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ASYMPTOTIC PROPERTIES OF THE SAMPLE MEAN

IN ADAPTIVE STRATIFIED SEQUENTIAL SAMPLING

WITH MULTIPLE SELECTION CRITERIA

A. PARVARDEH∗, B. PANAHBEHAGH, M. SALEHI M.,
J. BROWN AND D. R. SMITH

Communicated by Hamid Pezeshk

Abstract. We extend the method of adaptive two-stage sequen-
tial sampling to include designs where there is more than one crite-
ria used in deciding on the allocation of additional sampling effort.
These criteria, or conditions, can be a measure of the target popula-
tion, or a measure of some related population. We develop Murthy
estimator for the design that is unbiased estimators for the pop-
ulation mean, and propose another, more efficient, estimator. We
investigate asymptotic properties of this estimator. We use a sim-
ulation study to investigate design properties of the multi-criteria
adaptive stratified sequential sampling scheme and also some esti-
mator properties under the design.

1. Introduction

Asymptotic normality of estimators in finite populations has been the
focus of attention for many years for researchers in sampling and prob-
ability. Some examples of work over the last 50 years on asymptotic
normality include research on estimators for the sample mean for simple
random sampling without replacement (SRSWOR) (Erdos and Renyi [8]
and Hajek [12]), the Horvitz-Thomson estimator (HTE) for sampling
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without replacement and with different probabilities design (Rosen [20]),
ratio and the regression estimators for SRSWOR (Scott and Wu [22])
and two-stage sampling estimators (Ohlsson [19]). Berger [1] analyzed
the rate of convergence to the normal distribution for the HTE under any
unequal probability sampling without replacement design. Brewer [2],
Sarndal [21], Isaki and Fuller [15] have shown the consistency of some
regression type estimators under different sampling design with unequal
probabilities, and more recently, Martin [17] has investigated asymptotic
normality in adaptive cluster sampling.

Despite this research activity, asymptotic normality results for com-
monly used estimators are still not available for many sampling designs.
In this article we consider adaptive sequential sampling where the deci-
sion to adapt the sample is based on more than one decision criteria. We
develop Murthy estimator for these designs and explore its asymptotic
properties.

The commonly used estimator in adaptive sequential designs (e.g., adap-
tive two-stage sequential sampling, Brown et al. [3]) is the unbiased
Murthy estimator. In section 2, we derive Murthy estimator for mul-
tiple criteria designs, and, based on a derived form of it, propose a
new estimator. This new form of the estimator was first introduced by
Moradi and Salehi [18] for single criterion adaptive stratified sequential
sampling. Moradi and Salehi [18] have shown that this new form is
asymptotically unbiased and can be more efficient than Murthy estima-
tor. In section 3, we investigate the asymptotic properties of the new
estimator, drawing on the method of Chen and Rao [5]. We prove this
new estimator is consistent for the population mean and is asymptoti-
cally normal under Multi-criteria Adaptive Stratified Sequential (MAS)
sampling. In section 4, we conclude with two case studies to illustrate
the use of multiple criteria for adaptive sequential sampling. We discuss
the efficiency of these designs and of our new estimator and briefly the
asymptotic normality of the estimator under the design.

2. Adaptive two-stage sequential sampling with multiple
criteria

Two-stage sampling designs (Fattorini and Pisani [9]) are popular
choises for sampling surveys. In conventional two-stage sampling, the
population is divided into Primary Sampling Units (PSU) from which a
sample is drawn. Within selected PSUs a sample of Secondary Sampling
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Units (SSU) is drawn. PSUs are typically large units, such as geographic
units while SSUs are smaller, such as plots, quadrats, or households.

Adaptive Two-Stage Sequential (ATS) sampling was initially proposed
by Brown et al. [3] as a sample design for sampling rare and clustered
populations. Allocation of second-stage effort among PSUs is based on a
preliminary information from the sampled PSUs. Additional survey ef-
fort is directed to those PSUs where the SSUs in the initial sample have
met a pre-specified criterion, or condition (e.g., an individual from the
rare population is present). This design effectively over-samples PSUs
with high values, compared with other PSUs, a method consistent with
the approach recommended by Kalton and Anderson [16] for sampling
rare populations.

We begin by introducing the notation of Brown et al. [3]. Suppose we
have a total population of N units partitioned into H PSUs of size Nh

units. Let {(h, i), h = 1, 2, ...,H, i = 1, 2, ..., Nh} denote the ith unit
in the hth primary unit with an associated measurement or count yhi.

Then, ȲNh = 1
Nh

∑Nh
i=1 yhi is the mean of the y-value for the hth PSU

and ȲN = 1
N

∑H
h=1NhȲNh is the population mean.

According to Brown et al. [3], a simple random sample of size m is taken
without replacement, say s, in the first stage and in the second stage an
initial simple random sample of nh1 units without replacement is taken
from PSU h in s. The total initial sample size is n1 =

∑
h∈s nh1. Let

C be the condition that, if satisfied for lh units in the initial sample set
from PSU h, results in lh × d number of additional units being selected
at random from the remaining units in PSU h, where d is a predeter-
mined value. The number of adaptively added units in the hth PSU is
nh2 = lhd and n2 =

∑
h∈s nh2 is the number of adaptively added units

in the final sample.

We now extend the design to more than one condition. We begin consid-
ering a design with just one PSU. For simplicity assume that we have just
one PSU of size N with measurement yi, i = 1, 2, ..., N . We begin with
two mutually exclusive conditions, C1 and C2 such that we have three
different types of yi, yi ∈ UC1 , yi ∈ UC2 , yi ∈ UN − (UC1 ∪ UC2) = UC3 ,
where UN = {yi, i = 1, 2, ..., N} and UCk is the set of yi that satisfies Ck.
With this notation, UCk , k = 1, 2, 3 is a partition for UN . Note that each
yi can satisfy only one of the conditions. Assume we take a sample of size
n1, denoted by s1, in the initial phase, and let l11,l12 denote the number
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of units in the initial sample that satisfy respectively C1, C2. We then
take a sample of size n2 = f(l11, l12) where the number of adaptively
added units, n2, is a function of l11 and l12, and can be constructed
according to the relative importance of C1 and C2. We summaries the
design in Table 1.

In the next subsection, we drive an unbiased Murthy estimator for two

Table 1. Summary of two conditions situations, where
l1 = l11 + l12, l2 = l21 + l22, l = lc1 + lc2 = l1 + l2.

number condition Initial phase s1 Second phase s2 s = s1 ∪ s2
N n1 n2 = n(l11, l12) n = n1 + n2

NC1
C1 l11 l21 lc1 = l11 + l21

NC2
C2 l12 l22 lc2 = l12 + l22

NC3
= N −NC1

−NC2
C3 = (C1 ∪ C2)

′
n1 − l1 n2 − l2 n− l

conditions in ATS design.

