SOME RESULTS ON THE POLYNOMIAL NUMERICAL HULLS OF MATRICES

H. R. AFSHIN*, M. A. MEHRJOOFARD AND A. SALEMI

Communicated by Gholam Hossein Esslamzadeh

Abstract

In this note we characterize polynomial numerical hulls of matrices $A \in M_{n}$ such that A^{2} is Hermitian. Also, we consider normal matrices $A \in M_{n}$ whose $k^{t h}$ power are semidefinite. For such matrices we show that $V^{k}(A)=\sigma(A)$.

1. Introduction

Let M_{n} be the set of $n \times n$ complex matrices. The polynomial numerical hull of order k for a matrix $A \in M_{n}$ is defined and denoted by

$$
V^{k}(A)=\left\{\xi \in \mathbb{C}:|p(\xi)| \leq\|p(A)\| \text { for all } p(z) \in \mathcal{P}_{k}[\mathbb{C}]\right\}
$$

where $\mathcal{P}_{k}[\mathbb{C}]$ is the set of complex polynomials with degree at most k. This notion was introduced by Nevanlinna [11] and further studied by several researchers; see, e.g., $[1,4,5,8-10]$. The joint numerical range of $\left(A_{1}, A_{2}, \ldots, A_{m}\right) \in M_{n} \times \cdots \times M_{n}$ is denoted by
$W\left(A_{1}, A_{2}, \ldots, A_{m}\right)=\left\{\left(x^{*} A_{1} x, x^{*} A_{2} x, \ldots, x^{*} A_{m} x\right): x \in \mathbb{C}^{n}, x^{*} x=1\right\}$.
By the result in [9] (see also [10])
$V^{k}(A)=\left\{\zeta \in \mathbb{C}:(0, \ldots, 0) \in \operatorname{conv} W\left((A-\zeta I),(A-\zeta I)^{2}, \ldots,(A-\zeta I)^{k}\right)\right\}$,
MSC(2010): Primary: 15A60; Secondary: 15A18, 52A10
Keywords: Polynomial numerical hull, joint numerical range, normal matrices.
Received: 6 March 2011, Accepted: 29 May 2012
*Corresponding author
(c) 2013 Iranian Mathematical Society.
where $\operatorname{conv} X$ denotes the convex hull of $X \subseteq \mathbb{C}^{k}$.
In Section 2, we characterize polynomial numerical hulls of matrices $A \in M_{n}$ such that A^{2} is Hermitian. Also, we show that [5, Theorem 4.4] is not formulated correctly, and we improve it in Theorem 2.3. In Section 3, we consider normal matrices $A \in M_{n}$ whose $k^{t h}$ power are semidefinite. For such matrices we show that $V^{k}(A)=\sigma(A)$.

2. Main results

In this section we consider matrices $A \in M_{n}$ such that A^{2} is Hermitian. For such matrices, we give a complete description of $V^{k}(A), k \in \mathbb{N}$.

By [5, Theorem 4.1], if $A \in M_{n}$, then A^{2} is Hermitian if and only if A is unitarily similar to a direct sum of a Hermitian matrix H, a skew-Hermitian matrix G, and 2-by- 2 matrices as follows:

$$
\begin{equation*}
A=\operatorname{diag}\left(h_{1}, \ldots, h_{p}\right) \oplus i \operatorname{diag}\left(g_{1}, \ldots, g_{q}\right) \oplus A_{1} \oplus \ldots \oplus A_{r} \tag{2.1}
\end{equation*}
$$

where $g_{1} \geq \cdots \geq g_{q}, h_{1} \geq \cdots \geq h_{p}$ and

$$
A_{j}=\left[\begin{array}{cc}
\mu_{j} & i \nu_{j} \\
i \nu_{j} & -\mu_{j}
\end{array}\right], \quad \text { with } \mu_{j}, \nu_{j}>0, j=1, \ldots, r .
$$

