RINGS IN WHICH ELEMENTS ARE THE SUM OF AN IDEMPOTENT AND A REGULAR ELEMENT

N. ASHRAFI * AND E. NASIBI

Communicated by Siamak Yassemi

ABSTRACT. Let R be an associative ring with unity. An element $a \in R$ is said to be r-clean if $a = e + r$, where e is an idempotent and r is a regular (von Neumann) element in R. If every element of R is r-clean, then R is called an r-clean ring. In this paper, we prove that the concepts of clean ring and r-clean ring are equivalent for abelian rings. Furthermore, we prove that if 0 and 1 are the only idempotents in R, then an r-clean ring is an exchange ring. Also we show that the center of an r-clean ring is not necessary r-clean, but if 0 and 1 are the only idempotents in R, then the center of an r-clean ring is r-clean. Finally, we give some properties and examples of r-clean rings.

1. Introduction

Let R be an associative ring with unity. An element $a \in R$ is said to be clean if $a = e + u$, where e is an idempotent and u is a unit in R. If every element of R is clean then R is called a clean ring. Clean rings were introduced by W. K. Nicholson in his fundamental paper [11]. He proved that every clean ring is an exchange ring, and a ring with central idempotents is clean if and only if it is an exchange ring. Semiperfect rings and unit-regular rings are examples of clean rings as shown in [6].

Keywords: Clean ring, exchange ring, r-clean ring, von Neumann regular ring.
Received: 6 February 2012, Accepted: 30 May 2012.
*Corresponding author
© 2013 Iranian Mathematical Society.
and [5], respectively. Many authors have studied clean rings and their generalizations such as [2, 6, 10–12, 16] and [17].

Definition 1.1. An element \(a \in R \) is said to be \(r \)-clean if \(a = e + r \), where \(e \) is an idempotent and \(r \) is a regular (von Neumann) element in \(R \). If every element of \(R \) is \(r \)-clean, then \(R \) is called an \(r \)-clean ring.

We introduced \(r \)-clean rings and gave some basic properties of \(r \)-clean rings in [1]. The trivial examples of \(r \)-clean rings, of course, are regular and clean rings. In [1], we gave some examples of \(r \)-clean rings that are not regular and one example of an \(r \)-clean ring which is not clean. A ring is called abelian if all its idempotents are central. In this paper, we prove that every abelian \(r \)-clean ring is clean. Also we show that every \(r \)-clean ring with 0 and 1 as the only idempotents, is exchange. Let \(A \) and \(B \) be rings, \(M =_B M_A \) a bimodule and let the formal triangular matrix ring \(T = \begin{pmatrix} A & 0 \\ M & B \end{pmatrix} \) be \(r \)-clean, then both \(A \) and \(B \) are \(r \)-clean by [1, Theorem 16]. We show that when both \(A \) and \(B \) are clean or one of them is clean and the other one is \(r \)-clean, then \(T \) is \(r \)-clean. Furthermore, we show that the center of an \(r \)-clean ring is not necessarily \(r \)-clean, but if 0 and 1 are the only idempotents, then the center of an \(r \)-clean ring is \(r \)-clean. Also we give some properties and examples of \(r \)-clean rings.

Throughout this paper, \(R \) denotes an associative ring with unity, \(U(R) \) the group of units, \(Id(R) \) the set of idempotents, \(J(R) \) the Jacobson radical of \(R \) and \(M_n(R) \) the ring of all \(n \times n \) matrices over \(R \). Furthermore, \(Reg(R) = \{ a \in R | a \) is regular (von Neumann)\}.

2. Main results

In this section we first give some properties of \(r \)-clean rings.

Lemma 2.1. Let \(R \) be an abelian ring. Let \(a \in R \) be a clean element in \(R \) and \(e \in Id(R) \). Then

1. The element \(ae \) is clean.
2. If \(-a \) is clean, then \(a + e \) is also clean.

Proof. See [7, Proposition 3.5].