2.1. Murthy estimator for ATS. To estimate the mean of the PSU,
we can use

Ŷ =
∑
i∈s

P (s | Ii = 1)

NP (s)
yi

where P (s) and P (s | Ii = 1) are the probability of getting the sample
s and the conditional probability of getting the sample s given the ith

unit was selected in the first draw, s is the final sample and Ii is an
indicator function which takes the value 1 when unit i is chosen as the
first selected unit, and 0 otherwise. Now with

n(s) =

(
lc1
l11

)(
lc2
l12

)(
n− lc1 − lc2
n1 − l11 − l12

)
n1!n2!

and

n(s, Ii = 1) =

(
lc1 − 1
l11 − 1

)(
lc2
l12

)(
n− lc1 − lc2
n1 − l11 − l12

)
(n1 − 1)!n2!; if yi ∈ UC1(

lc1
l11

)(
lc2 − 1
l12 − 1

)(
n− lc1 − lc2
n1 − l11 − l12

)
(n1 − 1)!n2!; if yi ∈ UC2(

lc1
l11

)(
lc2
l12

)(
n− lc1 − lc2 − 1
n1 − l11 − l12 − 1

)
(n1 − 1)!n2!; if yi ∈ UC3
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where n(s) and n(s, Ii = 1) are the number of permutations giving rise
to s and the number of permutations giving rise to s, Ii = 1, because
P (Ii = 1) = 1

N , we have

P (s | Ii = 1)

NP (s)
=

n(s, Ii = 1)

Nn(s)P (Ii = 1)
=


l11
n1lc1

; if yi ∈ UC1

l12
n1lc2

; if yi ∈ UC2

n1−l1
n1(n−l) ; if yi ∈ UC3

Therefore

Ŷ =
l11

n1
ysc1 +

l12

n1
ysc2 +

l13

n1
ysc3

= p̂11ysc1 + p̂12ysc2 + (1− p̂11 − p̂12) ysc3
= p̂11ysc1 + p̂12ysc2 + p̂13ysc3

where sck is the total sample that are satisfied in condition Ck and
ysck

= 1
lck

∑
i∈sck

yi.

We introduce another estimator by changing the form of the estimator
to allow us to investigate the asymptotic properties. This new estimator
not only has desired asymptotic properties but also can be more efficient
than Murthy estimator for ATS. In the next subsection we introduce this
new estimator.

2.2. A new form of Murthy estimator for ATS. In an ATS design
we have,

l11, l12 ∼ HG(N,NC1 , NC2 ;n1),

l21, l22 | l11, l12 ∼ HG(N − n1, NC1 − l11, NC2 − l12;n2).

where ”HG” denotes the multivariate hypergeometric distribution. As

shown above, Murthy estimator, Ŷ , is a weighted estimator of the mean
of yi’s from the three conditions, where the weights are a vector of
the unbiased estimators ( l11n1

= p̂11,
l12
n1

= p̂12,
l13
n1

= p̂13) of the three

subcomputations portions (
NC1
N = p1,

NC2
N = p2,

NC3
N = p3). This vector

is constructed using just the information from the first phase of sampling.
We propose a new estimator where all the information, from both phases
in the design, is used to construct these weights. The new estimator
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constructed using information from both phases is

ys =
lc1
n
ysc1 +

lc2
n
ysc2 +

n− lc1 − lc2
n

ysc3

=
1

n
(
∑
i∈sc1

yi +
∑
i∈sc2

yi +
∑
i∈sc3

yi) =
1

n
(
∑
i∈s

yi).

Although this estimator is not an unbiased estimator for the population
mean, Moradi and Salehi [18] have shown that this estimator under
ATS is asymptotically unbiased for one condition. Furthermore, we
show that this estimator is consistent for the population mean and it is
asymptotically normal.

3. Asymptotic properties of the sample mean under MAS
design

To investigate the asymptotic properties of the estimator we extend
our application to adaptive stratified sampling. First we define a new
form of the population to address the two conditions (i.e., there are
three kinds of individuals). Hereafter, we add the index υ to every
population or sample size. Setting this index to infinity means that all
the populations and sample sizes tend to infinity under some condition.

Let {zi} and {z∗i } be sequences of real numbers, with zi = (yi,xi) =
(yi, x1i, x2i, x3i) and z∗i = (z∗1i, z

∗
2i, z

∗
3i) = (yix1i, yix2i, yix3i), where yi

is the value corresponding to the ith individual and xki, k = 1, 2, 3 are
indicator functions that take 1 if yi satisfies condition k and 0 otherwise.
We define a sequence of finite populations {FNυ} , where the N th finite
population is composed of the first N values of the sequence {zi} .

Assume that

lim
υ→∞
{ 1

Nυ

∑
i∈UNυ

(xkiyi, xkiyixmiyi) | FNυ} = (θk, θkm); m ≤ k = 1, 2, 3,

where (θk, θkm), m ≤ k = 1, 2, 3 are finite and we assume that (θk, θkm)
are satisfied in all conditions that are necessary (for example, θkk−θ2

k >
0). We call this assumption as a moment assumption. Hereafter, when
we write ”i ∈ UNυ

Ck
” it means every index ”i” that ”yi ∈ UNυ

Ck
”.

We then have

z∗Nυ =
1

Nυ

∑
i∈U

Nυ

z∗i =

 Y x1Nυ

Y x2Nυ

Y x3Nυ

′ ,
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where

Y xkNυ =
1

Nυ

∑
i∈UNυ

yixik =
Nυ
Ck

Nυ

1

Nυ
Ck

∑
i∈UCk

yi =
Nυ
Ck

Nυ
Y Nυ

Ck
.

Also we have

S2
z∗Nυ

=
1

Nυ − 1

∑
i∈U

Nυ

(z∗i − z∗Nυ)
′
(z∗i − z∗Nυ)

=
1

Nυ − 1

 S2
yx1Nυ Syx1x2Nυ Syx1x3Nυ

Syx1x2Nυ S2
yx2Nυ Syx2x3Nυ

Syx1x3Nυ Syx2x3Nυ S2
yx3Nυ

 ,

where

S2
yxkNυ =

1

Nυ − 1

∑
i∈U

Nυ

(yixik − Y xkNυ)2

SyxkxhNυ =
1

Nυ − 1

∑
i∈U

Nυ

(yixik − Y xkNυ)(yixih − Y xhNυ).

