Bulletin of the Iranian Mathematical Society Vol. 39 No. 3 (2013), pp 507-515.

φ -AMENABLE AND φ -BIFLAT BANACH ALGEBRAS

Z. GHORBANI* AND M. LASHKARIZADEH BAMI

Communicated by Antony To-Ming Lau

ABSTRACT. In this paper we study the concept of φ - biflatness of a Banach algebra A, where φ is a continuous homomorphism on A. We prove that if φ is a continuous epimorphism on A and A has a bounded approximate identity and A is φ - biflat, then A is φ amenable. In the case where φ is an isomorphism on A we show that the φ - amenability of A implies its φ - biflatness.

1. Introduction

A Banach algebra A is called *amenable* if for each Banach A-module X, every bounded derivation from A into the dual A-module X^* is an inner derivation. The notion of a *biflat* Banach algebra was introduced by Helemskii who proved that a Banach algebra is amenable precisely when it is biflat and has a bounded approximate identity [7, 9]. In fact, A is called *biflat* if there exists a bounded A-bimodule map θ : $(A \otimes A)^* \longrightarrow A^*$ such that $\theta \circ \pi^* = id_{A^*}$, where π denotes the product morphism from $A \otimes A$ into A given by $\pi(a \otimes b) = ab$ for all $a, b \in A$. Recently, some authors have added a kind of twist to the amenability definition. Given a continuous homomorphism φ from A into A, they defined and studied φ -derivations and φ -amenability (see [3], [13] and [15]).

MSC(2010): Primary: 43A20; Secondary: 46H25, 47B47. Keywords: Banach algebra, φ - biflat, φ - amenable. Received: 18 April 2011, Accepted: 27 April 2012.

^{*}Corresponding author

^{© 2013} Iranian Mathematical Society.

⁵⁰⁷

Suppose that A is a Banach algebra and $\varphi \in Hom(A)$, the set of all continuous homomorphisms from A into A. Let X be a Banach Abimodule. A linear operator $D: A \longrightarrow X$ is a φ -derivation if it satisfies $D(ab) = D(a)\varphi(b) + \varphi(a)D(b)$ for all $a, b \in A$. A φ -derivation D is φ -inner derivation if there is $x \in X$ such that $D(a) = \varphi(a)x - x\varphi(a)$ for $a \in A$. Let $\mathcal{Z}^1_{\varphi}(A, X)$ denote the set of all continuous φ -derivations and let $\mathcal{N}^1_{\varphi}(A, X)$ be the set of all φ -inner derivations from A into X. The first cohomology group $\mathcal{H}^1_{\varphi}(A, X)$ is defined to be the quotient space $\mathcal{Z}^1_{\varphi}(A, X)/\mathcal{N}^1_{\varphi}(A, X)$.

A Banach algebra A is called φ -amenable if $\mathcal{H}^1_{\varphi}(A, X^*) = \{0\}$ for all A-bimodules X. Note that every derivation of a Banach algebra A into an A-bimodule X is an id_A -derivation, where id_A is the identity map on A.

The aim of the present paper is to introduce and investigate φ -biflat Banach algebras with $\varphi \in Hom(A)$. In particular, we prove that if φ is a continuous epimorphism on A and A has a bounded approximate identity and A is φ - biflat, then A is φ - amenable. In the case where φ is an isomorphism on A we show that the φ - amenability of A implies its φ - biflatness.

This paper forms a part of the Ph.D thesis of the first author under the supervision of the second author

2. The results

We start this section by introducing the following:

Definition 2.1. Let A be a Banach algebra and $\varphi \in Hom(A)$. An element M of $(A \otimes A)^{**}$ is a φ - virtual diagonal for A if i) $\varphi(a) \cdot M = M \cdot \varphi(a)$ $(a \in A)$, ii) $\pi^{**}(M) \cdot \varphi(a) = \varphi(a)$ $(a \in A)$.

For an alternative proof of the following result when φ is an idempotent homomorphism on A see [15, Theorem 4.2.]

Theorem 2.2. Let A be a Banach algebra with a bounded approximate identity and $\varphi \in Hom(A)$. If A is φ - amenable then A has a φ - virtual diagonal.