Theorem 2.2. Let \(R \) be an abelian ring. Then \(R \) is \(r \)-clean if and only if \(R \) is clean.
Proof. One direction is trivial. Conversely, let R be r-clean and $x \in R$. Then $x = e' + r$, where $e' \in \text{Id}(R)$ and $r \in \text{Reg}(R)$. So there exists $y \in R$ such that $ryr = r$. Clearly, $e = ry$ and yr are idempotents and $(re+(1-e))(ye+(1-e))=1$. Also since R is abelian, we have
\[(ye + (1 - e))(re + (1 - e)) = yre + 1 - e = eyr + 1 - e = r(yr) + 1 - e = r(yr)y + 1 - e = e + 1 - e = 1.\]
So $u = re + (1 - e)$ is a unit. Furthermore, $r = eu$. Now, set $f = 1 - e$. Then $eu + f$ and hence, $-(eu + f)$ is a unit. Since f is an idempotent, so $-r = f + (-eu + f))$ is clean. Then since $r \in \text{Reg}(R)$, it follows by Lemma 2.1(2) that x is clean, as required.

Corollary 2.3. Let R be an abelian ring. Then R is r-clean if and only if R is exchange.

A ring is said to be reduced if it has no (nonzero) nilpotent elements. These rings are abelian. Therefore we have the following result.

Corollary 2.4. Let R be a reduced ring. Then R is r-clean if and only if R is clean.

Anderson and Camillo [2, Proposition 12], showed that no polynomial ring over a nonzero commutative ring is clean. Now, since concepts of clean ring and r-clean ring are equivalent for commutative rings, it follows that no polynomial ring over a nonzero commutative ring is r-clean. Therefore, we have a different proof for [1, Theorem 12].

Let R be a ring and α a ring endomorphism of R. Also let $R[[x, \alpha]]$ denote the ring of skew formal power series over R; that is, all formal power series in x with coefficients from R with multiplication defined by $xr = \alpha(r)x$ for all $r \in R$. In particular, $R[[x]] = R[[x, 1_R]]$ is the ring of formal power series over R.

Proposition 2.5. Let R be an abelian ring and α an endomorphism of R. Then the following statements are equivalent:

(1) R is an r-clean ring.
(2) The formal power series ring $R[[x]]$ of R is an r-clean ring.
(3) The skew power series ring $R[[x; \alpha]]$ of R is an r-clean ring.

Proof. (2) \Rightarrow (1) and (3) \Rightarrow (1) are clear since R is a homomorphic image of $R[[x]]$ and $R[[x; \alpha]]$.

(1) \Rightarrow (3). Let $f = a_0 + a_1 x + \ldots \in R[[x; \alpha]]$. Since R is a clean ring
by Theorem 2.2, \(a_0 = e_0 + u_0 \), for some \(e_0 \in \text{Id}(R) \) and \(u_0 \in U(R) \). Hence \(f = e_0 + (u_0 + a_1x + ... \), \(U(R[[x; \alpha]]) = \{a_0 + a_1x + ... | a_0 \in U(R)\} \), without any assumption on the endomorphism \(\alpha \). Now, we have \(\text{Id}(R) \subseteq \text{Id}(R[[x; \alpha]]) \). Therefore, \(f \) is clean and so it is \(r \)-clean, as required.

(1) \(\Rightarrow \) (2). It is enough to put \(\alpha = 1_R \) in the proof of (1) \(\Rightarrow \) (3).

A ring \(R \) is semiregular if \(R/J(R) \) is regular and idempotents can be lifted modulo \(J(R) \).

Proposition 2.6. Every abelian semiregular ring is \(r \)-clean.

Proof. Let \(R \) be an abelian semiregular ring. As \(R/J(R) \) is regular, so is \(r \)-clean. But \(R \) is abelian, so \(R/J(R) \) is clean by Theorem 2.2. Hence \(R \) is clean by [10, Proposition 6].