According to the moment assumption, the population covariance S2
z∗Nυ

approaches to a positive definite constant matrix Γ as υ →∞, with

Γ =

 σ2
1 σ12 σ13

σ12 σ2
2 σ23

σ13 σ23 σ2
3

 ,

where σ2
k = θkk − θ2

k and σkm = θkm − θkθm, m ≤ k = 1, 2, 3.

Now note that we can decompose ys − Y Nυ as below:

ys − Y Nυ =
nυ1
nυ

(yx1s1 − Y x1Nυ) +
nυ1
nυ

(yx2s1 − Y x2Nυ)(3.1)

+
nυ1
nυ

(yx3s1 − Y x3Nυ) +
nυ2
nυ

(yx1s2 − Y x1Nυ)

+
nυ2
nυ

(yx2s2 − Y x2Nυ) +
nυ2
nυ

(yx3s2 − Y x3Nυ).

And, because ys − Y Nυ is decomposed to the first and second phase of
sampling, the following theorem will be helpful before the main theorem.

Theorem 3.1. (Chen and Rao [5]) Let Wnυ , Vnυ be two sequences of
random variables and let Bnυ be a σ-algebra. Assume that
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(1) there exists σ1nυ > 0 such that

σ−1
1nυVnυ

d−→ N(0, 1)

as nυ −→∞ , and Vnυ is Bnυ measurable,
(2) E{Wnυ | Bnυ} = 0 and V ar(Wnυ | Bnυ) = σ2

2nυ such that

sup
t

∣∣P (σ−1
2nυWnυ ≤ t | Bnυ)− Φ (t)

∣∣ = op (1) ,

where Φ (t) is the cumulative distribution function of the stan-
dard normal random variable,

(3) γ2
nυ =

σ2
1nυ

σ2
2nυ
−→ γ2 in probability as nυ −→∞,

then as nυ −→∞
Wnυ + Vnυ√
σ2

1nυ + σ2
2nυ

d−→ N(0, 1).

Now, with this background we are ready to formulate a theorem about
asymptotic normality of

√
nυ(Y s − Y Nυ) for just one condition with

nυ2 = d× l1 + 1. We begin with one condition with completely specified
situation.

Theorem 3.2. In adaptive sequential sampling, let Bnυ1 , the σ−algebra
generated by s1, contains all the information from the first phase of
sampling, and

• C1) Nυ, Nυ
Ck
, nυ1 , nυ2 | Bnυ1 −→ ∞ as υ −→ ∞, and Nυ

Ck
<

Nυ, nυ1 < Nυ, nυ2 < Nυ − nυ1 ,

• C2a) (
Nυ
Ck
Nυ | FNυ) is a fixed sequence that converges to fk as

υ −→∞,

• C2b) (
nυ1
Nυ | FNυ) is a fixed sequence that converges to f∗1 as

υ −→∞,

• C2c) (
nυ2

Nυ−nυ1
| Bnυ1 ,FNυ) is a fixed sequence that converges to f∗2

as υ −→∞ and
• C3) for all ε > 0

lim
υ→∞
{ 1

Nυ

∑
{i∈UNυ}∩{i:‖z̃∗i ‖>εNυ

nυ1
Nυ

(1−
nυ1
Nυ

)}

‖z̃∗i ‖
2 | FNυ} = 0,

where z̃∗i = z∗i − z∗Nυ , and ‖.‖ is the Euclidean norm,
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• C4a) [(Y x1Nυ−s1 − Y x1Nυ) | Bnυ1 ,FNυ ] = O(nυ
−( 12+δ)

2 )

and [(Y x2Nυ−s1 − Y x2Nυ) | Bnυ1 ,FNυ ] = O(nυ
−( 12+δ)

2 ) for some
δ > 0, where Nυ−s1 means whole population after excluding s1,

• C4b) [

(
S2
yx1Nυ−s1 Syx1x2Nυ−s1

Syx1x2Nυ−s1 S2
yx2Nυ−s1

)
−
(

S2
yx1Nυ Syx1x2Nυ

Syx1x2Nυ S2
yx2Nυ

)
| Bnυ1 ,FNυ ] −→ 0 as υ →∞,
• C4c) for all ε > 0

lim
υ→∞
{ 1

Nυ − nυ1

∑
{i∈UNυ−s1}∩{i:‖z̃∗i ‖>ε(Nυ−nυ1 )

nυ2
Nυ−nυ1

(1−
nυ2

Nυ−nυ1
)}

‖z̃∗i ‖
2

| Bnυ1 ,FNυ} = 0.

Then as υ −→∞
√
nυ(ys − Y Nυ)

d−→ N(0, V∞),

where

V∞ = (1− f∗1 + df1f
∗
2

1 + df1
)
1
2

√
(σ2

1 + σ2
2 + 2σ12).

and furthermore,

(ys − Y Nυ | FNυ) = op(1)

The proof of Theorem 3.2 is in Appendix A.
In adaptive sequential sampling, n is a random variable. The exact
variance of the ys is difficult to find, but the asymptotic form of the
variance to standardize the estimator can be presented in an easy and
simple form. There are some unknown parameters in the estimator. The
next corollary helps us to use the available information in the sample.

Corollary 3.3. Under the conditions of Theorem 3.2, we have

√
nυ(ys − Y Nυ)

σ̂

d−→ N(0, 1),

where

σ̂ = (1− f̂∗1 + df̂1f̂
∗
2

1 + df̂1

)
1
2

√
(s2

1 + s2
2 + 2s12)
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and

f̂1 =
l1
nυ1
, f̂∗1 =

nυ1
Nυ

, f̂∗2 =
nυ2

Nυ − nυ1
,

s2
k =

1

nυ1 − 1

∑
i∈s1

(yixki − Y xkn
υ
1
)2, k = 1, 2,

s12 =
1

nυ1 − 1

∑
i∈s1

(yix1i − Y x1nυ1
)(yix2i − Y x2nυ1

), Y xkn
υ
1

=
1

nυ1

∑
i∈s1

yixki.

Proof. Using the conditions in Theorem 3.2, it is easy to show that:

(1− f̂∗1 + df̂1f̂
∗
2

1 + df̂1

)
1
2

√
(s2

1 + s2
2 + 2s12) | FNυ

p−→ (1− f∗1 + df1f
∗
2

1 + df1
)
1
2

√
(σ2

1 + σ2
2 + 2σ12).

