Bulletin of the Iranian Mathematical Society Vol. 39 No. 3 (2013), pp 569-578.

SOME RESULTS ON THE POLYNOMIAL NUMERICAL HULLS OF MATRICES

H. R. AFSHIN*, M. A. MEHRJOOFARD AND A. SALEMI

Communicated by Gholam Hossein Esslamzadeh

ABSTRACT. In this note we characterize polynomial numerical hulls of matrices $A \in M_n$ such that A^2 is Hermitian. Also, we consider normal matrices $A \in M_n$ whose k^{th} power are semidefinite. For such matrices we show that $V^k(A) = \sigma(A)$.

1. Introduction

Let M_n be the set of $n \times n$ complex matrices. The polynomial numerical hull of order k for a matrix $A \in M_n$ is defined and denoted by

$$V^{k}(A) = \{\xi \in \mathbb{C} : |p(\xi)| \le ||p(A)|| \text{ for all } p(z) \in \mathcal{P}_{k}[\mathbb{C}]\},\$$

where $\mathcal{P}_k[\mathbb{C}]$ is the set of complex polynomials with degree at most k. This notion was introduced by Nevanlinna [11] and further studied by several researchers; see, e.g., [1,4,5,8-10]. The *joint numerical range* of $(A_1, A_2, \ldots, A_m) \in M_n \times \cdots \times M_n$ is denoted by

$$W(A_1, A_2, \dots, A_m) = \{ (x^* A_1 x, x^* A_2 x, \dots, x^* A_m x) : x \in \mathbb{C}^n, x^* x = 1 \}.$$

By the result in [9] (see also [10])

$$V^{k}(A) = \{\zeta \in \mathbb{C} : (0, \dots, 0) \in \operatorname{conv} W((A - \zeta I), (A - \zeta I)^{2}, \dots, (A - \zeta I)^{k})\},\$$

Received: 6 March 2011, Accepted: 29 May 2012

MSC(2010): Primary: 15A60; Secondary: 15A18, 52A10

Keywords: Polynomial numerical hull, joint numerical range, normal matrices.

^{*}Corresponding author

 $[\]odot$ 2013 Iranian Mathematical Society.

where convX denotes the convex hull of $X \subseteq \mathbb{C}^k$.

In Section 2, we characterize polynomial numerical hulls of matrices $A \in M_n$ such that A^2 is Hermitian. Also, we show that [5, Theorem 4.4] is not formulated correctly, and we improve it in Theorem 2.3. In Section 3, we consider normal matrices $A \in M_n$ whose k^{th} power are semidefinite. For such matrices we show that $V^k(A) = \sigma(A)$.

2. Main results

In this section we consider matrices $A \in M_n$ such that A^2 is Hermitian. For such matrices, we give a complete description of $V^k(A), k \in \mathbb{N}$.

By [5, Theorem 4.1], if $A \in M_n$, then A^2 is Hermitian if and only if A is unitarily similar to a direct sum of a Hermitian matrix H, a skew-Hermitian matrix G, and 2-by-2 matrices as follows:

(2.1) $A = \text{diag}(h_1, \dots, h_p) \oplus i \text{diag}(g_1, \dots, g_q) \oplus A_1 \oplus \dots \oplus A_r,$ where $g_1 \ge \dots \ge g_q, h_1 \ge \dots \ge h_p$ and

$$A_j = \begin{bmatrix} \mu_j & i\nu_j \\ i\nu_j & -\mu_j \end{bmatrix}, \text{ with } \mu_j, \nu_j > 0, j = 1, \dots, r.$$

The following example shows that the statement of [5, Theorem 4.4] is not formulated correctly.

Example 2.1. Let $A = [i] \oplus \begin{bmatrix} \sqrt{6} & i\sqrt{3} \\ i\sqrt{3} & -\sqrt{6} \end{bmatrix}$. By [5, Theorem 4.4], $V^2(A) \cap \mathbb{R} = \{-\sqrt{3}, \sqrt{3}\}.$ But, we will show that $\pm 1 \in V^2(A) \cap \mathbb{R}$.

