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H. R. AFSHIN*, M. A. MEHRJOOFARD AND A. SALEMI

Communicated by Gholam Hossein Esslamzadeh

ABSTRACT. In this note we characterize polynomial numerical hulls
of matrices A € M, such that A% is Hermitian. Also, we consider
normal matrices A € M, whose k*" power are semidefinite. For
such matrices we show that V*(A) = o(A).

1. Introduction

Let M, be the set of n x n complex matrices. The polynomial nu-
merical hull of order k for a matrix A € M, is defined and denoted
by

VE(A) = {€ € C: |p(&)] < |lp(A)|| for all p(z) € Py[C]},

where P[C] is the set of complex polynomials with degree at most k.
This notion was introduced by Nevanlinna [11] and further studied by
several researchers; see, e.g., [1,4,5,8-10]. The joint numerical range of
(A1, As, ..., Ap) € My, X -+ X M, is denoted by

W(Ay, Ag,..., Ap) = {(z¥ A1z, 2" Agz, ..., 2" Apyx) € C™ 2™ = 1},
By the result in [9] (see also [10])
VFA)={¢eC:(0,...,0) € conviW ((A—CI), (A—CI)?, ..., (A—=CD)F)},
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where convX denotes the convex hull of X C C*.

In Section 2, we characterize polynomial numerical hulls of matrices
A € M, such that A? is Hermitian. Also, we show that [5, Theorem
4.4] is not formulated correctly, and we improve it in Theorem 2.3. In
Section 3, we consider normal matrices A € M, whose k" power are
semidefinite. For such matrices we show that V*(A4) = o(A).

2. Main results

In this section we consider matrices A € M,, such that A% is Hermit-
ian. For such matrices, we give a complete description of Vk(A), ke N.
By [5, Theorem 4.1], if A € M,, then A? is Hermitian if and only
if A is unitarily similar to a direct sum of a Hermitian matrix H, a
skew-Hermitian matrix G, and 2-by-2 matrices as follows:
(2.1) A = diag (hi,..., hy) ®idiag (g1,...,9¢) DAL D ... B Ay,

where g1 > -+ > g4,h1 > -+ > hy and

Wi~
The following example shows that the statement of [5, Theorem 4.4]
is not formulated correctly.

Aj—['uj Wi :|, with pj,v; > 0,7 =1,...,7

L V6 i3
Example 2.1. Let A = [i| @ [m/g /6
VZ2(A)NR={-v3,V3}.
But, we will show that +1 € V2 (A)NR.

Observe that 1 € V2 (A)NR if and only if (11,0, u?) € W =W (R(4), 3(A), 4?) ,

where R (4) = 454 S (4) = 4545, By [5, Theorem 4.3],

W = conv ({(0,1,—1)}U {(x,y,?)) D (z,y) % + % = 1}) .

Since W is convex and {(£2,-1,3),(0,1,-1)} Cc W,(£1,0,1) € W, we
see that +£1 € V2 (4) NR.

Recall that an extreme point of a convex set S in a real vector space
is a point in S which does not lie in any open line segment joining
two points of S. The Krein Milman Theorem says that if .S is convex
and compact in a locally convex space, then S is the convex hull of its
extreme points. Also, by Carathéodory Theorem, we know that if )
is a nonempty subset of R", then every vector x € conv() is a convex
combination of at most n 4 1 vectors in @ (see [7, Theorem 22.16]).

] . By [5, Theorem 4.4],
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Lemma 2.2. [3, Theorem I11.9.2] Let P be an arbitrary m-dimensional
subspace in R™ and let K be a convex subset in R™. Then every extreme
point of the intersection PN K can be expressed as a conver combination
of at most n —m + 1 extreme points of K. Moreover, if K is a compact
set, then

PN K = conv U [PNconv ({ar,...,an—m+1})] | »

A1 yeeesOn—m+1€ext(K)
where ext(K) is the set of all extreme points of K.
Now, we state the main theorem in this section.

Theorem 2.3. Assume A € M, satisfies (2.1). Let Ky be the convex
hull of the union of the sets:

(a.1) {(hy, h3) : 1 < j <p},

(a.2) {(£pj, 05 —v§) 1 1< j <7},

(a-3) {(0,9194),(0,9)} #f 9194 <0, where

g =max{gig; : 9ig; <0, 1 <i<j<gq},

_ gi 1 42
roq r= (gi-l-sgn(gi)wct) RV L =15,
(ad) U U (Fz,2): , _ —sgn(g:)vig? t+gi (i —17)
k=1i=1 B gi+sgn(gi)vit ’
gi 75 0,t e [0, 1]
Let Ko be the conver hull of the union of the sets:
(b.2) {(:i:yj,/ﬁ - 1/]2) : 1~S Jj<r},
(b.3) {(0, —h1hyp), (0,—h)} if hihy, <0, where

h = max{h;h; : h;h; <0, 1 <i<j <p},

_ hjupV1-t2
rop Y= Ritsen(ha)urt’
(bd) U U { (£y.2): , _ sealhmdieen (s —17)
k=1i=1 - hi—l—sgn(hi)ukt )
h; #0,t € [0, 1]

Then V2(A) ={u e R: (u,p?) € K1} U {ip € iR : (u, —p?) € Ka}.

