Bulletin of the Iranian Mathematical Society Vol. 39 No. 3 (2013), pp 507-515.

»—AMENABLE AND ¢—BIFLAT BANACH ALGEBRAS

Z. GHORBANI* AND M. LASHKARIZADEH BAMI

Communicated by Antony To-Ming Lau

ABSTRACT. In this paper we study the concept of p— biflatness of
a Banach algebra A, where ¢ is a continuous homomorphism on A.
We prove that if ¢ is a continuous epimorphism on A and A has
a bounded approximate identity and A is p— biflat, then A is p—
amenable. In the case where ¢ is an isomorphism on A we show
that the p— amenability of A implies its — biflatness.

1. Introduction

A Banach algebra A is called amenable if for each Banach A-module
X, every bounded derivation from A into the dual A-module X* is an
inner derivation. The notion of a biflat Banach algebra was introduced
by Helemskii who proved that a Banach algebra is amenable precisely
when it is biflat and has a bounded approximate identity [7,9]. In
fact, A is called biflat if there exists a bounded A-bimodule map 6 :
(A® A)* —s A* such that @ o 7* = id4-, where 7 denotes the product
morphism from A ® A into A given by 7(a ® b) = ab for all a,b € A.
Recently, some authors have added a kind of twist to the amenability
definition. Given a continuous homomorphism ¢ from A into A, they
defined and studied ¢-derivations and @-amenability (see [3], [13] and

[15]).
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Suppose that A is a Banach algebra and ¢ € Hom(A), the set of
all continuous homomorphisms from A into A. Let X be a Banach A-
bimodule. A linear operator D : A — X is a @-derivation if it satisfies
D(ab) = D(a)p(b) + p(a)D(b) for all a,b € A. A @-derivation D is
w-inner derivation if there is z € X such that D(a) = p(a)z —xp(a) for
a € A. Let Z&,(A, X) denote the set of all continuous ¢-derivations and
let Né(A, X) be the set of all p-inner derivations from A into X. The
first cohomology group Hslo(A, X) is defined to be the quotient space
ZL(A, X)/NJ(A X).

A Banach algebra A is called ¢-amenable if H}p(A,X*) = {0} for all
A-bimodules X. Note that every derivation of a Banach algebra A into
an A-bimodule X is an id 4-derivation, where id 4 is the identity map on
A.

The aim of the present paper is to introduce and investigate p—biflat
Banach algebras with ¢ € Hom(A). In particular, we prove that if ¢
is a continuous epimorphism on A and A has a bounded approximate
identity and A is ¢— biflat, then A is ¢— amenable. In the case where ¢
is an isomorphism on A we show that the ¢— amenability of A implies
its p— biflatness.

This paper forms a part of the Ph.D thesis of the first author under
the supervision of the second author

2. The results
We start this section by introducing the following:

Definition 2.1. Let A be a Banach algebra and ¢ € Hom(A). An
element M of (A® A)** is a o— virtual diagonal for A if

i) pla) - M =M-p(a) (a€A),

i) m*(M) - p(a) = p(a)  (a € A).

For an alternative proof of the following result when ¢ is an idempo-
tent homomorphism on A see [15, Theorem 4.2.]

Theorem 2.2. Let A be a Banach algebra with a bounded approximate
identity and ¢ € Hom(A). If A is p— amenable then A has a o— virtual
diagonal.

Proof. Let (eq) be a bounded approximate identity for A and let E be
a w*—cluster point of (p(eq) @ p(eq)) in (A® A)**. We define a ¢—
derivation D : A — (A® A)** by D(a) = ¢(a) - E — E - p(a). Then
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™ (D(a)) = w' —lim7[(p(a)(p(ea) @ p(ea)) = (P(ea) @ p(ea))p(a)]
= limy(a)p(eq) — p(ed)p(a)

= limg(ae? — ea) = 0.
(0%

Therefore D(A) C ker(n**) = (kerm)**. Thus there exists N € (kerm)**
such that D = ad,,ny. Put M = E — N. Then

M) - pla) = T(E—N)-pla) = 7 (E) - (a)
= w'—lim7(p(ea) @ p(ea)) - p(a)
— limg(c2a) = p(a).
Hence M is a ¢— virtual diagonal for A.

Definition 2.3. Let A be a Banach algebra and ¢ € Hom(A). A
bounded o— approzimate diagonal for A is a bounded net (mg) in (A ® A)
such that

i) my - p(a) —pa) -mg —0  (a€ A

ii) m(ma) - p(a) —> pla)  (ac A).

Proposition 2.4. Let A be a Banach algebra and ¢ € Hom(A). If
A has a p— virtual diagonal. Then A has a bounded p— approzimate
diagonal.