The following example shows that the statement of [5, Theorem 4.4] is not formulated correctly.
Example 2.1. Let $A=[i] \oplus\left[\begin{array}{cc}\sqrt{6} & i \sqrt{3} \\ i \sqrt{3} & -\sqrt{6}\end{array}\right]$. By [5, Theorem 4.4],
$V^{2}(A) \cap \mathbb{R}=\{-\sqrt{3}, \sqrt{3}\}$.
But, we will show that $\pm 1 \in V^{2}(A) \cap \mathbb{R}$.
Observe that $\mu \in V^{2}(A) \cap \mathbb{R}$ if and only if $\left(\mu, 0, \mu^{2}\right) \in W:=W\left(\Re(A), \Im(A), A^{2}\right)$, where $\Re(A)=\frac{A+A^{*}}{2}, \Im(A)=\frac{A-A^{*}}{2 i}$. By [5, Theorem 4.3],

$$
W=\operatorname{conv}\left(\{(0,1,-1)\} \bigcup\left\{(x, y, 3):(x, y): \frac{x^{2}}{6}+\frac{y^{2}}{3}=1\right\}\right) .
$$

Since W is convex and $\{(\pm 2,-1,3),(0,1,-1)\} \subset W,(\pm 1,0,1) \in W$, we see that $\pm 1 \in V^{2}(A) \cap \mathbb{R}$.

Recall that an extreme point of a convex set S in a real vector space is a point in S which does not lie in any open line segment joining two points of S. The Krein Milman Theorem says that if S is convex and compact in a locally convex space, then S is the convex hull of its extreme points. Also, by Carathéodory Theorem, we know that if Q is a nonempty subset of \mathbb{R}^{n}, then every vector $x \in \operatorname{conv} Q$ is a convex combination of at most $n+1$ vectors in Q (see [7, Theorem 22.16]).

Lemma 2.2. [3, Theorem III.9.2] Let P be an arbitrary m-dimensional subspace in \mathbb{R}^{n} and let K be a convex subset in \mathbb{R}^{n}. Then every extreme point of the intersection $P \cap K$ can be expressed as a convex combination of at most $n-m+1$ extreme points of K. Moreover, if K is a compact set, then

$$
P \cap K=\operatorname{conv}\left(\bigcup_{a_{1}, \ldots, a_{n-m+1} \in \operatorname{ext}(K)}\left[P \cap \operatorname{conv}\left(\left\{a_{1}, \ldots, a_{n-m+1}\right\}\right)\right]\right),
$$

where $\operatorname{ext}(K)$ is the set of all extreme points of K.
Now, we state the main theorem in this section.
Theorem 2.3. Assume $A \in M_{n}$ satisfies (2.1). Let K_{1} be the convex hull of the union of the sets:
(a.1) $\left\{\left(h_{j}, h_{j}^{2}\right): 1 \leq j \leq p\right\}$,
(a.2) $\left\{\left(\pm \mu_{j}, \mu_{j}^{2}-\nu_{j}^{2}\right): 1 \leq j \leq r\right\}$,
(a.3) $\left\{\left(0, g_{1} g_{q}\right),(0, \tilde{g})\right\}$ if $g_{1} g_{q} \leq 0$, where

$$
\tilde{g}=\max \left\{g_{i} g_{j}: g_{i} g_{j} \leq 0,1 \leq i<j \leq q\right\},
$$

(a.4) $\bigcup_{k=1}^{r} \bigcup_{i=1}^{q}\left\{\begin{array}{ll}\end{array}(\pm x, z): \begin{array}{l}x=\left(\frac{g_{i}}{g_{i}+\operatorname{sgn}\left(g_{i}\right) \nu_{k} t}\right) \mu_{k} \sqrt{1-t^{2}}, \\ z=\frac{-\operatorname{sgn}\left(g_{i} \nu_{k} \nu_{i}^{2} t+g_{i}\left(\mu_{k}^{2}-\nu_{k}^{2}\right)\right.}{g_{i}+\operatorname{sgn}\left(g_{i} \nu_{k} t\right.}, \\ g_{i} \neq 0, t \in[0,1]\end{array}\right\}$.