Implementing Slutsky Theorem (see Ferguson [10], chapter 6) the proof
is completed. �

According to results from Theorem 3.2, we can easily extend a theo-
rem for more than one condition. Below we represent a theorem for two
conditions with a general sample size nυ2 = f(l11, l12). For more than
two conditions the method will be the same.
According to (3.1) we can decompose

√
nυ(Y s − Y Nυ) as below:

√
nυ(ys − Y Nυ) =

√
nυ1 [

√
nυ1
nυ

(yx1s1 − Y x1Nυ) +

√
nυ1
nυ

(yx2s1 − Y x2Nυ)

+

√
nυ1
nυ

(yx3s1 − Y x3Nυ)] +
√
nυ2 [

√
nυ2
nυ

(yx1s2 − Y x1Nυ)

+

√
nυ2
nυ

(yx2s2 − Y x2Nυ) +

√
nυ2
nυ

(yx3s2 − Y x3Nυ)]

We now have the following theorem.

Theorem 3.4. In adaptive sequential sampling, let Bnυ1 , the σ−algebra
generated by s1, contains all the information in first phase of sampling,
and

• 1) Nυ, Nυ
Ck
, nυ1 , nυ2 | Bnυ1 −→ ∞ as υ −→ ∞, and Nυ

Ck
<

Nυ, nυ1 < Nυ, nυ2 < Nυ − nυ1 ,

• 2a) (
nυ1
Nυ | FNυ) is a fixed sequence that converge to f∗1 as υ −→

∞,
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• 2b) (
nυ2

Nυ−nυ1
| Bnυ1 ,FNυ) is a fixed sequence that converge to f∗2

as υ −→∞,
• 2c) (

nυ1
nυ − a | FNυ)

p−→ 0,
• 3) for all ε > 0

lim
υ→∞
{ 1

Nυ

∑
{i∈UNυ}∩{i:‖z̃∗i ‖>εNυ

nυ1
Nυ

(1−
nυ1
Nυ

)}

‖z̃∗i ‖
2 | FNυ} = 0,

where z̃∗i = z∗i − z∗Nυ , and ‖.‖ is the Euclidean norm,

• 4a) [(Y xkNυ−s1 − Y xkNυ) | Bnυ1 ,FNυ ] = O(nυ
−( 12+δ)

2 ), for k =
1, 2, 3 and some δ > 0 where Nυ−s1 means the whole population
after excluding s1,

• 4b) [

 S2
yx1Nυ−s1 Syx1x2Nυ−s1 Syx1x3Nυ−s1

Syx1x2Nυ−s1 S2
yx2Nυ−s1 Syx2x3Nυ−s1

Syx1x3Nυ−s1 Syx2x3Nυ−s1 S2
yx3Nυ−s1


−

 S2
yx1Nυ Syx1x2Nυ Syx1x3Nυ

Syx1x2Nυ S2
yx2Nυ Syx2x3Nυ

Syx1x3Nυ Syx2x3Nυ S2
yx3Nυ

 | Bnυ1 ,FNυ ] −→ 0 as υ →

∞,
• 4c) for all ε > 0

lim
υ→∞
{ 1

Nυ − nυ1

∑
{i∈UNυ−s1}∩{i:‖z̃∗i ‖>ε(Nυ−nυ1 )

nυ2
Nυ−nυ1

(1−
nυ2

Nυ−nυ1
)}

‖z̃∗i ‖
2

| Bnυ1 ,FNυ} = 0.

Then as υ −→∞

√
nυ(ys − Y Nυ)

σ̂

d−→ N(0, 1), (ys − Y Nυ | FNυ) = op(1)

where

σ̂ = [â(1− f̂∗1 ) + (1− â)(1− f̂∗2 )]
1
2

√
s2

1 + s2
2 + s2

3 + 2s12 + 2s13 + 2s23,
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and

â =
nυ1
nυ
, f̂∗1 =

nυ1
Nυ

, f̂∗2 =
nυ2

Nυ − nυ1
,

s2
k =

1

nυ1 − 1

∑
i∈s1

(yixki − Y xkn
υ
1
)2, k = 1, 2, 3

skm =
1

nυ1 − 1

∑
i∈s1

(yixki − Y xkn
υ
1
)(yixmi − Y xmnυ1

),m < k = 1, 2, 3

Y xkn
υ
1

=
1

nυ1

∑
i∈s1

yixki, k = 1, 2, 3.

The proof of this follows from the results for one condition.
It is notable that in these theorems, we have established a set of con-
ditions which guarantees the asymptotic normality and consistency for
the estimator in the design. However, in practice we have a finite pop-
ulation with fixed size and in a real sampling situation, it will generally
be impossible to verify this set of conditions. Therefore, the set of con-
ditions should be used only as a general guideline. For example, here the
conditions in the theorems suggest that in situations where the size of
population and sample are large and also there are not so many outlying
data in the population, the estimator will be normally distributed.

3.1. Design estimator. We now extend these results to MAS sam-
pling. It is necessary to add an index h to all above result and then
construct the final estimator. From the previous results (Theorem 3.4)
we have, for h = 1, 2, ...,H√

nυh
(ysh − Y Nυ

h
)

σh
| FNυ

h

d−→ N(0, 1),

where

σ2
h = [ah(1−f∗1h)+(1−ah)(1−f∗2h)](σ2

1h+σ2
2h+σ2

3h+2σ12h+2σ13h+2σ23h).

We use stratified sampling setup where a PSU is considered a stratum,
to construct conventional estimator, i.e.,

ys =
H∑
h=1

W υ
h ysh,

where

W υ
h =

Nυ
h

Nυ
,
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and

ys − Y Nυ =

H∑
h=1

W υ
h (ysh − Y Nυ

h
).

According to previous section we can re-state the final theorem as below:

Theorem 3.5. In adaptive stratified sequential sampling, under the con-
ditions in Theorem 3.4, with fixed H, if

(1) (
nυh
nυ − f

∗∗
h | FNυ)

p−→ 0, h = 1, 2, ...,H as υ −→ ∞, where nυ =∑H
h=1 n

υ
h and nυh = nυ1h + nυ2h,

(2) (W υ
h | FNυ) is a fixed sequence that converge to Fh ;h = 1, 2, ...,H,

as υ −→∞.
then

√
nυ

(ys − Y Nυ)

σ̂

d−→ N(0, 1), ys − Y Nυ | FNυ = op(1)

where

σ̂2 =
H∑
h=1

F̂ 2
h

f̂∗∗h
σ̂2
h,

σ̂h = [âh(1− f̂∗1h) + (1− âh)(1− f̂∗2h)]
1
2

√√√√ 3∑
k=1

s2
kh + 2

3∑
k=1

∑
k′>k

skk′h,

f̂∗1h =
nυ1h
Nυ
h

, f̂∗2h =
nυ2h

Nυ
h − nυ1h

, âh =
nυ1h
nυh

, F̂h = W υ
h , f̂

∗∗
h =

nυh
nυ

and s2
kh, k = 1, 2, 3 and skmh,m < k = 1, 2, 3 are defined as before (in

Theorem 3.4) but in the hth PSU.