Observe that $\mu \in V^2(A) \cap \mathbb{R}$ if and only if $(\mu, 0, \mu^2) \in W := W(\Re(A), \Im(A), A^2)$, where $\Re(A) = \frac{A+A^*}{2}, \Im(A) = \frac{A-A^*}{2i}$. By [5, Theorem 4.3],

$$W = \operatorname{conv}\left(\{(0, 1, -1)\} \bigcup \left\{(x, y, 3) : (x, y) : \frac{x^2}{6} + \frac{y^2}{3} = 1\right\}\right).$$

Since W is convex and $\{(\pm 2, -1, 3), (0, 1, -1)\} \subset W, (\pm 1, 0, 1) \in W$, we see that $\pm 1 \in V^2(A) \cap \mathbb{R}$.

Recall that an extreme point of a convex set S in a real vector space is a point in S which does not lie in any open line segment joining two points of S. The Krein Milman Theorem says that if S is convex and compact in a locally convex space, then S is the convex hull of its extreme points. Also, by Carathéodory Theorem, we know that if Qis a nonempty subset of \mathbb{R}^n , then every vector $x \in \text{conv}Q$ is a convex combination of at most n + 1 vectors in Q (see [7, Theorem 22.16]).

570

Lemma 2.2. [3, Theorem III.9.2] Let P be an arbitrary m-dimensional subspace in \mathbb{R}^n and let K be a convex subset in \mathbb{R}^n . Then every extreme point of the intersection $P \cap K$ can be expressed as a convex combination of at most n - m + 1 extreme points of K. Moreover, if K is a compact set, then

$$P \cap K = \operatorname{conv}\left(\bigcup_{a_1,\dots,a_{n-m+1} \in \operatorname{ext}(K)} \left[P \cap \operatorname{conv}\left(\{a_1,\dots,a_{n-m+1}\}\right)\right]\right),$$

where ext(K) is the set of all extreme points of K.

Now, we state the main theorem in this section.

Theorem 2.3. Assume $A \in M_n$ satisfies (2.1). Let K_1 be the convex hull of the union of the sets:

$$\begin{array}{l} \text{(a.1) } \{(h_j, h_j^2) : 1 \le j \le p\},\\ \text{(a.2) } \{(\pm \mu_j, \mu_j^2 - \nu_j^2) : 1 \le j \le r\},\\ \text{(a.3) } \{(0, g_1 g_q), (0, \tilde{g})\} \text{ if } g_1 g_q \le 0, \text{ where} \\ \tilde{g} = \max\{g_i g_j : g_i g_j \le 0, \ 1 \le i < j \le q\},\\ \text{(a.4) } \bigcup_{k=1}^r \bigcup_{i=1}^q \left\{ \begin{array}{c} x = \left(\frac{g_i}{g_i + \text{sgn}(g_i)\nu_k t}\right) \mu_k \sqrt{1 - t^2},\\ (\pm x, z) : z = \frac{-\text{sgn}(g_i)\nu_k g_i^2 t + g_i \left(\mu_k^2 - \nu_k^2\right)}{g_i + \text{sgn}(g_i)\nu_k t},\\ g_i \ne 0, t \in [0, 1] \end{array} \right\}. \end{array}$$

Let K_2 be the convex hull of the union of the sets:

$$\begin{array}{l} \text{(b.1)} \left\{ (g_j, -g_j^2) : 1 \leq j \leq q \right\}, \\ \text{(b.2)} \left\{ (\pm \nu_j, \mu_j^2 - \nu_j^2) : 1 \leq j \leq r \right\}, \\ \text{(b.3)} \left\{ (0, -h_1 h_p), (0, -\tilde{h}) \right\} \text{ if } h_1 h_p \leq 0, \text{ where} \\ \tilde{h} = \max\{h_i h_j : h_i h_j \leq 0, \ 1 \leq i < j \leq p \}, \\ \text{(b.4)} \bigcup_{k=1}^r \bigcup_{i=1}^p \left\{ \begin{array}{l} y = \frac{h_i \nu_k \sqrt{1-t^2}}{h_i + \operatorname{sgn}(h_i) \mu_k h_i^2 t + h_i \left(\mu_k^2 - \nu_k^2\right)} \\ (\pm y, z) : z = \frac{\operatorname{sgn}(h_i) \mu_k h_i^2 t + h_i \left(\mu_k^2 - \nu_k^2\right)}{h_i + \operatorname{sgn}(h_i) \mu_k t}, \\ h_i \neq 0, t \in [0, 1] \end{array} \right\}.$$