Proof. Let M be a p— virtual diagonal for A, and let (m,) be a net
in (A® A) such that M = w* — lim, m,. Then, a routine verification
shows that for the net (m,), Definition 2.3 holds in the weak*— topology.
Following the argument given in the proof of [6, Lemma 2.9.64] we can
show that there exists a net (mg) of convex combinations of (mq)’s
satisfying both conditions in Definition 2.3. g

Remark 2.5. In the case where ¢ is a continuous idempotent epimor-
phism on A, M. S. Moslehian [15, Theorem 4.6] has given a general-
izations of Johnson’s result [11]. It should be emphasized that such an
epimorphism ¢ is nothing but the identity. Indeed, no generalization is
given.

Theorem 2.6. Let A be a Banach algebra with a bounded p-approzimate
diagonal and ¢ is an epimorphism on A. Then A is p-amenable.
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Proof. Let (my) be a bounded g-approximate diagonal for A. Then
(mmg) is a bounded approximate identity for A. Let X be a Banach
A-bimodule, by [15, Proposition 4.5] there is no loss of generality if
we suppose that X is pseudo-unital. Let D € Z}D(A,X), and my, =

52 0™ @b with £ |l |6 < co. Then (22, p(al™) - Db
is a bounded net in X*, which has a w*—accumlation point, say ;
without loss of generality, we may suppose that v is the w* — lim of
(Eg’ozlcp(a%a)) . Dbﬁ{")). Then, for a € A and =z € X, we have:

(z,0(a)-¥) = lim

[e%

7, S5 (a)p(al)) - DB )

= lim

—

= 1i
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2, Z52 (p(afbi)) - Dp(a)) + plaf)-

DO - p(a)))
= lim (2, (p(m(ma) - D(e(a)) + (.3 - p(a)

°B

Since ¢ is an epimorphism and lim, ¢(7(mq)a) = ¢(a) for all a € A, we
conclude that D(a) = ¢(a) — pe(a). O

Example 2.7. Let A be a non-amenable Banach algebra with right (left)
bounded approximate identity. Then by [16, corollary 2.3.11] At is not
amenable. Therefore Af(the unitalization of A) is not biflat. We define
o : AP — AP by p(a+Xe) =\ (a € A, N € C). Therefore, ¢ is a
continuous homomorphism on A!. Let X be a Banach A'— bimodule.
Then for every o— deriwation D : A* — X and everya,b € A, \,z € C
we have,

D((a+ Xe)(b+ze)) = (a+Ae)oD(b+ ze)+ D(a+ Xe)o (b+ ze)
= a4+ Ae)D(b+ ze) + D(a+ Xe)p(b+ ze)
= AD(b+0e) + D(a+ Oe)z.

Let (eq) be a right (left) bounded approzimate identity for A and putting
z=X=0 and b= e, in the above equation, we obtain D(ae, + 0e) = 0.
Therefore D(a + Oe) = lim, D(aeq 4+ 0e) = 0 and D(a + Xe) = D(a +
0e) + D0+ Xe) = 0 for all a € A and X\ € C. Therefore A% is p—
amenable.
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Definition 2.8. Let A be a Banach algebra and let ¢ € Hom(A). Then
A is called n-weakly o—amenable if H}(A, Ay = {0}, (n € N). We
say that A is o— weakly amenable if A is 1-weakly p—amenable.

The following two propositions are interesting in their own rights.

Proposition 2.9. Let A be a Banach algebra and p € Hom(A) and n €
N. If A is (n + 2)-weakly o—amenable. Then A n-weakly p—amenable.

Proof. Let D : A — A™ be a @-derivation. Then D : A — A(+2)
is a @-derivation. Therefore there exists ¢ € A2 such that D(a) =
¢-pla) —pla) ¢ (a € A). Let & = P(¢) where P is the canonical
projection from A™*2) into A™. Then D(a) = P(D(a)) = € - (a) —
p(a)-§ (a € A). O
Proposition 2.10. Let A be a Banach algebra, n € N, and let ¢ €
Hom(A) be such that p(a)b = ap(b) for all a,b € A. If A is (2n — 1)-
weakly o—amenable. Then A2 = A where A2 is the closure of A2 in
A.

Proof. For n = 1, the result follows from [3, Proposition 2.1]. Now for
n > 1, the proof is an immediate consequence of Proposition 2.4. O

We now turn to ¢— biflat Banach algebras.

Definition 2.11. Let A be a Banach algebra and ¢ € Hom(A). Then
A is called p— biflat if there exists a bounded A-bimodule map 0 : A —
(A® A)*™ such that m* 0 0 o ¢ = Kk, where K : A — A** is the natural
embedding.

Proposition 2.12. Suppose that A is p— biflat (¢ € Hom(A)) and A
has a bounded approximate identity. Then A has a ¢— virtual diagonal.

