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BIFLATNESS AND BIPROJECTIVITY OF LAU

PRODUCT OF BANACH ALGEBRAS

A. R. KHODDAMI AND H. R. EBRAHIMI VISHKI∗

Communicated by Gholam Hossein Esslamzadeh

Abstract. We give sufficient and necessary conditions for the Lau
product of Banach algebras to be biflat or biprojective.

1. Introduction and Preliminaries

Let A and B be Banach algebras with spectrum σ(B) 6= ∅. Let
θ ∈ σ(B) then the direct product A × B equipped with the algebra
multiplication

(a, b) · (c, d) = (ac+ θ(d)a+ θ(b)c, bd), (a, c ∈ A, b, d ∈ B),

and the `1−norm is a Banach algebra which is called the θ-Lau prod-
uct of A and B and is denoted by A ×θ B. This type of product was
introduced by Lau [4] for certain class of Banach algebras and was ex-
tended by Sangani Monfared [6] for the general case. For example, the
unitization A] = A×i C of A can be regarded as the i−Lau product of
A and C where i ∈ σ(C) is the identity character. If one includes the
possibility that θ = 0 then the usual direct product of Banach algebras
will be obtained.

This product provides not only new examples of Banach algebras by
themselves, but also it has the potential to serve as (counter) examples in
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different branches of functional analysis. From the homological algebra
point of view, A×θB is a strongly splitting Banach algebra extension of
B by A that exhibits many properties that are not shared, in general,
by arbitrary strongly splitting extensions. For instance, commutativity
is not preserved by a general strongly splitting extension. However,
A×θB is commutative if and only if both A and B are commutative [6,
Proposition 2.3 (ii)].

Many basic properties of A×θB such as characterizations of bounded
approximate identity, spectrum, topological center, and the ideal struc-
ture are investigated in [6]. Character (inner) amenability of A×θB was
also studied in [7] ( [2]). The main aim of this paper is to study some
homological properties of A×θ B, specifically, the concepts of biflatness
and biprojectivity.

We denote the multiplication map for a Banach algebra A by ∆ :
A⊗̂A → A or, for emphasis, ∆A. It is clear that ∆ is an A−bimodule
map (i.e. a bounded linear map which preserves the module operations)
with respect to the canonical module structure on the projective tensor
product A⊗̂A. A Banach algebra A is called biprojective if ∆ : A⊗̂A→
A has a bounded right inverse which is an A−bimodule map. A Banach
algebra A is said to be biflat if the adjoint ∆∗ : A∗ → (A⊗̂A)∗ of
∆ has a bounded left inverse which is an A−bimodule map. Taking
adjoints implies that every biprojective Banach algebra is biflat. The
basic properties of biprojectivity and biflatness are investigated in [3];
see also [1, 5].

A standard argument shows that the usual direct product A × B
(which comes from the case θ = 0) is biflat (resp. biprojective) if and
only if both A and B are biflat (resp. biprojective). However, this is
not the case for a general θ ∈ σ(B). For instance, the unitization A] of
A (as the i−Lau product of A and C) is biprojective if and only if A is
biprojective and unital (or equivalently, A is contractible); [1, Theorem
2.8.48]. For the biflatness of A], one can also verify that: if A is biflat
then A] is biflat if and only if A has a bounded approximate identity (or
equivalently, A is amenable); [5].

Inspired by this special example, as the main purpose of this paper
we present the next result which clarifies the relation between biflatness
(resp. biprojectivity) of A×θ B and those of A and B in the case where
A is unital.
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Theorem. Let A be a unital Banach algebra, let B be a Banach algebra
and θ ∈ σ(B). Then A ×θ B is biflat (biprojective, respectively) if and
only if both A and B are biflat (biprojective, respectively).

To provide the proof we need some prerequisites. Recall that the dual
A∗ of a Banach algebra A is a Banach A−bimodule under the module op-
erations defined by 〈f ·a, b〉 = 〈f, ab〉, 〈a ·f, b〉 = 〈f, ba〉, (f ∈ A∗, a, b ∈
A). The basic properties of these module operations are discussed in [1].
It is easy to verify that the dual space (A×θ B)∗ can be identified with
A∗×B∗ via 〈(f, g), (a, b)〉 = f(a)+g(b), (a ∈ A, b ∈ B, f ∈ A∗, g ∈ B∗).
Moreover, a direct computation shows that the (A×θ B)−bimodule op-
erations of (A×θ B)∗ are

(a, b) · (f, g) = (a · f + θ(b)f, f(a)θ + b · g) and(1.1)