Then $V^2(A) = \{\mu \in \mathbb{R} : (\mu, \mu^2) \in K_1\} \cup \{i\mu \in i\mathbb{R} : (\mu, -\mu^2) \in K_2\}.$

Proof. Without loss of generality we assume that $g_1 > \cdots > g_q$, and $h_1 > \cdots > h_p$. By [5, Theorem 4.3], the joint numerical range $W(A, A^2)$ of a matrix A whose square is Hermitian, is convex. Then [5, Theorem

5.3] implies that $\mu \in V^2(A)$ if and only if $(\mu, \mu^2) \in W(A, A^2)$. Whereas A^2 is Hermitian, $\mu^2 \in \mathbb{R}$. Thus, $V^2(A) \subseteq \mathbb{R} \cup i\mathbb{R}$. Now, we consider $V^2(A) \cap \mathbb{R}$. Also, it is readily seen that $\mu \in V^2(A) \cap \mathbb{R}$ if and only if $(\mu, 0, \mu^2) \in W := W(\Re(A), \Im(A), A^2)$. Since $\{(\mu, 0, \mu^2) : \mu \in \mathbb{R}\} \subseteq P_{xz} := \{(x, 0, z) : x, z \in \mathbb{R}\}$ and W is convex, we obtain that $\mu \in V^2(A) \cap \mathbb{R}$ if and only if $(\mu, 0, \mu^2) \in E := \operatorname{conv}(P_{xz} \cap W)$. By [5, Theorem 4.3], $W = \operatorname{conv}\{S_1, S_2, S_3\}$, where

$$\begin{split} S_1 &= \left\{ (h_i, 0, h_i^2) : 1 \le i \le p \right\}, \\ S_2 &= \left\{ (0, g_i, -g_i^2) : 1 \le i \le q \right\}, \\ S_3 &= \bigcup_{j=1}^r \left\{ \left(x, y, \mu_j^2 - \nu_j^2 \right) : \frac{x^2}{\mu_j^2} + \frac{y^2}{\nu_j^2} = 1 \right\}, \end{split}$$

and hence $E = \operatorname{conv} [P_{xz} \cap \operatorname{conv}(S_1 \cup S_2 \cup S_3)]$. By Carathéodory Theorem,

$$E = \operatorname{conv}\left(P_{xz} \cap \bigcup_{\{a_i\}_{i=1}^4 \subset S_1 \bigcup S_2 \bigcup S_3} \operatorname{conv}\left(\{a_i\}_{i=1}^4\right)\right).$$

Now Lemma 2.2 shows that

$$E = \operatorname{conv}\left(\bigcup_{\{a_i\}_{i=1}^4 \subset S_1 \bigcup S_2 \bigcup S_3} \operatorname{conv}\left(\bigcup_{1 \le i < j \le 4} \left[P_{xz} \cap \operatorname{conv}\left(\{a_i, a_j\}\right)\right]\right)\right),$$

and therefore,

$$E = \operatorname{conv} \left(\bigcup_{\substack{\{a_i\}_{i=1}^4 \subset S_1 \bigcup S_2 \bigcup S_3}} \bigcup_{\substack{1 \le i < j \le 4}} [P_{xz} \cap \operatorname{conv} (\{a_i, a_j\})] \right)$$
$$= \operatorname{conv} \left(\bigcup_{\substack{\{a,b\} \subset S_1 \bigcup S_2 \bigcup S_3}} [P_{xz} \cap \operatorname{conv} (\{a,b\})] \right)$$
$$= \operatorname{conv} \left(\bigcup_{\substack{i=1}^3 \bigcup_{j=1}^3 \bigcup_{a \in S_i}} \bigcup_{b \in S_j} [P_{xz} \cap \operatorname{conv} (\{a,b\})] \right).$$

We set $D_{ij} = \bigcup_{a \in S_i} \bigcup_{b \in S_j} [P_{xz} \cap \operatorname{conv}(\{a, b\})]$. Since $S_1 \subseteq P_{xz}$,