Let K_{2} be the convex hull of the union of the sets:
(b.1) $\left\{\left(g_{j},-g_{j}^{2}\right): 1 \leq j \leq q\right\}$,
(b.2) $\left\{\left(\pm \nu_{j}, \mu_{j}^{2}-\nu_{j}^{2}\right): 1 \leq j \leq r\right\}$,
(b.3) $\left\{\left(0,-h_{1} h_{p}\right),(0,-\tilde{h})\right\}$ if $h_{1} h_{p} \leq 0$, where

$$
\tilde{h}=\max \left\{h_{i} h_{j}: h_{i} h_{j} \leq 0,1 \leq i<j \leq p\right\}
$$

(b.4) $\bigcup_{k=1}^{r} \bigcup_{i=1}^{p}\left\{(\pm y, z): \begin{array}{l}y=\frac{h_{i} \nu_{k} \sqrt{1-t^{2}}}{h_{i}+\operatorname{sgn}\left(h_{i}\right) \mu_{k} t}, \\ z=\frac{\operatorname{sgn}\left(h_{i}\right) h_{k} h_{i}^{t} t+h_{i}\left(\mu_{k}^{2}-\nu_{k}^{2}\right)}{h_{i}+\operatorname{sgn}\left(h_{i}\right) \mu_{k} t}, \\ h_{i} \neq 0, t \in[0,1]\end{array}\right\}$.

Then $V^{2}(A)=\left\{\mu \in \mathbb{R}:\left(\mu, \mu^{2}\right) \in K_{1}\right\} \cup\left\{i \mu \in i \mathbb{R}:\left(\mu,-\mu^{2}\right) \in K_{2}\right\}$.
Proof. Without loss of generality we assume that $g_{1}>\cdots>g_{q}$, and $h_{1}>\cdots>h_{p}$. By [5, Theorem 4.3], the joint numerical range $W\left(A, A^{2}\right)$ of a matrix A whose square is Hermitian, is convex. Then [5, Theorem
5.3] implies that $\mu \in V^{2}(A)$ if and only if $\left(\mu, \mu^{2}\right) \in W\left(A, A^{2}\right)$. Whereas A^{2} is Hermitian, $\mu^{2} \in \mathbb{R}$. Thus, $V^{2}(A) \subseteq \mathbb{R} \cup i \mathbb{R}$. Now, we consider $V^{2}(A) \cap \mathbb{R}$. Also, it is readily seen that $\mu \in V^{2}(A) \cap \mathbb{R}$ if and only if $\left(\mu, 0, \mu^{2}\right) \in W:=W\left(\Re(A), \Im(A), A^{2}\right)$. Since $\left\{\left(\mu, 0, \mu^{2}\right): \mu \in \mathbb{R}\right\} \subseteq$ $P_{x z}:=\{(x, 0, z): x, z \in \mathbb{R}\}$ and W is convex, we obtain that $\mu \in V^{2}(A) \cap$ \mathbb{R} if and only if $\left(\mu, 0, \mu^{2}\right) \in E:=\operatorname{conv}\left(P_{x z} \cap W\right)$. By [5, Theorem 4.3], $W=\operatorname{conv}\left\{S_{1}, S_{2}, S_{3}\right\}$, where

$$
\begin{aligned}
& S_{1}=\left\{\left(h_{i}, 0, h_{i}^{2}\right): 1 \leq i \leq p\right\}, \\
& S_{2}=\left\{\left(0, g_{i},-g_{i}^{2}\right): 1 \leq i \leq q\right\}, \\
& S_{3}=\bigcup_{j=1}^{r}\left\{\left(x, y, \mu_{j}^{2}-\nu_{j}^{2}\right): \frac{x^{2}}{\mu_{j}^{2}}+\frac{y^{2}}{\nu_{j}^{2}}=1\right\},
\end{aligned}
$$

and hence $E=\operatorname{conv}\left[P_{x z} \cap \operatorname{conv}\left(S_{1} \cup S_{2} \cup S_{3}\right)\right]$. By Carathéodory Theorem,

$$
E=\operatorname{conv}\left(P_{x z} \cap \bigcup_{\left\{a_{i}\right\}_{i=1}^{4} \subset S_{1} \cup S_{2} \cup S_{3}} \operatorname{conv}\left(\left\{a_{i}\right\}_{i=1}^{4}\right)\right)
$$