Proof. Assume that 6 : A — (A ® A)** is a bounded A-bimodule map
such that 7** 0§ o ¢ = k. Let (e,) be a bounded approximate identity
for A and let M = w* — lim, 0(¢(eq)). Then

T (M) - pla) = w'=lima™(0(p(ea))) - p(a)
= w' —lm7n™ ofop(e) - pla) = ¢(a).
Hence M is a ¢p— virtual diagonal. O

Remark 2.13. Let A be a biflat Banach algebra. Then A isid4— biflat.
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Proposition 2.14. Let A be a Banach algebra and ¢ € Hom(A) such

that ¢ =1 for some n € N. If A has a virtual diagonal, then A is p—
biflat.

Proof. Let M be a virtual diagonal. Define § : A — (A® A)** by
ar o(a)" 1M (a € A). Then for every a € A

T ofopla) = 7 (¢"(a)- M)
— 7*(a- M)

= a.

The following Theorem is the main result of this paper.

Theorem 2.15. Let A be a Banach algebra with a bounded approximate
identity and let ¢ be a continuous epimorphism on A. If A is o— biflat,
then A is o— amenable.

Proof. By Proposition 2.12, A has a ¢— virtual diagonal and so by
Proposition 2.4, A has a bounded ¢— approximate diagonal. So by
theorem 2.6, A is ¢— amenable. O

Theorem 2.16. Let A be a Banach algebra and let ¢ be a continuous
isomorphism on A. If A is o— amenable then A is p— biflat.

Proof. Suppose that A is ¢— amenable. By Theorem 2.2, A has a p—
virtual diagonal M. Define 6 : A — (A® A)** by a + ¢ (a) - M for
a € A. Then

7 ofopla) = 7% (a-M)

it follow that A is p—Dbiflat. O

The following example shows that a biflat Banach algebra is not in
general ¢— biflat.

Example 2.17. Let D denote the open unit disk and let AT(D) be
the set of all functions f = > o0 g cpz™ in the disk algebra A(D) which
have an absolutely convergent Taylor expansion on D. Then AT (D) is
a commutative unital Banach algebra and hence AT(D) is biflat. An
application of Theorem 2.15, and part two of [12, Example 2.5], shows
that for every z € D the Banach algebra At (D) is not @,—biflat, where
©. is the continuous idempotent homomorphism on A* (D) given by f
f(2), (f € AT(D)), which obviously is not a surjection.
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In the next result ¢ : A — A is homomorphism and I is a closed
ideal of A such that ¢(I) C I. We define the map ¢ : A/ — A/I by
ola+1)=¢(a)+ 1.

Theorem 2.18. Suppose that A is a p— biflat Banach algebra. If I is
a closed deal of A, then A/I is p—Dbiflat.

Proof. Assume that 0 : A — (A® A)** is a bounded A-bimodule map
such that 7**0fop = k. Let ¢ : A — A/I be the quotient map. Define
the map 6 : A/T — (A/T® A/I)* by a+1 — (q& q)™ 08(a) (a € A).
We prove that 6 is an A/I- bimodul map. To see this, take a,b,c € A,
then we have

O((a+D)(b+1)(c+ 1)) =

We also have

a1 ofopla+I) = T © 0(p(a) + 1)
= 7mho(g®q)” ob(p(a))
= gTomyofop(a)=ga)=a+1l.
That is, A/I is ¢g—Dbiflat. O
We quote the following result from [13].

Lemma 2.19. Let A be a Banach algebra. Then there exists an A-
bimodule homomorphism v : (A® A)* — (A** ® A**)* such that for
any functional f € (A® A)*, elements ¢, € A** and nets (aq), (bg) in
A with w* — limaa, = @ and w* — limgbg = 1 we have
V() (e @ P) = limalima f(aa @ bg).
We close the paper with the following result.

Theorem 2.20. Suppose that A is a Banach algebra and ¢ € Hom(A).
If A* is p**— biflat. Then A is p—biflat.
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Proof. Let kK : A — A*, k1 : A* — A" and Kk, : A™ — AY
denote the natural inclusions, 7 (**7, respectively) the product maps on
A (A*™*, respectively) and let v be defined as in Lemma 2.19. Then the
following diagram commutes:

s
A* (A® A)*
K1 Y
AFFE (A ® Arx)*
**71‘*

Thus yom* =*" m*oky. Hence m**oy* = r] o™ m**. Since A™ is ¢** —
biflat, there is an A-bimodule map 6y : A** — (A** ® A**)**, such that
T 060y 0 p** = Ky. Putting 0 := v* 0y o k, then for each a € A we have

7 0fopla) = 7oy obyorop(a)
= /QTO?T**OHDOK,O(,O(G)
= Kjom™ofyop™(a)
= K] oks«(a) =a.

That is A is p—biflat. O
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