 $S_1 \subset D_{11} \subset \text{conv}(S_1), D_{12} = D_{21} \subset \text{conv}(S_1 \cup D_{22}), D_{13} = D_{31} \subset \text{conv}(S_1 \cup D_{33}),$ it follows that

$$E = \operatorname{conv} (S_1 \cup D_{22} \cup D_{23} \cup D_{33}).$$

Therefore,

$$\mu \in V^{2}(A) \cap \mathbb{R} \Leftrightarrow \left(\mu, 0, \mu^{2}\right) \in \operatorname{conv}(S_{1} \cup D_{22} \cup D_{23} \cup D_{33})$$

Some results on the polynomial numerical hulls of matrices

Direct calculation shows that

$$D_{22} = \{(0, 0, g_i g_j) : g_i g_j \le 0\},\$$

$$\operatorname{conv}(D_{33}) = \operatorname{conv}\left(\{(\pm \mu_i, 0, \mu_i^2 - \nu_i^2), 1 \le i \le r\}\right).$$

Now, we consider D_{23} . Fix $1 \le j \le r$ and $1 \le i \le q$. Let $a = (0, g_i, -g_i^2) \in S_2$ and

$$b = (\alpha, \beta, \mu_j^2 - \nu_j^2) \in B_j := \left\{ (x, y, \mu_j^2 - \nu_j^2) : \frac{x^2}{\mu_j^2} + \frac{y^2}{\nu_j^2} = 1 \right\} \subseteq S_3.$$

In the case $g_i = 0$, we have

$$\bigcup_{b \in B_j} \left[P_{xz} \cap \operatorname{conv}\left(\{a, b\}\right) \right] = \operatorname{conv}\left\{ (0, 0, 0), \left(\pm \mu_j, 0, \mu_j^2 - \nu_j^2\right) \right\}.$$

Thus, if there exists $1 \leq i \leq q$ such that $g_i = 0$, define

(2.2)
$$D_0 := \bigcup_{j=1}^{j} \operatorname{conv} \left\{ (0,0,0), (\pm \mu_j, 0, \mu_j^2 - \nu_j^2) \right\} \subseteq \operatorname{conv} \left(D_{22} \cup D_{33} \right),$$

and otherwise define $D_0 = \emptyset$.

Now, we assume that $g_i \neq 0$. It is readily seen that, if $\beta g_i > 0$, then $P_{xz} \cap \operatorname{conv}(\{a, b\}) = \emptyset$. Therefore, we consider $\beta g_i \leq 0$.

$$P_{xz} \cap \operatorname{conv}\left(\{a,b\}\right) = \left\{ (x,0,z) : \begin{array}{l} \left(\frac{g_i}{g_i - \beta}\right)\alpha = x, \\ z = \frac{\beta}{g_i - \beta}g_i^2 + \left(\frac{g_i}{g_i - \beta}\right)\left(\mu_j^2 - \nu_j^2\right). \end{array} \right\}.$$

Since $\frac{\alpha^2}{\mu_j^2} + \frac{\beta^2}{\nu_j^2} = 1$, and $\beta g_i \le 0$, we obtain that $\beta = -\text{sgn}(g_i)\nu_j \sqrt{1 - \frac{\alpha^2}{\mu_j^2}}$.

Consider $t = \sqrt{1 - \frac{\alpha^2}{\mu_j^2}} \in [0, 1]$. Then

$$D_{23} = D_0 \cup \bigcup_{j=1}^r \bigcup_{i=1}^q \left\{ \begin{array}{c} x = \left(\frac{g_i}{g_i + \operatorname{sgn}(g_i)\nu_j t}\right) \mu_j \sqrt{1 - t^2}, \\ (\pm x, 0, z) : & z = \frac{-\operatorname{sgn}(g_i)\nu_j g_i^2 t + g_i \left(\mu_j^2 - \nu_j^2\right)}{g_i + \operatorname{sgn}(g_i)\nu_j t}, \\ & g_i \neq 0, t \in [0, 1]. \end{array} \right\}$$

where D_0 is given in (2.2). Therefore,

$$V^2(A) \cap \mathbb{R} = \{\lambda \in \mathbb{R} : (\lambda, \lambda^2) \in K_1\}.$$

Similarly, we can show that

$$V^2(A) \cap i\mathbb{R} = \{\lambda \in \mathbb{R} : (\lambda, -\lambda^2) \in K_2\}.$$