In the following we show that the converse of the Proposition 2.6 is not true.

Example 2.7. Let \(\mathbb{Q} \) be the field of rational numbers and \(L \) the ring of all rational numbers with odd denominators. Define

\[
R = \{(r_1, ..., r_n, s, s, ...) | n \geq 1, r_1, ..., r_n \in \mathbb{Q}, s \in L\}.
\]

It is easy to check that \(R \) is a commutative exchange ring. So it is \(r \)-clean by Corollary 2.3, while it is not semiregular.

Let \(R \) be an \(r \)-clean ring and \(I \) an ideal of \(R \). Then it is clear that \(R/I \) is \(r \)-clean. But in general, the converse of this result is not true (for example, if \(p \) is a prime number, then \(\mathbb{Z}_p \) is \(r \)-clean, but \(\mathbb{Z} \) is not \(r \)-clean). It was proved by Han and Nicholson [10, Proposition 6] that if \(R \) is a ring and \(I \subseteq J(R) \) is an ideal of \(R \), then \(R \) is clean if and only if \(R/I \) is clean and idempotents can be lifted modulo \(J(R) \). It is clear that this result is true for abelian \(r \)-clean rings. The following result gives a partial converse to the fact that every homomorphic image of an \(r \)-clean ring is \(r \)-clean.

Theorem 2.8. Let \(I \) be a regular ideal of the ring \(R \) and suppose that idempotents can be lifted modulo \(I \). Then \(R \) is \(r \)-clean, if and only if \(R/I \) is \(r \)-clean.

Proof. If \(R/I \) is \(r \)-clean, then for any \(a \in R \), \(a + I \) is \(r \)-clean. Thus there exists \(e + I \in \text{Id}(R/I) \) such that \((a - e) + I \in \text{Reg}(R/I) \). Hence \(((a - e) + I)(x + I)((a - e) + I) = (a - e) + I \) for some \(x \in R \). So \((a - e) - (a - e)x(a - e) \in I \). Now, since \(I \) is regular, so \(a - e \in \text{Reg}(R) \) by
[3, Lemma 1]. Since idempotents can be lifted modulo I, we may assume that e is an idempotent of R. Therefore a is r-clean, as required. □

Lemma 2.9. Let R be a ring with no zero divisors. Then R is clean if R is r-clean.

Proof. For every $x \in R$, we write $x = e + r$, where $e \in Id(R)$ and $r \in Reg(R)$. Then there exists $y \in R$ such that $ryr = r$. Now, if $r = 0$, then $x = e = (2e - 1) + (1 - e)$ is clean. But if $r \neq 0$, then since R is a ring with no zero divisors and $ryr = r$, so $r \in U(R)$. Hence x again is clean. □

Corollary 2.10. Let R be a ring with no zero divisors. Then R is r-clean if and only if R is local.

Proof. It follows from [13, Lemma 14] and Lemma 2.9. □

Theorem 2.11. Let R be a ring. Then R is r-clean if and only if every element $x \in R$ can be written as $x = r - e$, where $r \in Reg(R)$ and $e \in Id(R)$.

Proof. Let R be r-clean and $x \in R$. Then as R is r-clean, so $-x = r + e$, where $r \in Reg(R)$ and $e \in Id(R)$. Hence $x = (r) - e$, where $-r \in Reg(R)$ and $e \in Id(R)$.

Conversely, suppose that every element $x \in R$ can be written as $x = r - e$, where $r \in Reg(R)$ and $e \in Id(R)$. So for every element $x \in R$, we can write $-x = r - e$, where $r \in Reg(R)$ and $e \in Id(R)$. Hence $x = (-r) + e$, where $-r \in Reg(R)$ and $e \in Id(R)$. □

A ring R is said to be von Neumann local if for any $a \in R$, either a or $1 - a$ is regular. Some characterizations of von Neumann local rings have been studied in [8], [14] and [15]. In the following we give a relation between r-clean and von Neumann local rings.