Now Lemma 2.2 shows that

$$
E=\operatorname{conv}\left(\bigcup_{\left\{a_{i}\right\}_{i=1}^{4} \subseteq S_{1} \cup S_{2} \cup S_{3}} \operatorname{conv}\left(\bigcup_{1 \leq i<j \leq 4}\left[P_{x z} \cap \operatorname{conv}\left(\left\{a_{i}, a_{j}\right\}\right)\right]\right)\right)
$$

and therefore,

$$
\begin{aligned}
E & =\operatorname{conv}\left(\begin{array}{c}
\bigcup \\
\left\{a_{i}\right\}_{i=1}^{4} \subset S_{1} \cup S_{2} \cup S_{3} \\
\bigcup_{1 \leq i<j \leq 4}\left[P_{x z} \cap \operatorname{conv}\left(\left\{a_{i}, a_{j}\right\}\right)\right]
\end{array}\right) \\
& =\operatorname{conv}\left(\begin{array}{c}
\bigcup_{\{a, b\} \subset S_{1} \cup S_{2} \cup S_{3}}\left[P_{x z} \cap \operatorname{conv}(\{a, b\})\right]
\end{array}\right) \\
& =\operatorname{conv}\left(\bigcup_{i=1}^{3} \bigcup_{j=1}^{3} \bigcup_{a \in S_{i}} \bigcup_{b \in S_{j}}\left[P_{x z} \cap \operatorname{conv}(\{a, b\})\right]\right) .
\end{aligned}
$$

We set $D_{i j}=\bigcup_{a \in S_{i}} \bigcup_{b \in S_{j}}\left[P_{x z} \cap \operatorname{conv}(\{a, b\})\right]$. Since $S_{1} \subseteq P_{x z}$, $S_{1} \subset D_{11} \subset \operatorname{conv}\left(S_{1}\right), D_{12}=D_{21} \subset \operatorname{conv}\left(S_{1} \cup D_{22}\right), D_{13}=D_{31} \subset \operatorname{conv}\left(S_{1} \cup D_{33}\right)$, it follows that

$$
E=\operatorname{conv}\left(S_{1} \cup D_{22} \cup D_{23} \cup D_{33}\right) .
$$

Therefore,

$$
\mu \in V^{2}(A) \cap \mathbb{R} \Leftrightarrow\left(\mu, 0, \mu^{2}\right) \in \operatorname{conv}\left(S_{1} \cup D_{22} \cup D_{23} \cup D_{33}\right) .
$$

Direct calculation shows that

$$
\begin{aligned}
& D_{22}=\left\{\left(0,0, g_{i} g_{j}\right): g_{i} g_{j} \leq 0\right\} \\
& \operatorname{conv}\left(D_{33}\right)=\operatorname{conv}\left(\left\{\left(\pm \mu_{i}, 0, \mu_{i}^{2}-\nu_{i}^{2}\right), 1 \leq i \leq r\right\}\right)
\end{aligned}
$$

Now, we consider D_{23}. Fix $1 \leq j \leq r$ and $1 \leq i \leq q$.
Let $a=\left(0, g_{i},-g_{i}^{2}\right) \in S_{2}$ and

$$
b=\left(\alpha, \beta, \mu_{j}^{2}-\nu_{j}^{2}\right) \in B_{j}:=\left\{\left(x, y, \mu_{j}^{2}-\nu_{j}^{2}\right): \frac{x^{2}}{\mu_{j}^{2}}+\frac{y^{2}}{\nu_{j}^{2}}=1\right\} \subseteq S_{3} .
$$

In the case $g_{i}=0$, we have

$$
\bigcup_{b \in B_{j}}\left[P_{x z} \cap \operatorname{conv}(\{a, b\})\right]=\operatorname{conv}\left\{(0,0,0),\left(\pm \mu_{j}, 0, \mu_{j}^{2}-\nu_{j}^{2}\right)\right\} .
$$