Example 2.4. Let $A = [3] \oplus [-2i] \oplus \begin{bmatrix} 4 & 3i \\ 3i & -4 \end{bmatrix}$. By the notations as in Theorem 2.3, it is readily seen that $K_1 = conv\left(\{(3,9)\} \cup \{(\pm 4,7)\} \cup \left\{\left(\pm \frac{8\sqrt{1-t^2}}{2+3t}, \frac{14-12t}{2+3t}\right) : t \in [0,1]\right\}\right),$ $K_2 = conv\left(\{(-2,-4)\} \cup \{(\pm 3,7)\} \cup \left\{\left(\pm \frac{9\sqrt{1-t^2}}{3+4t}, \frac{21+36t}{3+4t}\right) : t \in [0,1]\right\}\right).$ Therefore, by Theorem 2.3 we have

$$\begin{split} V^2\left(A\right) \cap \mathbb{R} &= \left\{ \mu \in \mathbb{R} : \left(\mu, \mu^2\right) \in K_1 \right\} \\ &= \left[\frac{-23}{7}, \frac{-8\sqrt{370 + 27\sqrt{37}}}{29 + 9\sqrt{37}} \right] \cup \left[\frac{8\sqrt{370 + 27\sqrt{37}}}{29 + 9\sqrt{37}}, 3 \right], \\ V^2\left(A\right) \cap i\mathbb{R} &= \left\{ i\mu \in i\mathbb{R} : \left(\mu, -\mu^2\right) \in K_2 \right\} = i\left[-2, \frac{-2}{10}\right]. \end{split}$$

The following figures illustrate how Theorem 2.3 characterize $V^2(A)$.

FIGURE 1. Characterizing $V^2(A)$ via Theorem 2.3

Therefore,

$$V^{2}(A) = \left[\frac{-23}{7}, \frac{-8\sqrt{370 + 27\sqrt{37}}}{29 + 9\sqrt{37}}\right] \cup \left[\frac{8\sqrt{370 + 27\sqrt{37}}}{29 + 9\sqrt{37}}, 3\right] \cup i\left[-2, \frac{-2}{10}\right].$$

574

Some results on the polynomial numerical hulls of matrices

Remark 2.5. Assume that $A \in M_n$ is such that A^2 is Hermitian. By [11, Theorem 2.1.5] and [5, Theorem 4.2], we know that $V^1(A) = W(A)$, and $V^k(A) = \sigma(A), k \ge 4$. Also Theorem 2.3, characterizes $V^2(A)$. So, it is enough to study $V^3(A)$ to characterize $V^k(A), \forall k \in \mathbb{N}$.

By a similar method as followed in the proof of Theorem 2.3 we state the following theorem.

Theorem 2.6. Let

(2.3)
$$A = \operatorname{diag}(h_1, \cdots, h_p) \oplus i\operatorname{diag}(g_1, \cdots, g_q),$$

where $h_1 \ge \cdots \ge h_p$, and $g_1 \ge \cdots \ge g_q$. Define

$$S_{1} := \operatorname{conv} \left(\begin{array}{c} \left\{ \left(h_{j}, h_{j}^{2}, h_{j}^{3}\right) : 1 \leq j \leq p \right\} \bigcup \\ \left\{ \left(0, -g^{2}, 0\right) : \left\{g, -g\right\} \subset \left\{g_{i} : 1 \leq i \leq q\right\} \right\} \bigcup \\ \bigcup \\ \left\{ \left(0, \frac{abc(ac^{2} - ab^{2} + a^{2}b - bc^{2} + b^{2}c - a^{2}c)}{(c - b)(b - a)(a - c)(a + b + c)}, 0 \right) \right\} \end{array} \right),$$

and

$$S_{2} := \operatorname{conv} \left(\begin{array}{l} \left\{ \left(g_{j}, -g_{j}^{2}, -g_{j}^{3}\right) : 1 \leq j \leq q \right\} \bigcup \\ \left\{ \left(0, h^{2}, 0\right) : \left\{h, -h\right\} \subset \left\{h_{i} : 1 \leq i \leq p\right\} \right\} \bigcup \\ \bigcup \\ \left\{ \left(0, \frac{abc(ac^{2}-ab^{2}+a^{2}b-bc^{2}+b^{2}c-a^{2}c)}{(c-b)(b-a)(c-a)(a+b+c)}, 0\right) \right\} \\ \left\{ a_{s,b,c} \in \left\{h_{i}\right\} \\ a_{s,c} = b_{s,c,ac>0} \end{array} \right).$$

