# ON SOLUBILITY OF GROUPS WITH FINITELY MANY CENTRALIZERS 

M. ZARRIN

Communicated by Ali Reza Ashrafi


#### Abstract

For any group $G$, let $\mathcal{C}(G)$ denote the set of centralizers of $G$. We say that a group $G$ has $n$ centralizers ( $G$ is a $\mathcal{C}_{n}$-group) if $|\mathcal{C}(G)|=n$. In this note, we prove that every finite $\mathcal{C}_{n}$-group with $n \leq 21$ is soluble and this estimate is sharp. Moreover, we prove that every finite $\mathcal{C}_{n}$-group with $|G|<\frac{30 n+15}{19}$ is non-nilpotent soluble. This result gives a partial answer to a conjecture raised by A. Ashrafi in 2000.


## 1. Introduction

For any group $G$, let $\mathcal{C}(G)$ denote the set of centralizers of $G$. We say that a group $G$ has $n$ centralizers $\left(G \in \mathcal{C}_{n}\right.$, or $G$ is a $\mathcal{C}_{n}$-group) if $|\mathcal{C}(G)|=n$. Also we say that $G$ has a finite number of centralizers, written $G \in \mathcal{C}$, if $G \in \mathcal{C}_{n}$ for some $n \in \mathbb{N}$. Indeed $\mathcal{C}=\bigcup_{i>1} \mathcal{C}_{i}$. It is clear that a group is a $\mathcal{C}_{1}$-group if and only if it is abelian. Belcastro and Sherman in [5], showed that there is no finite $\mathcal{C}_{n}$-group for $n \in\{2,3\}$ (while Ashrafi in [2], showed that, for any positive integer $n \neq 2,3$, there exists a finite group $G$ such that $|\mathcal{C}(G)|=n)$. Also they characterized all finite $\mathcal{C}_{n}$-groups for $n \in\{4,5\}$. Tota (see Appendix of [10]) proved that every arbitrary $\mathcal{C}_{4}$-group is soluble. The author in [11] showed that the derived length of a soluble $C_{n}$-group (not necessarily finite) is $\leq n$.

[^0]For more details concerning $\mathcal{C}_{n}$-groups see $[1-4,11,12]$. In this paper, we obtain a solubility criteria for $C_{n}$-groups in terms of $|G|$ and $n$.

Our main results are:
Theorem A. Let $G$ be a finite $\mathcal{C}_{n}$-group with $n \leq 21$, then $G$ is soluble. The alternating group of degree 5 has 22 centralizers.

Theorem B. If $G$ is a finite $\mathcal{C}_{n}$-group, then the following hold:
(1) $|G|<2 n$, then $G$ is a non-nilpotent group.
(2) $|G|<\frac{30 n+15}{19}$, then $G$ is a non-nilpotent soluble group.

Let $G$ be a finite $\mathcal{C}_{n}$-group. In [5], Belcastro and Sherman raised the question whether or not there exists a finite $\mathcal{C}_{n}$-group $G$ other than $Q_{8}$ and $D_{2 p}$ ( $p$ is a prime) such that $|G| \leq 2 n$. Ashrafi in [2] showed that there are several counterexamples for this question and then Ashrafi raised the following conjecture (conjecture 2.4): If $|G| \leq 3 n / 2$, then $G$ is isomorphic to $S_{3}, S_{3} \times S_{3}$, or a dihedral group of order 10 . Now by Theorem A, we can obtain that if $|G| \leq 3 n / 2$, then $G$ is soluble. Therefore Theorem A give a partial answer to the conjecture put forward by Ashrafi.

## 2. Proofs

Let $n>0$ be an integer and let $\mathcal{X}$ be a class of groups. We say that a group $G$ satisfies the condition $(\mathcal{X}, n)(G$ is a $(\mathcal{X}, n)$-group) whenever in every subset with $n+1$ elements of $G$ there exist distinct elements $x, y$ such that $\langle x, y\rangle$ is in $\mathcal{X}$. Let $\mathcal{N}$ and $\mathcal{A}$ be the classes of nilpotent groups and abelian groups, respectively. Indeed, in a group satisfying the condition $(\mathcal{A}, n)$, the largest set of non-commuting elements (or the largest set of elements in which no two generate an abelian subgroup) has size at most $n$.
Here we give an interesting relation between groups that have n centralizers and groups that satisfy the condition $(\mathcal{A}, n-1)$.