Thus, if there exists $1 \leq i \leq q$ such that $g_{i}=0$, define

$$
\begin{equation*}
D_{0}:=\bigcup_{j=1}^{r} \operatorname{conv}\left\{(0,0,0),\left(\pm \mu_{j}, 0, \mu_{j}^{2}-\nu_{j}^{2}\right)\right\} \subseteq \operatorname{conv}\left(D_{22} \cup D_{33}\right), \tag{2.2}
\end{equation*}
$$

and otherwise define $D_{0}=\emptyset$.
Now, we assume that $g_{i} \neq 0$. It is readily seen that, if $\beta g_{i}>0$, then $P_{x z} \cap \operatorname{conv}(\{a, b\})=\emptyset$. Therefore, we consider $\beta g_{i} \leq 0$.

$$
P_{x z} \cap \operatorname{conv}(\{a, b\})=\left\{(x, 0, z): \begin{array}{ll}
& \left(\frac{g_{i}}{g_{i}-\beta}\right) \alpha=x, \\
z=\frac{\beta}{g_{i}-\beta} g_{i}^{2}+\left(\frac{g_{i}}{g_{i}-\beta}\right)\left(\mu_{j}^{2}-\nu_{j}^{2}\right) .
\end{array}\right\} .
$$

Since $\frac{\alpha^{2}}{\mu_{j}^{2}}+\frac{\beta^{2}}{\nu_{j}^{2}}=1$, and $\beta g_{i} \leq 0$, we obtain that $\beta=-\operatorname{sgn}\left(g_{i}\right) \nu_{j} \sqrt{1-\frac{\alpha^{2}}{\mu_{j}^{2}}}$.
Consider $t=\sqrt{1-\frac{\alpha^{2}}{\mu_{j}^{2}}} \in[0,1]$. Then

$$
D_{23}=D_{0} \cup \bigcup_{j=1}^{r} \bigcup_{i=1}^{q}\left\{(\pm x, 0, z): \begin{array}{l}
x=\left(\frac{g_{i}}{g_{i}+\operatorname{sgn}\left(g_{i} \nu_{j} t\right.}\right) \mu_{j} \sqrt{1-t^{2}}, \\
z=\frac{-\operatorname{sgn}\left(g_{i} \nu_{j} g_{i}^{2} t+g_{i}\left(\mu_{j}^{2}-\nu_{j}^{2}\right)\right.}{g_{i}+\operatorname{sgn}\left(g_{i}\right) \nu_{j} t}, \\
g_{i} \neq 0, t \in[0,1] .
\end{array}\right\}
$$

where D_{0} is given in (2.2). Therefore,

$$
V^{2}(A) \cap \mathbb{R}=\left\{\lambda \in \mathbb{R}:\left(\lambda, \lambda^{2}\right) \in K_{1}\right\} .
$$

Similarly, we can show that

$$
V^{2}(A) \cap i \mathbb{R}=\left\{\lambda \in \mathbb{R}:\left(\lambda,-\lambda^{2}\right) \in K_{2}\right\}
$$

Example 2.4. Let $A=[3] \oplus[-2 i] \oplus\left[\begin{array}{cc}4 & 3 i \\ 3 i & -4\end{array}\right]$.
By the notations as in Theorem 2.3, it is readily seen that

$$
\begin{aligned}
& K_{1}=\operatorname{conv}\left(\{(3,9)\} \cup\{(\pm 4,7)\} \cup\left\{\left(\pm \frac{8 \sqrt{1-t^{2}}}{2+3 t}, \frac{14-12 t}{2+3 t}\right): t \in[0,1]\right\}\right), \\
& K_{2}=\operatorname{conv}\left(\{(-2,-4)\} \cup\{(\pm 3,7)\} \cup\left\{\left(\pm \frac{9 \sqrt{1-t^{2}}}{3+4 t}, \frac{21+36 t}{3+4 t}\right): t \in[0,1]\right\}\right) .
\end{aligned}
$$