Then

$$V^{3}(A) = \{ \mu \in \mathbb{R} : (\mu, \mu^{2}, \mu^{3}) \in S_{1} \} \cup \{ i\mu \in i\mathbb{R} : (\mu, -\mu^{2}, -\mu^{3}) \in S_{2} \}.$$

Corollary 2.7. Let $A \in M_n$ be a normal matrix such that $A = A_1 \oplus iA_2$, $A_1^* = A_1$ and let A_2 be a semi-definite matrix. Then $V^3(A) = \sigma(A)$.

Proof. Without loss of generality, we assume that $\sigma(A_2) \subseteq (0, \infty)$. We consider the set S_2 as in Theorem 2.6 and let a, b and c be real numbers such that a < -b < c and ac > 0. It is readily seen that

$$\frac{abc\left(ac^{2}-ab^{2}+a^{2}b-bc^{2}+b^{2}c-a^{2}c\right)}{\left(c-b\right)\left(b-a\right)\left(c-a\right)\left(a+b+c\right)}>0.$$

Therefore, $(0, 0, 0) \notin S_2$ and hence

$$V^{3}(A) \cap \mathbb{R}$$

$$\subset \left\{ \mu \in \mathbb{R} : (\mu, \mu^{2}) \in \operatorname{conv} \left(\left\{ (\lambda, \lambda^{2}) : \lambda \in \sigma (A_{1}) \right\} \right) \right\}$$

$$= \sigma (A_{1}),$$

$$V^{3}(A) \cap i\mathbb{R} \setminus \{0\}$$

$$\subset \left\{ i\mu \in i\mathbb{R} : (\mu, -\mu^{3}) \in \operatorname{conv} \left(\begin{array}{c} \left\{ (\lambda, -\lambda^{3}) : \lambda \in \sigma (A_{2}) \right\} \\ \cup \left\{ (0, 0) \right\} \end{array} \right) \right\}$$

$$= \sigma (A_{2}) \cup \{0\}.$$
So $V^{3}(A) = \sigma (A).$

3. Additional results

In this section we consider normal matrices whose k^{th} power are semidefinite. By [6, Theorem 2.1], we know that if $A \in M_n$ is a normal matrix such that A^2 is semidefinite, then $V^2(A) = \sigma(A)$. In the following, we extend this result.

Theorem 3.1. Let $A \in M_n$ be a normal matrix such that A^k , $k \ge 2$ is semi-definite. Then $V^k(A) = \sigma(A)$.

Proof. Without loss of generality, we can assume that

$$A = A_1 \oplus e^{\frac{i2\pi}{k}} A_2 \oplus e^{\frac{i4\pi}{k}} A_3 \oplus \dots \oplus e^{\frac{i2(k-1)\pi}{k}} A_k,$$

such that $A_j \in M_{m_j}$, j = 1, ..., k are positive semidefinite. Whereas $V^k(e^{i\theta}A) = e^{i\theta}V^k(A)$, it is enough to prove that

(3.1)
$$V^{k}(A) \cap \mathbb{R} = \begin{cases} \sigma(A_{1}) & \text{if } k \text{ is odd} \\ \sigma(A_{1}) \cup \sigma\left(A_{\frac{k}{2}+1}\right) & \text{if } k \text{ is even} \end{cases}$$

Suppose that $A_j = \text{diag}(a_{1,j}, \cdots, a_{m_j,j}), 1 \le j \le k$.