Proof. Without loss of generality we assume that g > --- > g4, and
hi > --- > hy. By [5, Theorem 4.3], the joint numerical range W (A, A?)
of a matrix A whose square is Hermitian, is convex. Then [5, Theorem
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5.3] implies that g € V2(A) if and only if (i, u?) € W (A, A?). Whereas
A? is Hermitian, u? € R. Thus, V2(4) C RUiR. Now, we consider
V2(A) NR. Also, it is readily seen that u € V?(A4) NR if and only
if (1,0,p2) € W= W (R(A),3(A), A?). Since {(p1,0,p?) : pe R} C
P..:={(z,0,2) : 2,z € R} and W is convex, we obtain that . € V2 (4)N
R if and only if (g, 0,4*) € E := conv (P, "W). By [5, Theorem 4.3],
W = conv{S1, S, S3}, where

Slzi(hi,o,m?):lg@p},

Sy ={(0,9:,—g?) : 1 <i < q},
2 2
S3ZU§1{(x7y7N?_V]2> : /3324_’%2:1})
J J

and hence E = conv [P, Nconv(S; U Sy U S3)]. By Carathéodory The-
orem,

FE=conv | P, N U conv <{@i}?:1)
{ai}io,cS1US2USs

Now Lemma 2.2 shows that

FE =conv U conv U [Py Nconv ({a;, aj})] )
{a:}i_ cS1US2USs 1<i<j<4

and therefore,

E = conv U U [P N conv ({as, a;})]
{a;}t  c81US2 Sy 1Si<y<4

conv ( [Py. N conv ({a, b})])
{a,b}CSl USQ USg
= conv (UL ULy Uses, Upes, [Pe= N conv ({a,b)])
We set Dij = U,eq, Ubesj [P~ N conv ({a,b})]. Since S C Py,

S1 C D11 C conv (51) , D19 = Do1 C conv (Sl U Dgg) , D13 = D31 C conv (Sl U D33) ,

it follows that
E = conv (Sl U Dgs U Dog U D33) .

Therefore,

ne V2 (A) NR < (N, 0, /L2) € COI]V(Sl U Dgs U Dyg U D33).
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Direct calculation shows that

Doy ={(0,0,9:95) : gig; < 0},

conv(Dsg) = conv ({ (4,0, 17 —v2), 1 <i<r}).
Now, we consider Dog. Fix 1 < j<rand 1< <gq.
Let a = (0, gi, —g?) € Sy and

=

2 2 2 2 Y
b= (oz,ﬁ,uj —l/j) € B = (x,y,uj —l/j) : —2+ﬁ =1, CS;s.
J J
In the case g; = 0, we have
U [Pﬂ?z M conv ({CL, b})] = conv {(07 07 0)7 (:tuja 07 :U’? - VJZ)} :
beB;
Thus, if there exists 1 <14 < ¢ such that g; = 0, define

(2.2) Do := | J conv {(0,0,0), (£4;,0, 4% — v3)} C conv (Dag U Dsg),
j=1
and otherwise define Do = 0.

Now, we assume that g; # 0. It is readily seen that, if Bg; > 0, then
P, Nconv ({a,b}) = 0. Therefore, we consider Bg; < 0.

P,. Nconv ({a,b}) = ¢ (z,0,2) : (gig_ig) a =z,

2= 550t + (%) (14 - 4).

Since %jhﬁ—g =1,and fg; < 0, we obtain that § = —sgn(g;)v;, /1 — z—j
J J J
Consider t = , /1~ 25 € [0,1]. Then
J

— 9i /1 — 2

r= <9i+sgn(gi)Vjt> pi V1 =12,
= DyU U U (£2,0,2) 1, _ —ssnlgvigite(i5i—v})
] 1i=1 gi—i—sgn(gi)ujt )

gi #0,t €[0,1].
where Dy is given in (2.2). Therefore,
VA NR={\eR: (\ )€K}
Similarly, we can show that
VA NIR={N e R: (), —\?) € Ky}
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0

4 3
3i —4
By the notations as in Theorem 2.3, it is readily seen that

Example 2.4. Let A= [3] & [-2i] ®

Ky = conv ({(3,9)} U {(£4,7)} U {(i%ﬁ, 1;*;;)?) telo,1] ) ,
Ky = conv ({(—2,—4)} U{(£3,7)} U {(i%ﬁ, Q;ﬁtﬁt) teo, 1]}).
Therefore, by Theorem 2.3 we have
VZA)NR = {peR: (up?) €Ki}
_ | =23 —8V/370+27V37 U 8/ 370+27/37 3]
T 294937 294937 7|7

VZA)NIR = {ipeiR: (n,—p?) € Ko} =i [-2, 7).
The following figures illustrate how Theorem 2.3 characterize VZ(A).