Therefore, by Theorem 2.3 we have

$$
\begin{aligned}
V^{2}(A) \cap \mathbb{R} & =\left\{\mu \in \mathbb{R}:\left(\mu, \mu^{2}\right) \in K_{1}\right\} \\
& =\left[\frac{-23}{7}, \frac{-8 \sqrt{370+27 \sqrt{37}}}{29+9 \sqrt{37}}\right] \cup\left[\frac{8 \sqrt{370+27 \sqrt{37}}}{29+9 \sqrt{37}}, 3\right], \\
V^{2}(A) \cap i \mathbb{R} & =\left\{i \mu \in i \mathbb{R}:\left(\mu,-\mu^{2}\right) \in K_{2}\right\}=i\left[-2, \frac{-2}{10}\right] .
\end{aligned}
$$

The following figures illustrate how Theorem 2.3 characterize $V^{2}(A)$.

Figure 1. Characterizing $V^{2}(A)$ via Theorem 2.3
Therefore,
$V^{2}(A)=\left[\frac{-23}{7}, \frac{-8 \sqrt{370+27 \sqrt{37}}}{29+9 \sqrt{37}}\right] \cup\left[\frac{8 \sqrt{370+27 \sqrt{37}}}{29+9 \sqrt{37}}, 3\right] \cup i\left[-2, \frac{-2}{10}\right]$.

Remark 2.5. Assume that $A \in M_{n}$ is such that A^{2} is Hermitian. By [11, Theorem 2.1.5] and [5, Theorem 4.2], we know that $V^{1}(A)=$ $W(A)$, and $V^{k}(A)=\sigma(A), k \geq 4$. Also Theorem 2.3, characterizes $V^{2}(A)$. So, it is enough to study $V^{3}(A)$ to characterize $V^{k}(A), \forall k \in \mathbb{N}$.

By a similar method as followed in the proof of Theorem 2.3 we state the following theorem.

Theorem 2.6. Let

$$
\begin{equation*}
A=\operatorname{diag}\left(h_{1}, \cdots, h_{p}\right) \oplus i \operatorname{diag}\left(g_{1}, \cdots, g_{q}\right), \tag{2.3}
\end{equation*}
$$

where $h_{1} \geq \cdots \geq h_{p}$, and $g_{1} \geq \cdots \geq g_{q}$.
Define

$$
S_{1}:=\operatorname{conv}\left(\begin{array}{l}
\left\{\left(h_{j}, h_{j}^{2}, h_{j}^{3}\right): 1 \leq j \leq p\right\} \cup \\
\left\{\left(0,-g^{2}, 0\right):\{g,-g\} \subset\left\{g_{i}: 1 \leq i \leq q\right\}\right\} \bigcup \\
\bigcup_{\substack{\{a, b, c\} \subset\left\{g_{i}\right\} \\
a<-b<c, a c>0}}\left\{\left(0, \frac{a b c\left(a c^{2}-a a^{2}+a^{2} b-b c^{2}+b^{2} c-a a^{2} c\right)}{(c-b)(b-a)(a-c)(a+b+c)}, 0\right)\right\}
\end{array}\right),
$$

and

$$
S_{2}:=\operatorname{conv}\left(\begin{array}{l}
\left\{\left(g_{j},-g_{j}^{2},-g_{j}^{3}\right): 1 \leq j \leq q\right\} \cup \\
\left\{\left(0, h^{2}, 0\right):\{h,-h\} \subset\left\{h_{i}: 1 \leq i \leq p\right\}\right\} \bigcup \\
\bigcup_{\substack{\{a, b, c\} \subset\left\{h_{i}\right\} \\
a<-b<c, a c>0}}\left\{\left(0, \frac{\left.a b c\left(a c^{2}-a\right)^{2}+a^{2} b-b c^{2}+b^{2} c-a^{2} c\right)}{(c-b)(b-a)(c-a)(a+b+c)}, 0\right)\right\}
\end{array}\right) .
$$

Then

$$
V^{3}(A)=\left\{\mu \in \mathbb{R}:\left(\mu, \mu^{2}, \mu^{3}\right) \in S_{1}\right\} \cup\left\{i \mu \in i \mathbb{R}:\left(\mu,-\mu^{2},-\mu^{3}\right) \in S_{2}\right\} .
$$

Corollary 2.7. Let $A \in M_{n}$ be a normal matrix such that $A=A_{1} \oplus$ $i A_{2}, A_{1}^{*}=A_{1}$ and let A_{2} be a semi-definite matrix. Then $V^{3}(A)=\sigma(A)$.