Proof. Let (e_{α}) be a bounded approximate identity for A and let E be a w^* -cluster point of $(\varphi(e_{\alpha}) \otimes \varphi(e_{\alpha}))$ in $(A \otimes A)^{**}$. We define a φ derivation $D: A \longrightarrow (A \otimes A)^{**}$ by $D(a) = \varphi(a) \cdot E - E \cdot \varphi(a)$. Then

 $\varphi-\text{biflat}$ Banach algebras

$$\pi^{**}(D(a)) = w^* - \lim_{\alpha} \pi[(\varphi(a)(\varphi(e_{\alpha}) \otimes \varphi(e_{\alpha})) - (\varphi(e_{\alpha}) \otimes \varphi(e_{\alpha}))\varphi(a)]$$

$$= \lim_{\alpha} \varphi(a)\varphi(e_{\alpha}^2) - \varphi(e_{\alpha}^2)\varphi(a)$$

$$= \lim_{\alpha} \varphi(ae_{\alpha}^2 - e_{\alpha}^2a) = 0.$$

Therefore $D(A) \subseteq ker(\pi^{**}) = (ker\pi)^{**}$. Thus there exists $N \in (ker\pi)^{**}$ such that $D = ad_{\varphi;N}$. Put M = E - N. Then

$$\pi^{**}(M) \cdot \varphi(a) = \pi^{**}(E - N) \cdot \varphi(a) = \pi^{**}(E) \cdot \varphi(a)$$
$$= w^* - \lim_{\alpha} \pi(\varphi(e_{\alpha}) \otimes \varphi(e_{\alpha})) \cdot \varphi(a)$$
$$= \lim_{\alpha} \varphi(e_{\alpha}^2 a) = \varphi(a).$$

Hence M is a φ - virtual diagonal for A.

Definition 2.3. Let A be a Banach algebra and $\varphi \in Hom(A)$. A bounded φ - approximate diagonal for A is a bounded net (m_{α}) in $(A \otimes A)$ such that

 $\begin{array}{ll} \mathrm{i)} & m_{\alpha} \cdot \varphi(a) - \varphi(a) \cdot m_{\alpha} \longrightarrow 0 & (a \in A) \\ \mathrm{ii)} & \pi(m_{\alpha}) \cdot \varphi(a) \longrightarrow \varphi(a) & (a \in A). \end{array}$

Proposition 2.4. Let A be a Banach algebra and $\varphi \in Hom(A)$. If A has a φ - virtual diagonal. Then A has a bounded φ - approximate diagonal.

Proof. Let M be a φ - virtual diagonal for A, and let (m_{α}) be a net in $(A \otimes A)$ such that $M = w^* - \lim_{\alpha} m_{\alpha}$. Then, a routine verification shows that for the net (m_{α}) , Definition 2.3 holds in the weak*- topology. Following the argument given in the proof of [6, Lemma 2.9.64] we can show that there exists a net (m_{β}) of convex combinations of (m_{α}) 's satisfying both conditions in Definition 2.3.

Remark 2.5. In the case where φ is a continuous idempotent epimorphism on A, M. S. Moslehian [15, Theorem 4.6] has given a generalizations of Johnson's result [11]. It should be emphasized that such an epimorphism φ is nothing but the identity. Indeed, no generalization is given.

Theorem 2.6. Let A be a Banach algebra with a bounded φ -approximate diagonal and φ is an epimorphism on A. Then A is φ -amenable.

Proof. Let (m_{α}) be a bounded φ -approximate diagonal for A. Then (πm_{α}) is a bounded approximate identity for A. Let X be a Banach A-bimodule, by [15, Proposition 4.5] there is no loss of generality if we suppose that X is pseudo-unital. Let $D \in \mathcal{Z}_{\varphi}^{1}(A, X)$, and $m_{\alpha} = \sum_{n=1}^{\infty} a_{n}^{(\alpha)} \otimes b_{n}^{(\alpha)}$ with $\sum_{n=1}^{\infty} ||a_{n}^{(\alpha)}|| ||b_{n}^{(\alpha)}|| < \infty$. Then $(\sum_{n=1}^{\infty} \varphi(a_{n}^{(\alpha)}) \cdot Db_{n}^{(\alpha)})$ is a bounded net in X^{*} , which has a w^{*} -accumulation point, say ψ ; without loss of generality, we may suppose that ψ is the w^{*} – lim of $\left(\sum_{n=1}^{\infty} \varphi(a_{n}^{(\alpha)}) \cdot Db_{n}^{(\alpha)}\right)$. Then, for $a \in A$ and $x \in X$, we have:

$$\begin{aligned} \langle x, \varphi(a) \cdot \psi \rangle &= \lim_{\alpha} \left\langle x, \Sigma_{n=1}^{\infty} \varphi(a) \varphi(a_n^{(\alpha)}) \cdot Db_n^{(\alpha)} \right\rangle \\ &= \lim_{\alpha} \left\langle x, \Sigma_{n=1}^{\infty} \varphi(a_n^{(\alpha)}) \cdot D(b_n^{(\alpha)} \varphi(a)) \right\rangle \\ &= \lim_{\alpha} \left\langle x, \Sigma_{n=1}^{\infty} (\varphi(a_n^{(\alpha)} b_n^{(\alpha)}) \cdot D(\varphi(a)) + \varphi(a_n^{(\alpha)}) \cdot D(b_n^{(\alpha)} \cdot \varphi(a)) \right\rangle \\ &= \lim_{\alpha} \left\langle x, (\varphi(\pi(m_{\alpha}) \cdot D(\varphi(a))) + \langle x, \psi \cdot \varphi(a) \rangle \right. \end{aligned}$$

Since φ is an epimorphism and $\lim_{\alpha} \varphi(\pi(m_{\alpha})a) = \varphi(a)$ for all $a \in A$, we conclude that $D(a) = \varphi(a)\psi - \psi\varphi(a)$.

Example 2.7. Let A be a non-amenable Banach algebra with right (left) bounded approximate identity. Then by [16, corollary 2.3.11] A^{\sharp} is not amenable. Therefore A^{\sharp} (the unitalization of A) is not biflat. We define $\varphi : A^{\sharp} \longrightarrow A^{\sharp}$ by $\varphi(a + \lambda e) = \lambda$ ($a \in A, \lambda \in C$). Therefore, φ is a continuous homomorphism on A^{\sharp} . Let X be a Banach A^{\sharp} – bimodule. Then for every φ – derivation $D : A^{\sharp} \longrightarrow X$ and every $a, b \in A, \lambda, z \in C$ we have,

$$D((a + \lambda e)(b + ze)) = (a + \lambda e) \circ D(b + ze) + D(a + \lambda e) \circ (b + ze)$$

= $\varphi(a + \lambda e)D(b + ze) + D(a + \lambda e)\varphi(b + ze)$
= $\lambda D(b + 0e) + D(a + 0e)z.$

Let (e_{α}) be a right (left) bounded approximate identity for A and putting $z = \lambda = 0$ and $b = e_{\alpha}$ in the above equation, we obtain $D(ae_{\alpha} + 0e) = 0$. Therefore $D(a + 0e) = \lim_{\alpha} D(ae_{\alpha} + 0e) = 0$ and $D(a + \lambda e) = D(a + 0e) + D(0 + \lambda e) = 0$ for all $a \in A$ and $\lambda \in C$. Therefore A^{\sharp} is φ -amenable.

 $\varphi-\text{biflat}$ Banach algebras

Definition 2.8. Let A be a Banach algebra and let $\varphi \in Hom(A)$. Then A is called n-weakly φ -amenable if $\mathcal{H}^1_{\varphi}(A, A^{(n)}) = \{0\}, (n \in \mathbb{N})$. We say that A is φ - weakly amenable if A is 1-weakly φ -amenable.

The following two propositions are interesting in their own rights.

Proposition 2.9. Let A be a Banach algebra and $\varphi \in Hom(A)$ and $n \in \mathbb{N}$. If A is (n+2)-weakly φ -amenable. Then A n-weakly φ -amenable.