(f, g) · (a, b) = (f · a+ θ(b)f, f(a)θ + g · b).(1.2)

Furthermore, L =: A ×θ B is a Banach A−bimodule under the module
actions c · (a, b) =: (c, 0) · (a, b) and (a, b) · c =: (a, b) · (c, 0), (a, c ∈ A, b ∈
B). Furthermore, L can also be made into a Banach B−bimodule in a
similar fashion. We define some mappings that will be used frequently in
the proof of the above theorem. Let pA : L→ A and pB : L→ B be the
usual projections which are defined by pA((a, b)) = a and pB((a, b)) = b,
(a ∈ A, b ∈ B), respectively. We define the usual injections qA : A → L
and qB : B → L by qA(a) = (a, 0) and qB(b) = (0, b), respectively.
It is easy to verify that pB, qB are B−bimodule maps and qA is an
A−bimodule map (however, pA is not an A−bimodule map, in general).
The mappings pB and qA induce the unique B−bimodule map pB⊗pB :
L⊗̂L→ B⊗̂B and the unique A−bimodule map qA⊗qA : A⊗̂A→ L⊗̂L
satisfying (pB ⊗ pB)((a, b) ⊗ (c, d)) = b ⊗ d and (qA ⊗ qA)(a ⊗ c) =
(a, 0)⊗ (c, 0), respectively.

In the case where A is unital we shall also deal with the mappings
rA : L→ A and sB : B → L which depend on the character θ and play a
key role in the proof of the Theorem. We define rA and sB by rA((a, b)) =
a + θ(b) and sB(b) = (−θ(b), b) (a ∈ A, b ∈ B), respectively. Trivially
rA is an A−bimodule map and sB is a B−bimodule map. Furthermore,
they induce a unique A−bimodule map rA⊗rA : L⊗̂L→ A⊗̂A satisfying
(rA⊗ rA)((a, b)⊗ (c, d)) = (a+ θ(b))⊗ (c+ θ(d)) and (sB ⊗ sB)(b⊗ d) =
(−θ(b), b)⊗ (−θ(d), d), respectively.
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2. Proof of the theorem

For the convenience of citation and a better exposition, we provide
the proof in four steps. Throughout the proof A and B are Banach
algebras and θ ∈ σ(B). We write L for A×θ B.

Step 1. If A and B are biflat and A is unital then L is biflat.

Proof. Since A and B are biflat there exist an A−bimodule map λA :
(A⊗̂A)∗ → A∗ and a B−bimodule map λB : (B⊗̂B)∗ → B∗ such that
λA ◦ (∆A)∗ = iA∗ and λB ◦ (∆B)∗ = iB∗ . A direct verification shows
that the left hand side squares in Diagram 1 commute; i.e.,

(qA ⊗ qA)∗ ◦ (∆L)∗ = (∆A)∗ ◦ (qA)∗, and

(sB ⊗ sB)∗ ◦ (∆L)∗ = (∆B)∗ ◦ (sB)∗.

Define λL : (L⊗̂L)
∗ → L∗ by

λL(h) = :
(

(λA ◦ (qA ⊗ qA)∗)(h), (λB ◦ (sB ⊗ sB)∗)(h)

+〈(λA ◦ (qA ⊗ qA)∗)(h), 1〉θ
)
, (h ∈ (L⊗̂L)∗).

Then λL ◦ (∆L)∗ = iL∗ . Indeed, for every (f, g) ∈ (A∗ ×B∗) ∼= L∗,(
λL ◦ (∆L)∗

)
((f, g)) =

((
λA ◦ (qA ⊗ qA)∗ ◦ (∆L)∗

)
((f, g)),(

λB ◦ (sB ⊗ sB)∗ ◦ (∆L)∗
)
((f, g))

+〈
(
λA ◦ (qA ⊗ qA)∗ ◦ (∆L)∗

)
((f, g)), 1〉θ

)
=

((
λA ◦ (∆A)∗ ◦ (qA)∗

)
((f, g)),(

λB ◦ (∆B)∗ ◦ (sB)∗
)
((f, g))

+〈
(
λA ◦ (∆A)∗ ◦ (qA)∗

)
((f, g)), 1〉θ

)
=

(
(iA∗ ◦ (qA)∗)((f, g)), (iB∗ ◦ (sB)∗)((f, g))

+〈(iA∗ ◦ (qA)∗)((f, g)), 1〉θ
)

=
(
f, (f, g) ◦ sB + 〈f, 1〉θ

)
= (f,−〈f, 1〉θ + g + 〈f, 1〉θ)
= (f, g).
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A straightforward computation shows that the following identities hold.