Theorem 2.12. Let R be a ring such that 0 and 1 are the only idempotents in R. Then R is r-clean if and only if it is von Neumann local.

Proof. Let R be an r-clean ring and assume that 0 and 1 are the only idempotents in R. Then for any $a \in R$, either a or $a - 1$ is regular. Hence R is von Neumann local.

Conversely, let R be von Neumann local. Then for any $a \in R$, either a or $1 - a$ is regular. Now, if a is regular, then a is r-clean. If $1 - a$ is regular, then so is $a - 1$ and hence, a is r-clean. □
Corollary 2.13. Let R be an r-clean ring with no nontrivial idempotents. Then R is exchange.

Proof. As every regular element a of a ring R is an exchange element (in the sense that there exists an idempotent $e \in aR$ such that $1 - e \in (1 - a)R$), so von Neumann local rings are exchange rings. Therefore, the result is clear by Theorem 2.12. □

Let A and B be rings, $M = B M A$ a bimodule and let the formal triangular matrix ring $T = \begin{pmatrix} A & 0 \\ M & B \end{pmatrix}$ be r-clean, then both A and B are r-clean by [1, Theorem 16]. In the following theorem we have some conditions under which T is r-clean.

Theorem 2.14. Let A and B be rings, $M = B M A$ a bimodule and assume that one of the following conditions holds:

1. A and B are clean.
2. one of the rings A and B is clean and the other one is r-clean.

Then the formal triangular matrix ring $T = \begin{pmatrix} A & 0 \\ M & B \end{pmatrix}$ is r-clean.

Proof. (1). It is proved in [10] that if A and B are clean, then T is clean. So it is r-clean.

(2). Case 1. Let A be r-clean and let B be clean. Then for every $t = \begin{pmatrix} a & 0 \\ m & b \end{pmatrix} \in T$, we have $a = e_1 + r$ and $b = e_2 + u$ for some $e_1, e_2 \in Id(R)$, $r \in Reg(R)$ and $u \in U(R)$. Assume that $ryr = r$ for some $y \in R$. Write $t = E + W$ where $E = \begin{pmatrix} e_1 & 0 \\ 0 & e_2 \end{pmatrix}$ and $W = \begin{pmatrix} r & 0 \\ m & u \end{pmatrix}$.

Obviously, $E = E^2$ and the equality

$$\begin{pmatrix} r & 0 \\ m & u \end{pmatrix} \begin{pmatrix} y \\ -u^{-1}my \\ u^{-1} \end{pmatrix} \begin{pmatrix} r & 0 \\ m & u \end{pmatrix} = \begin{pmatrix} r & 0 \\ m & u \end{pmatrix}$$

implies that W is a regular matrix. Hence t is r-clean.

Case 2. Let A be clean and let B be r-clean. Then the proof is similar to Case 1. □

Theorem 2.15. Let R be a ring with no nontrivial idempotents and let $0 \neq a \in R$ be r-clean. Then for any $b \in R$, $A = \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$ is r-clean in $M_2(R)$.
Proof. If \(a = 1 \), then \(A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & b \\ 0 & -1 \end{pmatrix} \) which shows that \(A \) is \(r \)-clean. Now, let \(a \neq 1 \). Then \(a = r \) or \(a = 1 + r \), where \(r \in \text{Reg}(R) \). So there exists \(y \in R \) such that \(ryr = r \).

Case 1. If \(a = r \), then
\[
\begin{pmatrix} r & b \\ 0 & 0 \end{pmatrix} \begin{pmatrix} y & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} r & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} r & ryb \\ 0 & 0 \end{pmatrix}.
\]
But 0 and 1 are the only idempotents in \(R \), so \(ry = 0 \) or \(ry = 1 \). If \(ry = 0 \), then \(a = r = ryr = 0 \), which is a contradiction by hypothesis. Thus \(ry = 1 \). Hence \(ryb = b \) and \(A = \begin{pmatrix} r & b \\ 0 & 0 \end{pmatrix} \) is regular. So \(A \) is \(r \)-clean.