Proof. Let $D: A \longrightarrow A^{(n)}$ be a φ -derivation. Then $D: A \longrightarrow A^{(n+2)}$ is a φ -derivation. Therefore there exists $\phi \in A^{(n+2)}$ such that $D(a) = \phi \cdot \varphi(a) - \varphi(a) \cdot \phi$ $(a \in A)$. Let $\xi = P(\phi)$ where P is the canonical projection from $A^{(n+2)}$ into $A^{(n)}$. Then $D(a) = P(D(a)) = \xi \cdot \varphi(a) - \varphi(a) \cdot \xi$ $(a \in A)$.

Proposition 2.10. Let A be a Banach algebra, $n \in \mathbb{N}$, and let $\varphi \in Hom(A)$ be such that $\varphi(a)b = a\varphi(b)$ for all $a, b \in A$. If A is (2n - 1)-weakly φ -amenable. Then $\overline{A^2} = A$ where $\overline{A^2}$ is the closure of A^2 in A.

Proof. For n = 1, the result follows from [3, Proposition 2.1]. Now for n > 1, the proof is an immediate consequence of Proposition 2.4.

We now turn to φ - biflat Banach algebras.

Definition 2.11. Let A be a Banach algebra and $\varphi \in Hom(A)$. Then A is called φ - biflat if there exists a bounded A-bimodule map $\theta : A \longrightarrow (A \otimes A)^{**}$ such that $\pi^{**} \circ \theta \circ \varphi = \kappa$, where $\kappa : A \longrightarrow A^{**}$ is the natural embedding.

Proposition 2.12. Suppose that A is φ - biflat ($\varphi \in Hom(A)$) and A has a bounded approximate identity. Then A has a φ - virtual diagonal.

Proof. Assume that $\theta: A \longrightarrow (A \otimes A)^{**}$ is a bounded A-bimodule map such that $\pi^{**} \circ \theta \circ \varphi = \kappa$. Let (e_{α}) be a bounded approximate identity for A and let $M = w^* - \lim_{\alpha} \theta(\varphi(e_{\alpha}))$. Then

$$\pi^{**}(M) \cdot \varphi(a) = w^* - \lim_{\alpha} \pi^{**}(\theta(\varphi(e_{\alpha}))) \cdot \varphi(a)$$
$$= w^* - \lim_{\alpha} \pi^{**} \circ \theta \circ \varphi(e_{\alpha}) \cdot \varphi(a) = \varphi(a).$$

Hence M is a φ - virtual diagonal.

Remark 2.13. Let A be a biflat Banach algebra. Then A is id_A - biflat.

 \square

Proposition 2.14. Let A be a Banach algebra and $\varphi \in Hom(A)$ such that $\varphi^n = 1$ for some $n \in \mathbb{N}$. If A has a virtual diagonal, then A is φ -biflat.

Proof. Let M be a virtual diagonal. Define $\theta : A \longrightarrow (A \otimes A)^{**}$ by $a \mapsto \varphi(a)^{n-1} \cdot M$ $(a \in A)$. Then for every $a \in A$

$$\pi^{**} \circ \theta \circ \varphi(a) = \pi^{**}(\varphi^n(a) \cdot M)$$
$$= \pi^{**}(a \cdot M)$$
$$= a.$$

The following Theorem is the main result of this paper.

Theorem 2.15. Let A be a Banach algebra with a bounded approximate identity and let φ be a continuous epimorphism on A. If A is φ - biflat, then A is φ - amenable.

Proof. By Proposition 2.12, A has a φ - virtual diagonal and so by Proposition 2.4, A has a bounded φ - approximate diagonal. So by theorem 2.6, A is φ - amenable.

Theorem 2.16. Let A be a Banach algebra and let φ be a continuous isomorphism on A. If A is φ - amenable then A is φ - biflat.

Proof. Suppose that A is φ - amenable. By Theorem 2.2, A has a φ -virtual diagonal M. Define $\theta : A \longrightarrow (A \otimes A)^{**}$ by $a \mapsto \varphi^{-1}(a) \cdot M$ for $a \in A$. Then

$$\pi^{**} \circ \theta \circ \varphi(a) = \pi^{**}(a \cdot M) \\ = a,$$

it follow that A is φ -biflat.

The following example shows that a biflat Banach algebra is not in general φ - biflat.