(qA ⊗ qA)∗(h · (a, b)) = (qA ⊗ qA)∗(h) · (a+ θ(b)),

(qA ⊗ qA)∗((a, b) · h) = (a+ θ(b)) · (qA ⊗ qA)∗(h),

(sB ⊗ sB)∗(h · (a, b)) = (sB ⊗ sB)∗(h) · b and

(sB ⊗ sB)∗((a, b) · h) = b · (sB ⊗ sB)∗(h); ((a, b) ∈ L and h ∈ (L⊗̂L)∗).

Now we use these identities to show that λL is a L−bimodule map. To
this end, let (a, b) ∈ L and h ∈ (L⊗̂L)∗, then

λL(h · (a, b))

=
(

(λA ◦ (qA ⊗ qA)∗)(h · (a, b)), (λB ◦ (sB ⊗ sB)∗)(h · (a, b))

+〈(λA ◦ (qA ⊗ qA)∗)(h · (a, b)), 1〉θ
)

=
(
λA((qA ⊗ qA)∗(h) · (a+ θ(b))), λB((sB ⊗ sB)∗(h) · b)

+〈λA((qA ⊗ qA)∗(h) · (a+ θ(b))), 1〉θ
)

=
(

[(λA ◦ (qA ⊗ qA)∗)(h)] · a+ θ(b)[(λA ◦ (qA ⊗ qA)∗)(h)],

〈(λA ◦ (qA ⊗ qA)∗)(h), a〉θ + [(λB ◦ (sB ⊗ sB)∗)(h)

+〈(λA ◦ (qA ⊗ qA)∗)(h), 1〉θ] · b
)

=
(

(λA ◦ (qA ⊗ qA)∗)(h), (λB ◦ (sB ⊗ sB)∗)(h)

+〈(λA ◦ (qA ⊗ qA)∗)(h), 1〉θ
)
·(a, b)

= λL(h)·(a, b).

B∗
(∆B)∗−−−−→ (B⊗̂B)

∗ λB−−−−→ B∗

(sB)∗
x (sB⊗sB)∗

x (pB)∗
y

L∗
(∆L)∗−−−−→ (L⊗̂L)∗

λL−−−−→ L∗

(qA)∗
y (qA⊗qA)∗

y (pA)∗
x

A∗
(∆A)∗−−−−→ (A⊗̂A)∗

λA−−−−→ A∗

(Diagram 1)
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This completes the proof of step 1. �

Step 2. Let L be biflat then B is biflat. If in addition A is unital then
A is also biflat.

Proof. Since L is biflat there exists an L−bimodule map λL : (L⊗̂L)∗ →
L∗ such that λL◦(∆L)∗ = iL∗ . One can directly check that the left hand
side squares in Diagram 2 commute; i.e.,

(pB ⊗ pB)∗ ◦ (∆B)∗ = (∆L)∗ ◦ (pB)∗,

and

(∆L)∗ ◦ (rA)∗ = (rA ⊗ rA)∗ ◦ (∆A)∗.

Define λB : (B⊗̂B)∗ → B∗ and λA : (A⊗̂A)∗ → A∗ by λB =: (qB)∗ ◦
λL ◦ (pB ⊗ pB)∗ and λA =: (qA)∗ ◦ λL ◦ (rA ⊗ rA)∗, respectively.

B∗
(∆B)∗−−−−→ (B⊗̂B)

∗ λB−−−−→ B∗

(pB)∗
y (pB⊗pB)∗

y (qB)∗
x

L∗
(∆L)∗−−−−→ (L⊗̂L)∗

λL−−−−→ L∗

(rA)∗
x (rA⊗rA)∗

x (qA)∗
y

A∗
(∆A)∗−−−−→ (A⊗̂A)∗

λA−−−−→ A∗

(Diagram 2)

That λB is a B−bimodule map follows from the fact that it is a com-
position of three B−bimodule maps. Similarly λA is an A−bimodule
map. Moreover

λA ◦ (∆A)∗ = [(qA)∗ ◦ λL ◦ (rA ⊗ rA)∗] ◦ (∆A)∗

= (qA)∗ ◦ λL ◦ [(rA ⊗ rA)∗ ◦ (∆A)∗]

= (qA)∗ ◦ λL ◦ [(∆L)∗ ◦ (rA)∗]

= (qA)∗ ◦ [λL ◦ (∆L)∗] ◦ (rA)∗

= (qA)∗ ◦ iL∗ ◦ (rA)∗

= (rA ◦ qA)∗

= iA∗ .