Case 2. If \(a = 1 + r \), then \(A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} r & b \\ 0 & 0 \end{pmatrix} \). But as 0 and 1 are the only idempotent in \(R \), \(ry = 0 \) or \(ry = 1 \). If \(ry = 0 \), then \(r = 0 \) and so \(a = 1 \), which is a contradiction by hypothesis. Thus \(ry = 1 \). Therefore similarly, we can see that \(\begin{pmatrix} r & b \\ 0 & 0 \end{pmatrix} \) is regular. Hence \(A \) is \(r \)-clean. \(\square \)

Theorem 2.16. Let \(R \) be a ring and let \(\text{diag}(a_1, ..., a_n) \) be the \(n \times n \) diagonal matrix with \(a_i \) in each entry on the main diagonal. If \(a_1, ..., a_n \in R \) is \(r \)-clean, then \(\text{diag}(a_1, ..., a_n) \) is \(r \)-clean in \(M_n(R) \).

Proof. Write \(a_i = e_i + r_i \), where \(e_i \in \text{Id}(R) \) and \(r_i \in \text{Reg}(R) \) for every \(i \), \(1 \leq i \leq n \). Hence \(\text{diag}(a_1, ..., a_n) = \text{diag}(e_1, ..., e_n) + \text{diag}(r_1, ..., r_n) \). But there exists \(y_i \in R \) such that \(r_i y_i r_i = r_i \) for every \(i \), \(1 \leq i \leq n \). Thus \(\text{diag}(r_1, ..., r_n) \text{diag}(y_1, ..., y_n) \text{diag}(r_1, ..., r_n) = \text{diag}(r_1, ..., r_n) \). Hence \(\text{diag}(r_1, ..., r_n) \) is regular and since \(\text{diag}(e_1, ..., e_n) \) is idempotent, \(\text{diag}(a_1, ..., a_n) \) is \(r \)-clean in \(M_n(R) \). \(\square \)

For more examples of \(r \)-clean rings, in the following we consider trivial extension and ideal-extension.

Let \(R \) be a ring and let \(R M_R \) be an \(R-R \)-bimodule. The trivial extension of \(R \) by \(M \) is the ring \(T(R, M) = R \oplus M \) with the usual addition and the following multiplication
\[
(r_1, m_1)(r_2, m_2) = (r_1 r_2, r_1 m_2 + m_1 r_2).
\]
The trivial extension of R by a bimodule R_{M_R} is isomorphic to the ring of all matrices $T = \begin{pmatrix} r & m \\ 0 & r \end{pmatrix}$, where $r \in R$ and $m \in M$ and the usual matrix operations are used. So a ring R is clean if and only if its trivial extension is a clean ring. It is clear that this is true for abelian r-clean rings. But even if R is not abelian and the trivial extension of R is r-clean, then it is easy to check that R is r-clean.

Let R be a ring and let R_{V_R} be an R-R-bimodule which is a general ring (possibly with no unity) in which $(vw)r = v(wr)$, $(vr)w = v(rw)$ and $(rv)w = r(vw)$ hold for all $v, w \in V$ and $r \in R$. Then the ideal-extension $I(R; V)$ of R by V is defined to be the additive abelian group $I(R; V) = R \oplus V$ with the following multiplication

$$(r, v)(s, w) = (rs, rw + vs + vw).$$

Proposition 2.17. Let R and V be as above. Then we have the following statements:

1. If the ideal-extension $I(R; V)$ is r-clean, then R is r-clean.
2. An ideal-extension $I(R; V)$ is clean if R is clean and for every $v \in V$, there exists $w \in V$ such that $v + w + vw = 0$.
3. An ideal-extension $I(R; V)$ is r-clean if R is r-clean and for every $v \in V$, there exists $w \in V$ such that $v + w + vw = 0$.
4. An ideal-extension $I(R; V)$ is r-clean if R is r-clean and for every $v \in V$ and $y, x \in R, vyr + vyv + ryv = v$.