Proposition 2.1. Let $n$ be a positive integer and let $G$ be a $\mathcal{C}_{n}$-group (not necessarily finite). Then $G$ satisfies the condition $(\mathcal{A}, n-1)$.

Proof. Suppose, for a contradiction, that $G$ does not satisfy the condition $(\mathcal{A}, n-1)$. Therefore, there exists a subset $X=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$ of $G$ such that $\left\langle a_{i}, a_{j}\right\rangle$ is not abelian, for every $1 \leq i \neq j \leq n$. It follows that $C_{G}\left(a_{i}\right) \neq C_{G}\left(a_{j}\right)$ for every $1 \leq i \neq j \leq n$. Now since $C_{G}(e)=G$,
where $e$ is the trivial element of $G$, we get $n=|\mathcal{C}(G)| \geq n+1$, which is impossible.

Note that by an easy computation we can see that the symmetric group of degree $4, S_{4}$, satisfies the condition $(\mathcal{A}, 10)$, but $S_{4}$ is not a $\mathcal{C}_{11}$-group (in fact, $S_{4}$ is a $\mathcal{C}_{14}$-group). That is, the converse of the above Proposition is not true.

We can now deduce Theorem A.
Proof of Theorem A. Clearly every group that satisfies the condition $(\mathcal{A}, n)$ also satisfies the condition $(\mathcal{N}, n)$. Thus, by Proposition 2.1, $G$ satisfies the condition $(\mathcal{N}, n)$ for some $n \leq 20$. Now this statement follows from the main result of [6]. By an easy computation we can obtain that the alternating group of degree 5 , has 22 centralizers.

Note that Ashrafi and Taeri in [4], proved that, if $G$ is a finite simple group and $|\mathcal{C}(G)|=22$, then $G \cong A_{5}$. Then they, by this result, claimed that, if $G$ is a finite group and $|\mathcal{C}(G)| \leq 21$, then $G$ is soluble. Therefore, in view of Theorem A, we gave positive answer to their claim.

Tota in [10, Theorem 6.2]) showed that a group $G$ belongs to $\mathcal{C}$ if and only if it is center-by-finite. Therefore, it is a natural problem to obtain bounds for $|G: Z(G)|$ in terms of $n$.

Theorem 2.2. There is some constant $c \in \mathbf{R}_{>0}$ such that for any $\mathcal{C}_{n}$ group $G$

$$
n \leq|G: Z(G)| \leq c^{n-1} .
$$

Proof. First, by the main result of [9] and Proposition 2.1 we have $\mid G$ : $Z(G) \mid \leq c^{n-1}$, for some constant $c$. To complete the proof, we may assume that $Z(G) \neq 1$. Since elements in the same coset modulo $Z(G)$ have the same centralizer, it follows that $n \leq|G: Z(G)|$.

For the proof of Theorem B, we need the following lemma.
Lemma 2.3. Let $G$ be a finite $\mathcal{C}_{n}$-group. Then

$$
n \leq \frac{|G|+|I(G)|}{2}
$$

where $I(G)=\left\{a \in G \mid a^{2}=1\right\}=\left\{a \in G \mid a=a^{-1}\right\}$.
Proof. Since $C_{G}(a)=C_{G}\left(a^{-1}\right)$, we can obtain that

$$
n \leq|I(G)|+\left|\frac{G-I(G)}{2}\right| \leq \frac{|G|+|I(G)|}{2},
$$

as desired.
Corollary 2.4. Let $G$ be a finite simple $\mathcal{C}_{n}$-group. Then $3 n / 2<|G|$.
Proof. It is well known that for every simple group we have $I(G)<$ $|G| / 3$. Now the result follows from Lemma 2.3.