See Appendix C for the proof of Theorem 3.5.
The results of the above theorems give us some information about the
distribution of the estimator. This allows us to use the standard in-
ference methods like large sample and population size, and calculate a
(1− α)100% confidence interval using normal distribution as below

(ys − zα2
σ̂√
n
, ys + zα

2

σ̂√
n

)

where zα
2

is the right tail of the normal distribution containing α
2 prob-

ability (0 < α < 1).
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4. Case Study

In this section, we illustrate the use of multiple criteria adaptive sam-
pling and we investigate asymptotic normality of the estimator under
MAS design. We use an artificial population of mussels and the stan-
dard poisson cluster process population. We investigate sample effi-
ciency and, in the second part, we briefly investigate normality of the
estimator under the new design.

4.1. Multiple criteria adaptive sampling. In this part we try to
evaluate multiple criteria adaptive sampling design using two data series.

4.1.1. Mussels populations. One of the standard data sets used in
adaptive sampling research is a freshwater mussel population from the
Cacapon River, West Virginia (Smith et al. [23]). The mussels in the
population occur in clusters and at low density, what we refer to as a
rare and clustered population.
In ecological systems there are usually multiple species present along
with the species of interest. In this simulation study we have a target
mussel population and treat the other species as auxiliary populations.
We generated artificial populations of mussels and of some other species.
The counts of the mussels were correlated with the auxiliary species’
counts. The auxiliary species could represent a different mussel species,
or a population of another animal or plant.
Each sample unit, or quadrat, contains two variables, yhi, the count of
the target mussels in the ith quadrat in the hth PSU and xhi, the count
of the other species in the respective quadrat. For the multiple criteria
sampling, the first condition is based on the target mussel count. The
second condition is based on the auxiliary variable.
The data set was divided into 400 quadrats. The quadrats are parti-
tioned evenly into 4 PSU. We simulated three generated mussel popu-
lations whose parameters were set to be similar to real life studies by
Hornbach et al. [13, 14]. They could span a realistic range, with mean
count/quadrat of 0.785, 0.500 and 0.240 and variance of 3.973, 2.265
and 1.170 respectively for target variable. We call these three synthetic
populations ”popu1, popu2” and ”popu3”.
We used one auxiliary population, with mean count of 0.675 and vari-
ance of 5.212 (figure 1). The correlation between the target and the
auxiliary populations were 0.312, 0.375 and 0.322, respectively, for the
three simulations. We compared the sample design with one condition
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Figure 1. Three artificial mussel populations. The
red circles and black pluses indicate where counts of the
target mussel and auxiliary population were one, or more

and the two conditions design. For each design we calculated the propor-
tion of proportions (PP) of the design. We define this as the proportion
of the quadrats occupied by the target species that were detected in the
design, divided by proportion of the quadrats occupied by the target
species in the whole population. Also we calculated the expectation and
variance of ȳs and Murthy estimator for the two designs and using them
to compute the relative efficiencies of the designs. We calculated relative
efficiency as the ratio of the simulated variances. We used a range of
sample design parameters:

(1) ATS2c, ATS with two conditions, where both the target and
auxiliary populations were used in the condition definitions. In
this design n1 = 3, 6, 9, 12, n2 = d1 ∗ l11 + d2 ∗ l12 + 1 with
d1 = 6, d2 = 3 (for popu3 we set d1 = 7). We define C1 as
the condition when the quadrat has at least one mussel (target
population) in it (yhi > 0), and C2 as the condition when the
quadrat does not satisfy C1 and the quadrat has at least 1 indi-
vidual from the auxiliary population (yhi does not satisfy C1 and
xhi > 0). Therefore, C3 is the condition when neither condition
1 nor 2 are met, the complement of C1 ∪ C2.

(2) ATS1c, ATS with one condition. In this design n1 = 5, n2 =
d ∗ l1 + 1 with d = 5. We define C as the condition when the
quadrat has at least one individual in it from either the target
or auxiliary population.
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The values of n1, d, d1 and d2 were chosen such that the final sample
sizes in both design were the same to have a fair comparison between
the two.

It is notable that according to the plots of the populations, the target
variable can help us more than the auxiliary variable to find more target
variable and that’s why we gave more weight to the target variable
(d1 = 6) relative to the auxiliary variable (d2 = 3) in ATSc2.
The sample results are shown in tables (2,3 and 4). In these tables when
four PSU are selected (m = 4), we have adaptive stratified sequential
sampling design.

Table 2. PP for ATS in 3 artificial mussels populations.
The numbers of primary sample units sampled (m) was
1, 2, 3 and 4. Results from the two condition sample are
in the column, 2c, and one condition results in column
1c.

m=4 m=3 m=2 m=1
2c 1c 2c 1c 2c 1c 2c 1c

popu1
n1=3 1.289 1.231 1.211 1.169 1.080 1.070 0.836 0.855
n1=6 1.344 1.273 1.284 1.236 1.164 1.136 0.884 0.893
n1=9 1.365 1.287 1.304 1.245 1.179 1.142 0.917 0.925
n1=12 1.375 1.299 1.321 1.254 1.204 1.160 0.937 0.936
popu2
n1=3 1.263 1.247 1.213 1.206 1.047 1.059 0.815 0.832
n1=6 1.345 1.306 1.271 1.247 1.145 1.138 0.893 0.911
n1=9 1.357 1.316 1.296 1.267 1.145 1.142 0.928 0.933
n1=12 1.371 1.327 1.286 1.256 1.184 1.162 0.928 0.930
popu3
n1=3 1.014 0.997 0.992 0.985 0.893 0.920 0.705 0.769
n1=6 1.079 1.036 1.039 1.018 0.944 0.949 0.795 0.836
n1=9 1.095 1.039 1.089 1.034 1.029 1.007 0.853 0.866
n1=12 1.126 1.062 1.094 1.046 1.027 1.002 0.866 0.894