A similar argument can be applied to show that λB ◦ (∆B)∗ = iB∗ .
Therefore, A and B are biflat, as claimed. �
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Step 3. If A and B are biprojective and A is unital then L is biprojec-
tive.

Proof. Since A and B are biprojective, there exist an A−bimodule map
ρA : A → A⊗̂A and a B−bimodule map ρB : B → B⊗̂B such that
∆A ◦ ρA = iA and ∆B ◦ ρB = iB. Recall that the mapping sB : B → L
defined by sB(b) = (−θ(b), b), (b ∈ B) is a B−bimodule map, and
so it induces the unique B−bimodule map sB ⊗ sB : B⊗̂B → L⊗̂L
such that sB ◦ ∆B = ∆L ◦ (sB ⊗ sB). A similar argument shows that,
qA ◦∆A = ∆L ◦ (qA ⊗ qA). In other words, the right hand side squares
in Diagram 3 commute. We define ρL : L→ L⊗̂L by

ρL((a, b)) =: (a, b)·
(
(qA⊗qA)(ρA(1))

)
+(sB⊗sB)(ρB(b)), (a ∈ A, b ∈ B);

where 1 is the identity of A.

B
ρB−−−−→ B⊗̂B ∆B−−−−→ B

pB

x sB⊗sB
y sB

y
L

ρL−−−−→ L⊗̂L ∆L−−−−→ L

pA

y qA⊗qA
x qA

x
A

ρA−−−−→ A⊗̂A ∆A−−−−→ A

(Diagram 3)

Then ∆L ◦ ρL = iL; indeed,

(∆L ◦ ρL)((a, b)) = ∆L

(
(a, b) ·

(
(qA ⊗ qA)(ρA(1))

)
+(sB ⊗ sB)(ρB(b))

)
= (a, b) ·

((
∆L ◦ (qA ⊗ qA)

)
(ρA(1))

)
+
(
∆L ◦ (sB ⊗ sB)

)
(ρB(b))

= (a, b) · qA ◦ (∆A ◦ ρA)(1) + sB ◦ (∆B ◦ ρB)(b)

= (a, b) · qA(1) + sB(b)

= (a, b) · (1, 0) + (−θ(b), b)
= (a+ θ(b), 0) + (−θ(b), b)
= (a, b).

It remains to show that ρL is a L−bimodule map. Clearly ρL is
bounded. So it is enough to show that ρL((a, b)·(c, d)) = (a, b)·ρL((c, d))
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and ρL((a, b) · (c, d)) = ρL((a, b)) · (c, d), for all (a, b), (c, d) ∈ L. We
have,

ρL((a, b) · (c, d)) = (a, b) · (c, d) · (qA ⊗ qA)(ρA(1)) + (sB ⊗ sB)(ρB(bd))

= (a, b) · (c, d) · (qA ⊗ qA)(ρA(1))

+(sB ⊗ sB)(b · ρB(d))

= (a, b) · (c, d) · (qA ⊗ qA)(ρA(1))

+(0, b) · (sB ⊗ sB)(ρB(d))

= (a, b) · [(c, d) · (qA ⊗ qA)(ρA(1))

+(sB ⊗ sB)(ρB(d))]− (a, 0) · (sB ⊗ sB)(ρB(d))

= (a, b) · ρL((c, d))− (a, 0) · (sB ⊗ sB)(ρB(d)).

But (a, 0) · (sB ⊗ sB)(ρB(d)) = 0. Indeed, let ρB(d) =
∞∑
j=1

bj ⊗ dj , for

some sequences {bj}, {dj} in B with
∞∑
j=1

‖bj‖‖dj‖ <∞ then

(a, 0) · (sB ⊗ sB)(ρB(d)) = (a, 0) · (sB ⊗ sB)(
∞∑
j=1

bj ⊗ dj)

= (a, 0) · (
∞∑
j=1

sB(bj)⊗ sB(dj))

=
∞∑
j=1

(a, 0) · [(−θ(bj), bj)⊗ (−θ(dj), dj)] = 0.

Therefore, ρL((a, b) · (c, d)) = (a, b) · ρL((c, d)). Similarly since (qA ⊗
qA)(ρA(1)) commutes with each (c, d) ∈ L we have ρL((a, b) · (c, d)) =
ρL((a, b)) · (c, d). Thus L is biprojective, as required. �

Step 4. If L is biprojective then B is biprojective. If in addition A is
unital then A is also biprojective.