Example 2.17. Let D denote the open unit disk and let $A^+(D)$ be the set of all functions $f = \sum_{n=0}^{\infty} c_n z^n$ in the disk algebra $A(\bar{D})$ which have an absolutely convergent Taylor expansion on \bar{D} . Then $A^+(\bar{D})$ is a commutative unital Banach algebra and hence $A^+(\bar{D})$ is biflat. An application of Theorem 2.15, and part two of [12, Example 2.5], shows that for every $z \in D$ the Banach algebra $A^+(\bar{D})$ is not φ_z -biflat, where φ_z is the continuous idempotent homomorphism on $A^+(\bar{D})$ given by $f \mapsto$ $f(z), (f \in A^+(\bar{D}))$, which obviously is not a surjection.

 $\varphi-\text{biflat}$ Banach algebras

In the next result $\varphi : A \longrightarrow A$ is homomorphism and I is a closed ideal of A such that $\varphi(I) \subseteq I$. We define the map $\tilde{\varphi} : A/I \longrightarrow A/I$ by $\tilde{\varphi}(a+I) = \varphi(a) + I$.

Theorem 2.18. Suppose that A is a φ - biflat Banach algebra. If I is a closed deal of A, then A/I is $\tilde{\varphi}$ -biflat.

Proof. Assume that $\theta: A \longrightarrow (A \otimes A)^{**}$ is a bounded A-bimodule map such that $\pi^{**} \circ \theta \circ \varphi = \kappa$. Let $q: A \longrightarrow A/I$ be the quotient map. Define the map $\tilde{\theta}: A/I \longrightarrow (A/I \otimes A/I)^{**}$ by $a + I \mapsto (q \otimes q)^{**} \circ \theta(a)$ $(a \in A)$. We prove that $\tilde{\theta}$ is an A/I- bimodul map. To see this, take $a, b, c \in A$, then we have

$$\begin{split} \tilde{\theta}((a+I)(b+I)(c+I)) &= \tilde{\theta}(abc+I) \\ &= (q \otimes q)^{**} \circ \theta(abc) \\ &= (q \otimes q)^{**}(a \cdot \theta(b) \cdot c) \\ &= a \cdot (q \otimes q)^{**}(\theta(b) \cdot c) \\ &= (a+I) \cdot \tilde{\theta}(b+I) \cdot (c+I). \end{split}$$

We also have

$$\begin{aligned} \pi_{A/I}^{**} \circ \tilde{\theta} \circ \tilde{\varphi}(a+I) &= & \pi_{A/I}^{**} \circ \tilde{\theta}(\varphi(a)+I) \\ &= & \pi_{A/I}^{**} \circ (q \otimes q)^{**} \circ \theta(\varphi(a)) \\ &= & q^{**} \circ \pi_A^{**} \circ \theta \circ \varphi(a) = q(a) = a+I. \end{aligned}$$

That is, A/I is $\tilde{\varphi}$ -biflat.

We quote the following result from [13].

Lemma 2.19. Let A be a Banach algebra. Then there exists an Abimodule homomorphism $\gamma : (A \otimes A)^* \longrightarrow (A^{**} \otimes A^{**})^*$ such that for any functional $f \in (A \otimes A)^*$, elements $\varphi, \psi \in A^{**}$ and nets $(a_\alpha), (b_\beta)$ in A with $w^* - \lim_{\alpha} a_{\alpha} = \varphi$ and $w^* - \lim_{\beta} b_{\beta} = \psi$ we have

$$\gamma(f)(\varphi \otimes \psi) = \lim_{\alpha} \lim_{\beta} f(a_{\alpha} \otimes b_{\beta}).$$

We close the paper with the following result.

Theorem 2.20. Suppose that A is a Banach algebra and $\varphi \in Hom(A)$. If A^{**} is $\varphi^{**} - biflat$. Then A is $\varphi - biflat$.