The ATS2c design detected the highest proportion of quadrats occu-
pied by the target species (Table 2), for almost all simulations except
for m = 1. The two-condition design uses information from both the
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Table 3. Efficiency of ATS2c relative to ATS1c for ȳs
for 3 artificial mussels population

m=4 m=3 m=2 m=1
popu1
n1=3 1.033 1.016 1.045 0.993
n1=6 1.000 1.031 1.019 1.043
n1=9 1.043 1.009 1.000 1.016
n1=12 1.067 1.019 0.996 1.007
popu2
n1=3 1.000 1.000 1.033 1.033
n1=6 0.960 0.970 1.007 1.025
n1=9 1.000 1.038 1.015 0.987
n1=12 1.000 1.042 1.024 0.992
popu3
n1=3 0.981 1.003 1.082 1.203
n1=6 0.934 0.975 1.032 1.114
n1=9 0.909 0.907 0.965 1.029
n1=12 0.896 0.924 0.958 1.065

target and auxiliary population separately in allocating second phase
effort. With the two conditions, finding either the target mussels or the
auxiliary species will initiate second phase effort. In the simulation with
m = 1 the two condition design detected fewer occupied quadrats which
may be a result of the low sample size. The relative improvement of the
two condition design over the one-condition design was consistent over
the range of densities of three populations.
The two conditions design showed a slight improvement in efficiency
compared to the one condition design for populations 1 and 2 (Table 3).
There was little, or no, gain in efficiency for population 3, the population
with the lowest mussel abundance.
The comparison of new estimator, ȳs with Murthy estimator for ATS2c

(Table 4) showed remarkable gains in efficiency especially at the higher
sample sizes (m = 4). The new estimator was more than twice as efficient
as Murthy estimator for 20 of the 48 simulations, and for all simulations
relative efficiencies ware greater than 1.
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Table 4. Efficiency of ȳs relative to Murthy estimator
for ATS2c for 3 artificial mussels population

m=4 m=3 m=2 m=1
popu1
n1=3 2.035 1.700 1.619 1.563
n1=6 2.141 1.555 1.370 1.348
n1=9 2.317 1.409 1.279 1.205
n1=12 2.840 1.349 1.221 1.157
popu2
n1=3 2.322 2.054 1.880 1.820
n1=6 2.323 1.758 1.563 1.481
n1=9 2.320 1.589 1.375 1.281
n1=12 2.544 1.463 1.303 1.208
popu3
n1=3 2.626 2.666 2.927 2.741
n1=6 2.213 2.194 2.145 2.209
n1=9 2.134 2.160 1.883 1.840
n1=12 2.180 1.938 1.739 1.677

4.1.2. Poisson cluster population. To illustrate another example of
multiple criteria adaptive sampling we use the standard Poisson clus-
ter process data (Diggle 1983). This dataset is another example of a
clustered population, generated by a linked pairs process (Diggle 1983,
pp.93-94) together with a bivariate Poisson cluster process, which is a
generalization of Poisson cluster process (Diggle [7], pp.55-57), (Figure
2). The dataset has been used by both Chao [4] and Chutiman [6] to
evaluate their results in using auxiliary variable in adaptive cluster sam-
pling design. We partitioned the population into 8 PSUs, each of them of
size 50 quadrats. The mean and variance of the target variable are 0.64,
and 0.48, respectively. It is not necessary to have auxiliary information
for using multiple conditions. Instead the sample design uses informa-
tion based on the value of the target population count. For ATS2c we
set C1 as ”0 < yhi ≤ 2” and C2 as ”3 ≤ yhi”, with d1 = 1, d2 = 8. For
ATS1c we set ”y > 0” as C with d = 1 and for both of them n1 = 3, 5, 7.
Again the parameters were chosen such that the final sample size for
both designs were the same.
The results are summarized in Tables 5, 6 and 7.
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Figure 2. The values indicate the counts greater than 0
of the target population in each quadrat from the Poisson
cluster process

Table 5. PP for ATS for Poisson cluster process population

m=8 m=6 m=4
2c 1c 2c 1c 2c 1c

n1=3 1.081 1.036 1.066 1.022 1.039 1.004
n1=5 1.110 1.063 1.102 1.057 1.067 1.029
n1=7 1.133 1.070 1.118 1.061 1.092 1.0491

Table 6. Efficiency of ATS2c relative to ATS1c for ȳs
in the Poisson cluster process population

m=8 m=6 m=4
n1=3 1.316 1.366 1.299
n1=5 1.302 1.312 1.233
n1=7 1.285 1.265 1.306

As with the mussel population, the ATS2c design detected the highest
proportion of quadrats occupied by the target species (Table 5), for
all simulations. The two conditions design was more efficient than the
one condition design (Table 6). The sample variance for ATS2c was



548 Parvardeh, Panahbehagh, Salehi, Brown and Smith

Table 7. Efficiency of ȳs relative to Murthy estimator
for ATS2c for the Poisson cluster process population

m=8 m=6 m=4
n1=3 2.201 2.226 2.560
n1=5 1.975 2.094 2.030
n1=7 1.914 1.904 1.888

smaller than the variance for the one-condition design for all simulations.
The comparison of new estimator, ȳs with Murthy estimator for ATS2c

(Table 7) showed remarkable gains in efficiencies for all the situations.
Here the ATS2c design help us to spend the additional samples in more
important PSUs.

4.2. Investigating normality of the estimator under MAS. To
investigate the normality of the new estimator, ȳs, we revisited the mus-
sel and the Poisson cluster populations. We used adaptive stratified
sequential sampling and constructed a histograms from the simulation
results (figures 3, 4, and 5). We calculated the sample fraction, the pro-
portion of the quadrats that were include in the final sample. Normality
was tested by Shapiro Normality test with 500 iteration and the p-values
are included in figure 3, 4 and 5.
We used n1 = 2, 3, 4, 6, 8 and 10 for popu1 of the mussels and n1 =
4, 6, 8, 10, 13 and 15 for popu3 of the mussels. For both populations we
used d1 = 3 and d2 = 2. For the Poisson cluster population we used
n1 = 3, 5, 7, 9, 11 and 13 and d1 = 1 and d2 = 6. The conditions for the
adaptive selection were the same as in the previous sections.
The shape of the histograms of the new estimators were normal with the
higher sample fractions. This was more evident with the lower density
populations, the Poisson cluster population, and popu3 of the mussel
population. For popu1 of the mussels, when the sample fraction was
larger than 0.08 the distribution of the estimator was normal. For popu3
and the Poisson the sample fraction needed to be larger than 0.25 for
normality.
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Figure 3. Normality of the estimator for popu1, with
”yhi > 0” as C1 and ”yhi does not satisfy C1 and xhi > 0”
as C2, and d1 = 3, d2 = 2. Sample fractions were 0.04,
0.06, 0.08, 0.11, 0.15 and 0.18 respectively.
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Figure 4. Normality of the estimator for the Poisson
cluster process, with ”0 < yhi ≤ 2” as C1 and ”3 ≤ yhi”
as C2, and d1 = 1, d2 = 6. Sample fractions were 0.08,
0.12, 0.16, 0.21, 0.25 and 0.29, respectively.