We know that $\eta \in V^k(A)$ if and only if there exists $\mathbf{x} = (x_1, \dots, x_k)^T, x_j \in \mathbb{C}^{m_j}, \|\mathbf{x}\| = (\sum_{j=1}^k x_j^* x_j)^{1/2} = 1$ such that $\eta^r = \sum_{j=1}^k e^{\frac{2i(j-1)\pi}{k}} x_j^* A_j^r x_j, r = 1, \dots, k.$

576

Direct calculation shows that

$$V^{k}(A) \cap \mathbb{R} \subset \left\{ \eta \in \mathbb{R} : \left[\begin{array}{c} \eta = \sum_{j=1}^{k} \cos\left(\frac{2(j-1)\pi}{k}\right) x_{j}^{*} A_{j} x_{j}, \\ \eta^{k} = \sum_{j=1}^{k} x_{j}^{*} A_{j}^{k} x_{j} \\ x_{j} \in \mathbb{C}^{m_{j}}, \sum_{j=1}^{k} x_{j}^{*} x_{j} = 1. \end{array} \right\}$$

Define

$$p_{i,j} := \left(\cos\left(\frac{2\left(j-1\right)\pi}{k}\right)a_{i,j}, a_{i,j}^k\right), 1 \le j \le k, 1 \le i \le m_j.$$

 So

$$V^{k}(A) \cap \mathbb{R} \subset \left\{ \eta \in \mathbb{R} : \left(\eta, \eta^{k}\right) \in \operatorname{conv}\left(\left\{p_{i,j}\right\}_{\substack{1 \le j \le k \\ 1 \le i \le m_{j}}}\right)\right\}$$

We know that $a_{ij} \ge 0$ and $\left|\cos\left(\frac{2(j-1)\pi}{k}\right)\right| < 1, \ j \in \{2, \ldots, k\} \setminus \{\frac{k}{2}+1\}.$ By the convexity of $f(x) = |x|^k$ we obtain that

$$V^{k}(A) \cap \mathbb{R} \subset \begin{cases} \sigma(A_{1}) & \text{if } k \text{ is odd} \\ \sigma(A_{1}) \cup \sigma\left(A_{\frac{k}{2}+1}\right) & \text{if } k \text{ is even.} \end{cases}$$

Whereas $\sigma(A) \subseteq V^k(A)$ and $\sigma(A_i) \subseteq \mathbb{R}$, $i = 1, \ldots, k$, the equation (3.1) holds.

It will be interesting to characterize the polynomial numerical hulls of matrices whose k^{th} power are Hermitian.

Acknowledgments

The Research has been partially supported by the SBUK Center of Excellence in Linear Algebra and Optimization, Kerman, Iran. Research of the first author was supported by Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.

References

 H. R. Afshin, M. A. Mehrjoofard and A. Salemi, Polynomial numerical hulls of order 3, *Electron. J. Linear Algebra* 18 (2009) 253–263.

- [2] H. R. Afshin, M. A. Mehrjoofard and A. Salemi, Polynomial inverse images and polynomial numerical hulls of normal matrices, *Oper. Matrices* 5 (2011), no. 1, 89–96.
- [3] A. Barvinok, A Course in Convexity, Amer. Math. Soc., Providence, 2002.
- [4] J. V. Burke and A. Greenbaum, Characterizations of the polynomial numerical hull of degree k, Linear Algebra Appl. 419 (2006), no. 1, 37–47.
- [5] Ch. Davis, C. K. Li and A. Salemi, Polynomial numerical hulls of matrices, Linear Algebra Appl. 428 (2008) no. 1, 137–153.
- [6] Ch. Davis and A. Salemi, On polynomial numerical hulls of normal matrices, Linear Algebra Appl. 383 (2004) 151–161.
- [7] H. Dym, Linear Algebra in Action, Amer. Math. Soc., Providence, 2007.
- [8] V. Faber, A. Greenbaum and D. E. Marshall, The polynomial numerical hulls of Jordan blocks and related matrices, *Linear Algebra Appl.* 374 (2003) 231–246.
- [9] V. Faber, W. Joubert, M. Knill and T. Manteuffel, Minimal residual method stronger than polynomial preconditioning, SIAM J. Matrix Anal. Appl. 17 (1996), no. 4, 707–729.
- [10] A. Greenbaum, Generalizations of the field of values useful in the study of polynomial functions of a matrix, *Linear Algebra Appl.* 347 (2002) 233–249.
- [11] O. Nevanlinna, Convergence of iterations for linear equations, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1993.

Hamid Reza Afshin

Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran Email: afshin@mail.vru.ac.ir

Mohammad Ali Mehrjoofard

Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran Email: aahaay@gmail.com

Abbas Salemi

Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran Email: salemi@uk.ac.ir