Proof. Let $\kappa : A \longrightarrow A^{**}, \kappa_1 : A^* \longrightarrow A^{***}$ and $\kappa_* : A^{**} \longrightarrow A^{****}$ denote the natural inclusions, π (** π , respectively) the product maps on A (A^{**} , respectively) and let γ be defined as in Lemma 2.19. Then the following diagram commutes:

Thus $\gamma \circ \pi^* =^{**} \pi^* \circ \kappa_1$. Hence $\pi^{**} \circ \gamma^* = \kappa_1^* \circ^{**} \pi^{**}$. Since A^{**} is φ^{**} biflat, there is an A-bimodule map $\theta_0 : A^{**} \longrightarrow (A^{**} \otimes A^{**})^{**}$, such that $\pi^{**} \circ \theta_0 \circ \varphi^{**} = \kappa_*$. Putting $\theta := \gamma^* \circ \theta_0 \circ \kappa$, then for each $a \in A$ we have

$$\pi^{**} \circ \theta \circ \varphi(a) = \pi^{**} \circ \gamma^* \circ \theta_0 \circ \kappa \circ \varphi(a)$$

= $\kappa_1^* \circ \pi^{**} \circ \theta_0 \circ \kappa \circ \varphi(a)$
= $\kappa_1^* \circ \pi^{**} \circ \theta_0 \circ \varphi^{**}(a)$
= $\kappa_1^* \circ \kappa_*(a) = a.$

That is A is φ -biflat.

References

- O. Yu. Aristov, Biprojective algebras and operator spaces, J. Math. Sci. (New York) 111 (2002), no. 2, 3339–3386.
- [2] M. Ashraf and N. Rehman, On $(\sigma \tau)$ derivations in prime rings, Arch. Math. (Brno) **38** (2002), no. 4, 259–264.
- [3] A. Bodaghi, M. Eshaghi Gordji and A. R. Medghalchi, A Generalization of the weak amenability of Banach algebras, *Banach J. Math. Anal.* 3 (2009), no. 1, 131–142.
- [4] F. F. Bonsall and J. Duncan, Complete Normed Algebra, Springer-Verlag, New York-Heidelberg, 1973.
- [5] P. C. Curtis and R. J. Loy, The structure of amenable Banach algebras, J. London Math. Soc. (2) 40 (1989), no. 1, 89–104.
- [6] H. G. Dales, Banach algebras and automatic continuity, London Mathematical Society Monographs, 24, The Clarendon Press, Oxford University Press, New York, 2000.

φ -biflat Banach algebras

- [7] A. Ya. Helemskii, Banach and Locally Convex Algebras, The Clarendon Press, Oxford University Press, New York, 1993.
- [8] A. Ya. Helemskii, Flat Banach modules and amenable algebras, Trans. Moscow Math. Soc. 47 (1985) 199–224.
- [9] A. Ya. Helemskii, The Homology of Banach and Topological Algebras, 41 of Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1989.
- [10] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127, Amer. Math. Soc., Providence, 1972.
- [11] B. E. Johnson, Approximate diagonals and cohomology of certain annihilator Banach algebras, Amer. J. Math. 94 (1972) 685–698.
- [12] E. Kaniuth, A. Lau and J. Pym, On φ-amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144 (2008), no. 1, 85–96.
- [13] M. Mirzavaziri and M. S. Moslehian, σ -derivations in Banach algebras, Bull. Iranian Math. Soc. **32** (2006), no. 1, 65–78.
- [14] M. Mirzavaziri and M. S. Moslehian, Automatic continuity of σ -derivations in C^* -algebras, *Proc. Amer. Math. Soc.* **134** (2006), no. 11, 3319–3327.
- [15] M. S. Moslehian and A. N. Motlagh, Some notes on (σ, τ) -amenability of Banach algebras, *Stud. Univ. Babeş-Bolyai Math.* **53** (2008), no. 3, 57–68.
- [16] V. Runde, Lectures on Amenability, Lecture Notes in Mathematics, 1774, Springer-Verlag, Berlin, 2002.

Zahra Ghorbani

Department of Mathematics, Faculty of Science, University of Isfahan, Isfahan, Iran Email: ghorbani@sci.ui.ac.ir

Mahmood Lashkarizadeh Bami

Department of Mathematics, Faculty of Science, University of Isfahan, P.O. Box 81745-163, Isfahan, Iran

Email: lashkari@sci.ui.ac.ir