5. Conclusion

We have extended the design for adaptive sequential sampling by
including more than one condition. Considerable effort is often spent
searching for rare individuals in sampling rare populations. Any design
that allows the survey effort to be better focused to where the individ-
uals are likely to occur is a welcome addition to the survey toolbox. In
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Figure 5. Normality of the estimator for popu3, with
”yhi > 0” as C1 and ”yhi does not satisfy C1 and xhi > 0”
as C2, and d1 = 3, d2 = 2. Sample fractions were 0.08,
0.11, 0.15, 0.18, 0.23 and 0.27 respectively.

this study the simulation study showed that when there was auxiliary
information correlated to the target population, it can be used to help
focus, or, adapt the survey effort and improve efficiency.
We illustrated multiple criteria sampling with two examples. In the first
example, auxiliary information (e.g., a related species) was used for a
second criteria and the adaptive allocation of the sample effort. In the
second example, information from the target population was used as the
second criteria whether the sample unit had a ”high” count (yhi > 3).
In both examples the two criteria designs had high efficiency especially
in finding rare units.
We developed a new estimator and showed that it is consistent and
asymptotically normal. We also provided its asymptotic variance es-
timator to standardize the estimator. For large-population sampling ,
where the size of the final sample is large, we recommend the use of this
new estimator instead of Murthy estimator. Asymptotic normality of
the estimator allows standard, well known, inference techniques to be
used.
Appendix A: Proof of Theorem 3.2: First assume we have one
condition C1 and nυ2 = d ∗ l1 + 1, where d is fixed before sampling and
Nυ
C2

= Nυ − Nυ
C1

(see Table 8). According to (3.1) (but for one
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Table 8. Attributes of the design for just one condition

number condition Initial phase s1 Second phase s2 s = s1 ∪ s2
Nυ nυ1 nυ2 = nυ(l1) = d ∗ l1 + 1 nυ = nυ1 + nυ2
Nυ
C1

C1 l1 l2 l = l1 + l2

Nυ
C2

= Nυ −Nυ
C1

C2 = C
′
1 nυ1 − l1 nυ2 − l2 nυ − l

condition) we have:

√
nυ(ys − Y Nυ)

=
√
nυ1(

√
nυ1
nυ

(yx1s1 − Y x1Nυ) +

√
nυ1
nυ

(yx2s1 − Y x2Nυ))︸ ︷︷ ︸
from first-phase

+
√
nυ2(

√
nυ2
nυ

(yx1s2 − Y x1Nυ) +

√
nυ2
nυ

(yx2s2 − Y x2Nυ))︸ ︷︷ ︸
from second-phase

.

Now we need first to state and prove the below lemma.

Lemma 5.1. In adaptive sequential sampling, under conditions given
in Theorem 3.2,

• (I) ( l1nυ1
− f1 | FNυ)

p−→ 0, as υ −→∞
• (II) (

nυ1
nυ −

Nυ

Nυ+dNυ
C1

| FNυ) = op(1),

• (III) (
nυ2
nυ −

dNυ
C1

Nυ+dNυ
C1

| FNυ) = op(1) ,

• (IV) (yxks1 − Y xkNυ | FNυ) = Op(n
υ−

1
2

1 ).

For proving Lemma 5.1 see Appendix B.
Now for the first phase of

√
nυ(ys−Y Nυ) according to the above results
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√
nυ(ys − Y Nυ)first-phase | FNυ

=
√
nυ1(

√
nυ1
nυ

(yx1s1 − Y x1Nυ) +

√
nυ1
nυ

(yx2s1 − Y x2Nυ))

=
√
nυ1

√
Nυ

Nυ + dNυ
C1

[(yx1s1 − Y x1Nυ) + (yx2s1 − Y x2Nυ)]

+
√
nυ1 (

√
nυ1
nυ
−
√

Nυ

Nυ + dNυ
C1

)︸ ︷︷ ︸
op(1)

[(yx1s1 − Y x1Nυ)︸ ︷︷ ︸
Op(nυ

− 1
2

1 )

+ (yx2s1 − Y x2Nυ)︸ ︷︷ ︸
Op(nυ

− 1
2

1 )

].

Then
√
nυ(ys − Y Nυ)first-phase | FNυ

=
√
nυ1(

√
Nυ

Nυ + dNυ
C1

)[(yx1s1 − Y x1Nυ) + (yx2s1 − Y x2Nυ)]

+op(1).

From (C3) we have (see Thompson [24], page 60)√
nυ1

(
yx1s1 − Y x1Nυ

yx2s1 − Y x2Nυ

)
| FNυ

d−→ N(0, (1− f∗1 )Γ).

Then for the first phase of sampling using Slutsky Theorem we have:√
nυ1(
√

Nυ

Nυ+dNυ
C1

(yx1s1 − Y x1Nυ) +
√

Nυ

Nυ+dNυ
C1

(yx2s1 − Y x2Nυ))√
(1− f∗1 )(( Nυ

Nυ+dNυ
C1

σ2
1 + Nυ

Nυ+dNυ
C1

σ2
2 + 2 Nυ

Nυ+dNυ
C1

σ12))

| F∗Nυ
d−→ N(0, 1).

Now for matching to Theorem 3.1 we can set:

Vnυ =
√
nυ1(

√
Nυ

Nυ + dNυ
C1

)[(yx1s1 − Y x1Nυ) + (yx2s1 − Y x2Nυ)],

σ2
1nυ = (1− f∗1 )

Nυ

Nυ + dNυ
C1

(σ2
1 + σ2

2 + 2σ12).

Let Bnυ1 be the σ − algebra that contains information from the first
phase. Conditional on Bnυ1 , the second phase sample is a simple random
sample without replacement of the populations FNυ after excluding s1
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with constant sample size nυ2 = d× l1 + 1.

let

(
yx1Nυ−s1
yx2Nυ−s1

)
,

(
S2
yx1Nυ−s1 Syx1x2Nυ−s1

Syx1x2Nυ−s1 S2
yx2Nυ−s1

)
are the vectors of

mean and the matrix of variance of the remainder population.
Also yx1s2 and yx2s2 conditional on Bnυ1 ,FNυ , are the mean of a simple

random sample without replacement with constant sample size nυ2 =
d× l1 + 1 of the population FNυ − s1(FNυ after excluding s1). Then we
have

E(yxks2 | Bnυ1 ,FNυ) = Y xkNυ−s1 , k = 1, 2

For the second phase of
√
nυ(Y s − Y Nυ) according to the above results

and (C4a), it is easy to show that

√
nυ(ys − Y Nυ)second-phase | Bnυ1 ,FNυ =√
nυ2

√
dNυ

C1

Nυ + dNυ
C1

((yx1s2 − Y x1Nυ−s1) + (yx2s2 − Y x2Nυ−s1)) + op(1).

