assume that H is a maximal subgroup of PGL(2, q) since every proper subgroup H of G is contained in a maximal subgroup M of G and $\psi(H) \leq \psi(M)$. If q = 3, then $PGL(2,3) \cong S_4$ and $PSL(2,3) \cong A_4$. Therefore the result is valid by [2].

If q > 3, then H is isomorphic with one of the groups (1)-(5)in Proposition 2.1. Therefore we consider the following cases:

Case 1: Suppose that $H = C_p^f \rtimes C_{q-1}$. Then H is soluble and C_{q-1} is a Hall subgroup of H. Therefore subgroups of order q-1 are conjugate and each element that its order is a divisor of q-1, lies in one of such conjugates. Since $C_H(x) = C_p^f$ for every nonidentity $x \in C_p^f$, we have

$$H = C_p^f \bigcup (\cup_{y \in C_p^f} K^y)$$

where K is a cyclic subgroup of H of order q - 1. Thus

$$\psi(H) \le (q-1)p + q\psi(C_{q-1}) < (q-1)p + q(q-1)^2$$

< (q-1)(q+1) + q(q-1)(q+1)and so $\psi(H) < \psi(PSL(2,q))$ by Lemma 3.1.

Case 2: Suppose that $H = D_{2(q-1)}$. Then we have

$$\psi(H) = \psi(C_{q-1}) + 2(q-1) < (q-1)^2 + 2(q-1)$$

 $= q^2 - 1 < \psi(PSL(2,q)).$

Case 3: Suppose that $H = D_{2(q+1)}$. Then again we have

$$\psi(H) = \psi(C_{q+1}) + 2(q+1) < (q+1)^2 + 2(q+1)$$

= $(q+1)(q+3) < (q+1)(q^2-1) < \psi(PSL(2,q)).$

Case 4: Suppose that $H = S_4$. Since every element of S_4 has order at most 4, $\psi(S_4) < 24.4 = 96$. If $q \ge 5$, then $|PSL(2,q)| = \frac{q(q^2-1)}{2} \ge \frac{5.24}{2}$ and so

$$\psi(PSL(2,q)) \ge 2|PSL(2,q)| \ge 2\frac{5.24}{2} > 96 > \psi(S_4).$$

Case 5: Suppose that $H = PGL(2, q_0)$ for $q = q_0^r$ with r an odd prime. Then the maximum order element in $PGL(2, q_0)$ is q_0+1 . Therefore

$$\psi(PGL(2,q_0)) < |PGL(2,q_0)|(q_0+1) = q_0(q_0^2-1)(q_0+1)$$

$$\leq (q_0^3-1)(q_0^3-1)(q_0^3+1)$$

$$= (q_0^6 - 1)(q_0^3 - 1).$$

Since $q = q_0^r \ge q_0^3$, we have

$$\psi(PGL(2,q_0) < (q^2 - 1)(q + 1) < \psi(PSL(2,q))$$

by Lemma 3.1. The proof is complete.

Lemma 3.3. $\psi(C_2^f \rtimes C_{q-1}) \ge 3q^2 - 4q - 1$ where $2^f = q$.

Proof. We have

$$\psi(C_2^f \rtimes C_{q-1}) = 2(q-1) + 1 + q\psi((C_{q-1}) - 1)$$

$$\geq 2q - 1 + 3q(q-2) = 3q^2 - 4q - 1.$$

For q even we have $SL(2,q) \cong PSL(2,q)$ and $GL(2,q) \cong SL(2,q) \times C_{q-1}$, hence $PGL(2,q) \cong PSL(2,q)$. Our main result in this case is :

Theorem 3.4. Let G = PSL(2,q) such that $q = 2^f \ge 4$ for a positive integer f. If H is a proper subgroup of G, then $\psi(H) \le \psi(C_2^f \rtimes C_{q-1})$.

504

Proof. We may suppose that H is a maximal subgroup of PSL(2, q). By Proposition 2.2 we have following cases :

Case 1: If $H = D_{2(q-1)}$, then

$$\psi((D_{2(q-1)}) = \psi(C_{q-1}) + 2(q-1) \le (q-1)^2 + 2(q-1) = q^2 - 1 \le 2q^2 + (q^2 - 4q) - 1.$$

Thus the result follows from Lemma 3.3.

Case 2: If $H = D_{2(q+1)}$, then we have

$$\psi(H) = \psi(C_{q+1}) + 2(q+1) \le q(q+1) - 1 + 2q + 2$$
$$= q^2 + 3q + 1 \le q^2 + 8q - 4q - 1 \le 3q^2 - 4q - 1.$$

It follows from Lemma 3.3 that $\psi(H) < \psi(C_2^f \rtimes C_{q-1})$. **Case 3**: If $H = PGL(2, q_0)$ as in case (3) in Proposition 2.2, then

 $\psi(PGL(2,q_0)) < |PGL(2,q_0)|(q_0+1)$

$$= q_0(q_0^2 - 1)(q_0 + 1) \le 2q(q - 1) \le 3q^2 - 4q - 1$$

and the proof is complete by Lemma 3.3.

References

- H. Amiri, S. M. Jafarian Amiri and I. M. Isaacs, Sums of element orders in finite groups, Comm. Algebra 37 (2009), no. 9, 2978–2980.
- [2] H. Amiri and S. M. Jafarian Amiri, Sum of element orders of maximal subgroups of the symmetric group, *Comm. Algebra* 40 (2012), no. 2, 770–778.
- [3] L. E. Dickson, Linear Groups: With an Exposition of the Galois Field Theory, W. Magnus Dover Publications, Inc., New York, 1958.
- [4] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin-New York, 1967.

Seyyed Majid Jafarian Amiri

Department of Mathematics, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran Email: sm_jafarian@znu.ac.ir, sm_jaf@yahoo.ca and sm.jafariana110@gmail.com