FIGURE 1. Characterizing V?(A) via Theorem 2.3

Therefore,
—23 —8V/370+27v/37| |8v/370+ 27/37 -2
VZ(A) = , + U + 3|ui [—2, ] .
7 29 + 94/37 29 + 9/37 10
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Remark 2.5. Assume that A € M, is such that A% is Hermitian.
By [11, Theorem 2.1.5] and [5, Theorem 4.2], we know that V1(A) =
W(A), and VF¥(A) = o(A),k > 4. Also Theorem 2.3, characterizes
V2(A). So, it is enough to study V3(A) to characterize V¥(A), Vk € N.

By a similar method as followed in the proof of Theorem 2.3 we state
the following theorem.

Theorem 2.6. Let

(2.3) A = diag (hy,- - , hy) @ idiag (g1, , 9q) ,
where hy > --- > hp, and g1 > -+ > gq.
Define

i(hj,hg.,h;’?) 1<) <pjU
(0,—¢%0) : {g,—g} C{gi: 1 <i<q}}U

oo (. abelac®—ab? +ab—bc*+b%c—a’c) 0)} )
{a,b,c}C{g:} ’ (c—b)(b—a)(a—c)(a+b+c) )
a<7;b<c,ac>0

and
()15 <ap0
{(0,h?,0) : {h,—h} C {h;: 1 <i<p}}U

Sy := conv U (0 abe(ac®—ab?+a2b—be2+b2e—aZc) 0)
{a,b,c}C{h;} ’ (c—=b)(b—a)(c—a)(a+b+c) )
a<7—7b<c,acz>()

Then

VHA) ={p e R: (u, 1, p*) € S1} U {ip € iR : (u, —p®, —pi®) € Sa}.

Corollary 2.7. Let A € M, be a normal matriz such that A = A1 &
iAy, AT = Ay and let Ay be a semi-definite matriz. Then V3(A) = a(A).

Proof. Without loss of generality, we assume that o (A2) C (0,00). We
consider the set Sy as in Theorem 2.6 and let a, b and ¢ be real numbers
such that a < —b < c and ac > 0. It is readily seen that

abe (ac2 — ab? + a2b — bc® + b2c — azc)

Cc—hh-alc—aatbre "
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Therefore, (0,0,0) ¢ Sy and hence

V3(A)NR
C{peR: (u,p?) €conv({(\A): A€o (A)})}

=0 (A1),

x_/3 (A) NiR\ {0}
C {iu € iR : (1, —p?) € conv ( {(A =A%) s dea(42)} >}

U{(0,0)}
=0 (A3) U{0}.

So V3 (4) = o (A). O

3. Additional results

In this section we consider normal matrices whose k™ power are semi-
definite. By [6, Theorem 2.1], we know that if A € M, is a normal matrix
such that A? is semidefinite, then V2 (A) = o (A). In the following, we
extend this result.

Theorem 3.1. Let A € M, be a normal matriz such that A*, k> 2 is
semi-definite. Then V¥ (A) = o (A).

Proof. Without loss of generality, we can assume that

i2(k—1)m

A:Al@e%AQ@eﬂTﬂAg@"'@eifc Ag,

such that A; € M,,;, j = 1,...k are positive semidefinite. Whereas
vk (eieA) = eV*(A), it is enough to prove that

i o (Ay) if k is odd
31)  VFEA)NR= o (A)Ua (As,,) if kis even
2

Suppose that A; = diag (al,j, e ,am].,j), 1<j<k.
We know that 7 € V¥ (A) if and only if there exists x = (21, ...,7;)T, 2, €
2i(j—1)m

k k

C™i x| = (Zlac;xj)lp = 1 such that " = Zle FoaAlxg,r =
i= J=

L... k.
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Direct calculation shows that

\

k .
n= 231 cos (LJ;U”) x3Ajj,
‘7:

k
VEA)NRC{neR: | nf=> atAkz;

2(7—1
Dij = <COS <(])ﬂ-> am,af’j) 71 S] S k‘, 1 S 7 S m;.
So
VF(A)NR C {77 eR: (n,nk> € conv ({pi7j}1§j§k ) }

1<i<m;

We know that a;; > 0 and ‘cos (MTIW)‘ <1l,je{2,.. .,k}\{%—i—l}.
By the convexity of f(x) = |z|* we obtain that
o (Ar) if k£ is odd

k
%4 (A)QRC{ U(A1)UU<A§+1> if k is even.

Whereas 0(A) C V¥(A) and 0(A;) CR, i =1,...,k, the equation (3.1)
holds. g

It will be interesting to characterize the polynomial numerical hulls
of matrices whose k" power are Hermitian.
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