Proof. Let $E = I(R; V)$. For the proof of (1), let $x \in R$. Then $(x, 0) \in E$. Thus there exists $(e_1, e_2) \in Id(E)$ and $(r_1, r_2) \in Reg(E)$ such that $(x, 0) = (e_1, e_2) + (r_1, r_2)$. But $(r_1, r_2)(y_1, y_2)(r_1, r_2) = (r_1, r_2)$ for some $(y_1, y_2) \in E$. So $r_1y_1r_1 = r_1$. Hence $r_1 \in Reg(R)$ and since $e_1 \in Id(R)$, it follows that $x = e_1 + r_1$ is r-clean.

For the proof of (2), see [13, Proposition 7]. The assertion in (3) follows from (2). Finally, for the proof of (4), let $w = (a, v) \in E$. Then $a = e + r$, where $e \in Id(R)$ and $r \in Reg(R)$. But there exists $y \in R$ such that $ryr = r$. So $(r, v)(y, 0)(r, v) = (r, v)$ by hypothesis. Thus (r, v) is regular in E. Also $(e, 0)$ is an idempotent in E. Hence $w = (e, 0) + (r, v)$ is r-clean. Therefore, E is r-clean.

It is well known that the center of a regular ring is regular (see [9, Theorem 1.14]). Also Burgess and Raphael [4, Proposition 2.5], have shown that the center of a clean ring is not necessarily clean. In fact, we have a clean (so r-clean) ring such that its center is not clean. Now,
Rings in which elements are the sum of an idempotent and a regular element

since the center of a ring is commutative, it follows that we have an
r-clean ring such that its center is not r-clean. Therefore, the center
of an r-clean ring is not necessarily r-clean. But we have the following
theorem about the center of r-clean rings:

Theorem 2.18. Let R be an r-clean ring with no nontrivial idempotents. Then the center of R is also an r-clean ring.

Proof. Let Z(R) be the center of R and x ∈ Z(R). Then there exists
r ∈ Reg(R) such that x = r or x = r + 1 by hypothesis. If x = r,
then r ∈ Reg(Z(R)) and hence, x = 0 + r is r-clean in Z(R). But if
x = r + 1, then x − 1 = r is regular and x − 1 ∈ Z(R). So similar to
the previous case, x − 1 is regular in Z(R). Hence x again is r-clean in
Z(R). Therefore, Z(R) is r-clean.

□

Theorem 2.19. Let R be an abelian r-clean ring. Then R is indecomposable if and only if its center is a local ring.

Proof. Let R be an indecomposable abelian r-clean ring, Z(R) the center
of R and x ∈ Z(R). If x = 0 or x = 1, then it is clear that x or x − 1
are units in Z(R). Now, let x ≠ 0, 1. Then since R is r-clean, either x
or x − 1 is regular in Z(R) by the proof of Theorem 2.18.

Case 1. If x is regular in Z(R), then there exists y ∈ Z(R) such that
xyx = x. Now, since x ≠ 0 and xy, yx are idempotents in R, so
xy = yx = 1 and hence, x is a unit.

Case 2. If x − 1 is regular in Z(R), then (similar to Case 1) since x ≠ 1,
so x − 1 is a unit.

Therefore, either x or x − 1 is a unit in Z(R), as required.

The converse is trivial. □

References

[2] D. D. Anderson and V. P. Camillo, Commutative rings whose elements are a

Nahid Ashrafi
Faculty of Mathematics, Statistics and Computer sciences, Department of Mathematics, Semnan University, Semnan, Iran
Email: nashrafi@semnan.ac.ir, ashrafi49@yahoo.com

Ebrahim Nasibi
Faculty of Mathematics, Statistics and Computer sciences, Department of Mathematics, Semnan University, Semnan, Iran
Email: ebrahimnasibi@yahoo.com, enasibi@gmail.com