Proof. Without loss of generality, we assume that $\sigma\left(A_{2}\right) \subseteq(0, \infty)$. We consider the set S_{2} as in Theorem 2.6 and let a, b and c be real numbers such that $a<-b<c$ and $a c>0$. It is readily seen that

$$
\frac{a b c\left(a c^{2}-a b^{2}+a^{2} b-b c^{2}+b^{2} c-a^{2} c\right)}{(c-b)(b-a)(c-a)(a+b+c)}>0 .
$$

Therefore, $(0,0,0) \notin S_{2}$ and hence

$$
\begin{aligned}
& V^{3}(A) \cap \mathbb{R} \\
& \subset\left\{\mu \in \mathbb{R}:\left(\mu, \mu^{2}\right) \in \operatorname{conv}\left(\left\{\left(\lambda, \lambda^{2}\right): \lambda \in \sigma\left(A_{1}\right)\right\}\right)\right\} \\
& =\sigma\left(A_{1}\right), \\
& V^{3}(A) \cap i \mathbb{R} \backslash\{0\} \\
& \subset\left\{i \mu \in i \mathbb{R}:\left(\mu,-\mu^{3}\right) \in \operatorname{conv}\binom{\left\{\left(\lambda,-\lambda^{3}\right): \lambda \in \sigma\left(A_{2}\right)\right\}}{\cup\{(0,0)\}}\right\} \\
& =\sigma\left(A_{2}\right) \cup\{0\} .
\end{aligned}
$$

So $V^{3}(A)=\sigma(A)$.

3. Additional results

In this section we consider normal matrices whose $k^{\text {th }}$ power are semidefinite. By [6, Theorem 2.1], we know that if $A \in M_{n}$ is a normal matrix such that A^{2} is semidefinite, then $V^{2}(A)=\sigma(A)$. In the following, we extend this result.

Theorem 3.1. Let $A \in M_{n}$ be a normal matrix such that $A^{k}, k \geq 2$ is semi-definite. Then $V^{k}(A)=\sigma(A)$.

Proof. Without loss of generality, we can assume that

$$
A=A_{1} \oplus e^{\frac{i 2 \pi}{k}} A_{2} \oplus e^{\frac{i 4 \pi}{k}} A_{3} \oplus \cdots \oplus e^{\frac{i 2(k-1) \pi}{k}} A_{k}
$$

such that $A_{j} \in M_{m_{j}}, j=1, \ldots k$ are positive semidefinite. Whereas $V^{k}\left(e^{i \theta} A\right)=e^{i \theta} V^{k}(A)$, it is enough to prove that

$$
V^{k}(A) \cap \mathbb{R}= \begin{cases}\sigma\left(A_{1}\right) & \text { if } k \text { is odd } \tag{3.1}\\ \sigma\left(A_{1}\right) \cup \sigma\left(A_{\frac{k}{2}+1}\right) & \text { if } k \text { is even }\end{cases}
$$

Suppose that $A_{j}=\operatorname{diag}\left(a_{1, j}, \cdots, a_{m_{j}, j}\right), 1 \leq j \leq k$.
We know that $\eta \in V^{k}(A)$ if and only if there exists $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right)^{T}, x_{j} \in$ $\mathbb{C}^{m_{j}},\|\mathbf{x}\|=\left(\sum_{j=1}^{k} x_{j}^{*} x_{j}\right)^{1 / 2}=1$ such that $\eta^{r}=\sum_{j=1}^{k} e^{\frac{2 i(j-1) \pi}{k}} x_{j}^{*} A_{j}^{r} x_{j}, r=$ $1, \ldots, k$.