Then from moment assumption and (C4b) we have

[

(
S2
yx1Nυ−s1 Syx1x2Nυ−s1

Syx1x2Nυ−s1 S2
yx2Nυ−s1

)
| Bnυ1 ,FNυ ] −→ Γ =

(
σ2

1 σ12

σ12 σ2
2

)
as

υ →∞, and then from (C4c) we have√
nυ2

(
yx1s2 − Y x1Nυ−s1
yx2s2 − Y x2Nυ−s1

)
| Bnυ1 ,FNυ

d−→ N(0, (1− f∗2 )Γ).

Now for the second phase of sampling according to all above results we
have, as υ →∞√
nυ2(

√
dNυ

C1
Nυ+dNυ

C1

(yx1s2 − Y x1Nυ−s1) +

√
dNυ

C1
Nυ+dNυ

C1

(yx2s2 − Y x2Nυ−s1))√
(1− f∗2 )((

dNυ
C1

Nυ+dNυ
C1

σ2
1 +

dNυ
C1

Nυ+dNυ
C1

σ2
2 + 2

dNυ
C1

Nυ+dNυ
C1

σ12))

| Bnυ1 ,FNυ
d−→ N(0, 1).

Again for matching to Theorem 3.1 we can set:

Wnυ =
√
nυ2

√
dNυ

C1

Nυ + dNυ
C1

((yx1s2 − Y x1Nυ−s1) + (yx2s2 − Y x2Nυ−s1)),

σ2
2nυ = (1− f∗2 )

dNυ
C1

Nυ + dNυ
C1

(σ2
1 + σ2

2 + 2σ12).
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We have

σ−1
1nυVnυ | FNυ

d−→ N(0, 1),

σ−1
2nυWnυ | Bnυ1 ,FNυ

d−→ N(0, 1),

and because the normal distribution has a continuous F we have (see
Ferguson [10] chapter 1):

sup
t

∣∣P (σ−1
2nυWnυ ≤ t | Bnυ1 ,FNυ)− Φ(t)

∣∣→ 0.

Also we have

γ2
nυ =

(1− f∗1 ) Nυ

Nυ+dNυ
C1

((σ2
1 + σ2

2 + 2σ12)

(1− f∗2 )
dNυ

C1
Nυ+dNυ

C1

((σ2
1 + σ2

2 + 2σ12))

=
(1− f∗1 )Nυ

(1− f∗2 )dNυ
C1

−→ (1− f∗1 )

(1− f∗2 )df1

and with gathering all condition in Theorem 3.1 we have

Vnυ +Wnυ√
σ2

1nυ + σ2
2nυ

| FNυ
d−→ N(0, 1),

but
√
nυ(ys − Y Nυ) = Vnυ + Wnυ + op(1) and

√
σ2

1nυ + σ2
2nυ = [(σ2

1 +

σ2
2 + 2σ12)(1−

Nυf∗1 +dNυ
C1
f∗2

Nυ+dNυ
C1

)]
1
2 = O(1), Therefore,

√
nυ(ys − Y Nυ)

(1−
Nυf∗1 +dNυ

C1
f∗2

Nυ+dNυ
C1

)
1
2

√
(σ2

1 + σ2
2 + 2σ12)

=
Vnυ +Wnυ√
σ2

1nυ + σ2
2nυ

+ op(1).

Then from Slutsky theorem we have
√
nυ(ys − Y Nυ)

(1−
Nυf∗1 +dNυ

C1
f∗2

Nυ+dNυ
C1

)
1
2

√
(σ2

1 + σ2
2 + 2σ12)

| FNυ
d−→ N(0, 1).

Also for consistency, because of V∞√
nυ
→a.s. 0 we can deduce that

ys − Y Nυ | FNυ
d−→ 0

and therefore

ys − Y Nυ | FNυ
p−→ 0
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The proof of Theorem 3.2 is completed.
Appendix B: Proof of Lemma 5.1:
from

l1 | FNυ ∼ HG(Nυ, Nυ
C1
, nυ1),

l1
nυ1

=
1

nυ1

∑
i∈s1

x1i

it is easy to show that

(
l1
nυ1
−
Nυ
C1

Nυ
| FNυ) = Op(n

υ−
1
2

1 )

and then with (C2a) in Theorem 3.2

(
l1
nυ1
− f1 | FNυ) = (

l1
nυ1
−
Nυ
C1

Nυ
| FNυ) + (

Nυ
C1

Nυ
− f1 | FNυ)

p−→ 0.

Proof of (II) and (III) are easy using (I) and

nυ1
nυ

=
1

1 + d l1nυ1
+ 1

nυ1

,
nυ2
nυ

= 1− nυ1
nυ
.

For (IV) , since from moment assumption S2
yxk

= O(1), we have

P (nυ
1
2

1 | yxks1 − Y xkNυ |> Mε | FNυ) =

nυV ar(yxks1 − Y xkNυ | FNυ)

M2
ε

=
nυ1

(1− nυ1
Nυ

)

nυ1
S2
yxk

M2
ε

=
(1− nυ1

Nυ )O(1)

M2
ε

<ε

when we set M2
ε >

M
′

ε and M
′

is a bound for (1− nυ1
Nυ )O(1).

Appendix C: Proof of Theorem 3.5:
Because

√
nυh(ysh − Y Nυ

h
) converges in distribution with finite constant

variance, it is easy to show that
√
nυ(ys − Y Nυ) =
H∑
h=1

Fh√
f∗∗h

√
nυh(ysh − Y Nυ

h
)+

H∑
h=1

(

√
nυ√
nυh
W υ
h −

Fh√
f∗∗h

)
√
nυh(ysh − Y Nυ

h
)

=
H∑
h=1

Fh√
f∗∗h

√
nυh(ysh − Y Nυ

h
) + op(1).

and using Theorem 3.4, we have

[

H∑
h=1

Fh√
f∗∗h

√
nυh(ysh − Y Nυ

h
) | (FNυ

h
, h = 1, 2, ...,H)]

d−→ N(0, σ2),



556 Parvardeh, Panahbehagh, Salehi, Brown and Smith

where

σ2 =
H∑
h=1

F 2
h

f∗∗h
σ2
h.

The rest of the proof follows from σ̂2 p−→ σ2 and Slutsky Theorem. The
proof of the consistency is obvious according to the previous results.
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