Here we show that a semi-simple $\mathcal{C}_{n}$-group has order bounded by a function of $n$. (Recall that a group $G$ is semi-simple if $G$ has no nontrivial normal abelian subgroups.)
Proposition 2.5. Let $G$ be a semi-simple $\mathcal{C}_{n}$-group. Then $G$ is finite and $|G| \leq(n-1)$ !.
Proof. The group $G$ acts on the set $A:=\left\{C_{G}(x) \mid a \in G \backslash Z(G)\right\}$ by conjugation. By assumption $|A|=n-1$. Put $B=\bigcap_{x \in G} N_{G}\left(C_{G}(x)\right)$. The subgroup $B$ is the kernel of this action and so

$$
\begin{equation*}
G / B \hookrightarrow S_{n-1} \tag{*}
\end{equation*}
$$

By definition of $B$, the centralizer $C_{G}(a)$ is normal in $B$ for any element $a \in G$. Therefore, $a^{-1} a^{b} \in C_{G}(a)$ for any two elements $a, b \in B$. So $B$ is a 2-Engel group (see [7]). Now it is well known that $B$ is a nilpotent group of class at most 3 . Now as $G$ is a semi-simple group, we can obtain that $B=1$. It follows from $\left(^{*}\right)$ that $G$ is a finite group and $|G| \leq(n-1)!$, as desired.

We need the following result for the proof of Theorem B.
Theorem 2.6. (Potter, 1988) Suppose $G$ admits an automorphism which inverts more than $4|G| / 15$ elements. Then $G$ is soluble.
Proof of Theorem B. (1). Suppose, by contradiction, that $G$ is a nilpotent group, so in particular, $Z(G) \neq 1$. Now it follows from Theorem 2.2 that $2 n \leq|G|$, which is a contradiction.
(2). From part (1) we obtain that $G$ is not nilpotent. Since $|G|<\frac{30 n+15}{19}$ and so $2 n>\frac{19|G|-15}{15}$, Lemma 2.3 implies that

$$
|I(G)| \geq 2 n-|G|>\frac{4|G|}{15}-1 .
$$

On the other hand, since $I(G)$ is the set of all elements of $G$ that are inverted by the identity automorphism, Theorem 2.6 completes the proof.

## Acknowledgments

This research was supported by University of Kurdistan.

## References

[1] A. Abdollahi, S. M. Jafarian Amiri and A. Mohammadi Hassanabadi, Groups with specific number of centralizers, Houston J. Math. 33 (2007) no. 1, 43-57.
[2] A. R. Ashrafi, On finite groups with a given number of centralizers, Algebra Colloq. 7 (2000), no. 2, 139-146.
[3] A. R. Ashrafi, Counting the centralizers of some finite groups, Korean J. Comput. Appl. Math. 7 (2000), no. 1, 115-124.
[4] A. R. Ashrafi and B. Taeri, On finite groups with a certain number of centralizers, J. Appl. Math. Comput. 17 (2005), no. 1-2, 217-227.
[5] S. M. Belcastro and G. J. Sherman, Counting centralizers in finite groups, Math. Mag. 67 (1994), no. 5, 366-374
[6] G. Endimioni, Groupes finis satisfaisant la condition ( $N, n$ ), C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 12 1245-1247.
[7] W. P. Kappe, Die $A$-Norm einer gruppe, (German) Illinois J. Math. 5 (1961) 187-197.
[8] W. M. Potter, Nonsolvable groups with an automorphism inverting many elements, Arch. Math. (Basel) 50 (1988), no. 4, 292-299.
[9] L. Pyber, The number of pairwise noncommuting elements and the index of the centre in a finite group, J. London Math. Soc. (2) 35 (1987), no. 2, 287-295.
[10] M. Tota, Groups with a Finite Number of Normalizer Subgroups, Comm. Algebra 32 (2004), no. 12, 4667-4674.
[11] M. Zarrin, Criteria for the solubility of finite groups by their centralizers, Arch. Math. (Basel) 96 (2011), no. 3, 225-226.
[12] M. Zarrin, On element-centralizers in finite groups, Arch. Math. (Basel) 93 (2009), no. 6, 497-503.

## Mohammad Zarrin

Department of Mathematics, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
Email: m.zarrin@uok.ac.ir


[^0]:    MSC(2010): Primary: 20D99; Secondary: 20E07.
    Keywords: Centralizer, n-centralizer group, simple group.
    Received: 25 December 2011, Accepted: 30 April 2012.
    (C) 2013 Iranian Mathematical Society.