Proof. Let L be biprojective. So there exists a L−bimodule map ρL :
L→ L⊗̂L such that ∆L ◦ ρL = iL. A direct verification reveals that the
upper right hand side square in Diagram 4 commutes, i.e., pB ◦ ∆L =
∆B◦(pB⊗pB). Define ρB : B → B⊗̂B by ρB =: (pB⊗pB)◦ρL◦qB. That
ρB is a B−bimodule map follows from the fact that ρB is a composition
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of various bimodule maps. Moreover, ∆B ◦ ρB = iB. Indeed,

∆B◦ρB = ∆B◦
(
(pB⊗pB)◦ρL◦qB

)
= pB◦(∆L◦ρL)◦qB = pB◦iL◦qB = iB.

Therefore, B is biprojective.

B
ρB−−−−→ B⊗̂B ∆B−−−−→ B

qB

y pB⊗pB
x pB

x
L

ρL−−−−→ L⊗̂L ∆L−−−−→ L

qA

x rA⊗rA
y rA

y
A

ρA−−−−→ A⊗̂A ∆A−−−−→ A

(Diagram 4)

If A is unital, we use the A−bimodule map rA : L → A defined by
rA((a, b)) = a+ θ(b), (a ∈ A, b ∈ B). Then trivially rA induces a unique
A−bimodule map rA⊗rA : L⊗̂L→ A⊗̂A such that the lower right hand
side square in Diagram 4 commutes; i.e., rA◦∆L = ∆A◦(rA⊗rA). Define
ρA : A→ A⊗̂A by ρA =: (rA⊗rA)◦ρL◦qA. That ρA is an A−bimodule
map follows from the fact that ρA is a composition of various bimodule
maps. Moreover, ∆A ◦ ρA = iA. Indeed,

∆A◦ρA = ∆A◦
(
(rA⊗rA)◦ρL◦qA

)
= rA◦(∆L◦ρL)◦qA = rA◦iL◦qA = iA.

Therefore, A is also biprojective, as claimed. �

Remark 2.1. (i) In step 4, we have presented a direct proof for bipro-
jectivity of B. It is worthwhile mentioning that biprojectivity of B can be
obtained from [1, Proposition 2.8.41(iii)] and the fact that L is a strongly
splitting Banach algebra extension of B by the essential closed ideal A.

(ii) The current proof of the Theorem heavily is based on the hypothe-
sis that A is unital. The fact that, the unitization A] of A is biprojective
if and only if A is biprojective and unital, shows that the condition “A is
unital” is essential for biprojectivity of L and can not be removed in gen-
eral. However, for the biflatness we know nothing about the essentiality
of this hypothesis.



568 Khoddami and Ebrahimi Vishki

Acknowledgments

The authors thank the anonymous referee for some helpful comments.

References

[1] H. G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc.
Monogr. Ser., 24, The Clarendon Press, Oxford University Press, New York,
2000.

[2] H. R. Ebrahimi Vishki and A. R. Khoddami, Character inner amenability of
certain Banach algebras, Colloq. Math. 122 (2011) 225–232.

[3] A. Ya. Helemskii, The Homology of Banach and Topological Algebras, Kluwer
Academic Publishers Group, Dordrecht, 1986.

[4] A. T.-M. Lau, Analysis on a class of Banach algebras with applications to har-
monic analysis on locally compact groups and semigroups, Fund. Math. 118
(1983), no. 3, 161–175.

[5] V. Runde, Lectures on Amenability, Lecture Notes in Mathematics, 1774,
Springer-Verlag, Berlin, 2002.

[6] M. Sangani Monfared, On certain products of Banach algebras with applications
to harmonic analysis, Studia Math. 178 (2007), no. 3, 277–294.

[7] M. Sangani Monfared, Character amenability of Banach algebras, Math. Proc.
Cambridge Philos. Soc. 144 (2008), no. 3, 697–706.

Ali Reza Khoddami

Department of Pure Mathematics, Shahrood University of Technology, P.O. Box

3619995161-316, Shahrood, Iran

Email: khoddami.alireza@yahoo.com

Hamid Reza Ebrahimi Vishki

Department of Pure Mathematics and Centre of Excellence in Analysis on Alge-

braic Structures (CEAAS), Ferdowsi University of Mashhad, P.O. Box 1159, Mash-

had 91775, Iran

Email: vishki@um.ac.ir


	1. Introduction and Preliminaries
	2. Proof of the theorem
	References