Direct calculation shows that

$$
V^{k}(A) \cap \mathbb{R} \subset\left\{\eta \in \mathbb{R}:\left[\begin{array}{l}
\eta=\sum_{j=1}^{k} \cos \left(\frac{2(j-1) \pi}{k}\right) x_{j}^{*} A_{j} x_{j}, \\
\eta^{k}=\sum_{j=1}^{k} x_{j}^{*} A_{j}^{k} x_{j} \\
x_{j} \in \mathbb{C}^{m_{j}}, \sum_{j=1}^{k} x_{j}^{*} x_{j}=1 .
\end{array}\right\}\right.
$$

Define

$$
p_{i, j}:=\left(\cos \left(\frac{2(j-1) \pi}{k}\right) a_{i, j}, a_{i, j}^{k}\right), 1 \leq j \leq k, 1 \leq i \leq m_{j} .
$$

So

$$
V^{k}(A) \cap \mathbb{R} \subset\left\{\eta \in \mathbb{R}:\left(\eta, \eta^{k}\right) \in \operatorname{conv}\left(\left\{p_{i, j}\right\}_{\substack{1 \leq j \leq k \\ 1 \leq i \leq m_{j}}}\right)\right\}
$$

We know that $a_{i j} \geq 0$ and $\left|\cos \left(\frac{2(j-1) \pi}{k}\right)\right|<1, j \in\{2, \ldots, k\} \backslash\left\{\frac{k}{2}+1\right\}$. By the convexity of $f(x)=|x|^{k}$ we obtain that

$$
V^{k}(A) \cap \mathbb{R} \subset \begin{cases}\sigma\left(A_{1}\right) & \text { if } k \text { is odd } \\ \sigma\left(A_{1}\right) \cup \sigma\left(A_{\frac{k}{2}+1}\right) & \text { if } k \text { is even. }\end{cases}
$$

Whereas $\sigma(A) \subseteq V^{k}(A)$ and $\sigma\left(A_{i}\right) \subseteq \mathbb{R}, i=1, \ldots, k$, the equation (3.1) holds.

It will be interesting to characterize the polynomial numerical hulls of matrices whose $k^{\text {th }}$ power are Hermitian.

Acknowledgments

The Research has been partially supported by the SBUK Center of Excellence in Linear Algebra and Optimization, Kerman, Iran. Research of the first author was supported by Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.

References

[1] H. R. Afshin, M. A. Mehrjoofard and A. Salemi, Polynomial numerical hulls of order 3, Electron. J. Linear Algebra 18 (2009) 253-263.
[2] H. R. Afshin, M. A. Mehrjoofard and A. Salemi, Polynomial inverse images and polynomial numerical hulls of normal matrices, Oper. Matrices 5 (2011), no. 1, 89-96.
[3] A. Barvinok, A Course in Convexity, Amer. Math. Soc., Providence, 2002.
[4] J. V. Burke and A. Greenbaum, Characterizations of the polynomial numerical hull of degree k, Linear Algebra Appl. 419 (2006), no. 1, 37-47.
[5] Ch. Davis, C. K. Li and A. Salemi, Polynomial numerical hulls of matrices, Linear Algebra Appl. 428 (2008) no. 1, 137-153.
[6] Ch. Davis and A. Salemi, On polynomial numerical hulls of normal matrices, Linear Algebra Appl. 383 (2004) 151-161.
[7] H. Dym, Linear Algebra in Action, Amer. Math. Soc., Providence, 2007.
[8] V. Faber, A. Greenbaum and D. E. Marshall, The polynomial numerical hulls of Jordan blocks and related matrices, Linear Algebra Appl. 374 (2003) 231-246.
[9] V. Faber, W. Joubert, M. Knill and T. Manteuffel, Minimal residual method stronger than polynomial preconditioning, SIAM J. Matrix Anal. Appl. 17 (1996), no. 4, 707-729.
[10] A. Greenbaum, Generalizations of the field of values useful in the study of polynomial functions of a matrix, Linear Algebra Appl. 347 (2002) 233-249.
[11] O. Nevanlinna, Convergence of iterations for linear equations, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1993.

Hamid Reza Afshin

Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
Email: afshin@mail.vru.ac.ir

Mohammad Ali Mehrjoofard

Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
Email: aahaay@gmail.com

Abbas Salemi

Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran
Email: salemi@uk.ac.ir

