ON VERTEX BALANCE INDEX SET OF SOME GRAPHS

CH. ADIGA, C. K. SUBBARAYA, A. S. SHRIKANTH *
M. A. SRIRAJ
Communicated by Jamshid Moori

Abstract

Let $Z_{2}=\{0,1\}$ and $G=(V, E)$ be a graph. A labeling $f: V \longrightarrow Z_{2}$ induces an edge labeling $f^{*}: E \longrightarrow Z_{2}$ defined by $f^{*}(u v)=f(u) \cdot f(v)$. For $i \in Z_{2}$, let $v_{f}(i)=v(i)=\operatorname{card}\{v \in V:$ $f(v)=i\}$ and $e_{f}(i)=e(i)=\operatorname{card}\left\{e \in E: f^{*}(e)=i\right\}$. A labeling f is said to be vertex-friendly if $|v(0)-v(1)| \leq 1$. The vertex balance index set is defined by $\left\{\left|e_{f}(0)-e_{f}(1)\right|: f\right.$ is vertex-friendly $\}$. In this paper we completely determine the vertex balance index set of $K_{n}, K_{m, n}, C_{n} \times P_{2}$ and Complete binary tree.

1. Introduction

A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions. The graph labeling was first introduced in late 1960's. In the intervening years dozens of graph labeling techniques have been studied in over 1000 papers. They have often been motivated by their utility to various applied fields and their intrinsic mathematical interest. There are many graph labeling techniques studied by various authors and one of them is Cordial Graphs [1].

[^0]Labeled graphs serve as useful models for a broad range of applications such as; coding theory, X- ray crystallography, astronomy, circuit design, communication network addressing, etc.[2]

Let G be a graph with vertex set V and edge set E, and let A be an abelian group. A labeling $f: V \longrightarrow A$ induces an edge labeling $f^{+}: E \longrightarrow A$ defined by $f^{+}(x y)=f(x)+f(y)$. For $i \in A$, let $v_{f}(i)=\operatorname{card}\{v \in V: f(v)=i\}$ and $e_{f}(i)=\operatorname{card}\left\{e \in E: f^{+}(e)=i\right\}$. A labeling f is said to be A-friendly if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ for all $(i, j) \in A \times A$, and A-cordial if we also have $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $(i, j) \in A \times A$. When $A=Z_{2}$, the friendly index set of the graph G is defined as $\left\{\left|e_{f}(0)-e_{f}(1)\right|\right.$:the vertex labeling f is Z_{2}-friendly $\}$. Recently Harris Kwong, Sin-Min Lee and Ho Kuen Ng [3] have completely determined the friendly index set of 2 -regular graphs. In particular, they showed that a 2 -regular graph of order n is cordial if and only if $n \neq 2(\bmod 4)$. Motivated by this, in this paper we introduce vertex balance index set $[V B I(G)]$ of a graph G and determine $\operatorname{VBI}\left(K_{n}\right)$, $V B I\left(K_{m, n}\right), V B I\left(C_{n} \times P_{2}\right)$ and $V B I$ (Complete binary tree).

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. Each labeling $f: V(G) \longrightarrow Z_{2}$ induces an edge labeling $f^{*}: E(G) \longrightarrow Z_{2}$, defined by $f^{*}(e)=f^{*}(u v)=f(u) f(v)$. For $i \in Z_{2}$, let $e_{f}(i)=e(i)=$ $\operatorname{card}\left\{e \in E(G): f^{*}(e)=i\right\}$ and $v_{f}(i)=v(i)=\operatorname{card}\{v \in V(G): f(v)=$ $i\}$.
Definition 1.1. A labeling of a graph G is said to be vertex-friendly if $|v(1)-v(0)| \leq 1$.
Definition 1.2. The vertex-balance index set, $\operatorname{VBI}(G)$, of a graph G is defined as $\left\{\left|e_{f}(1)-e_{f}(0)\right|: f\right.$ is vertex-friendly $\}$.

For convenience, under the vertex labeling f, vertex with label 1 is called 1 -vertex, and vertex with label 0 is called 0 -vertex. Likewise, an edge is called 0 -edge if its induced edge label is 0 and 1-edge if its induced edge label is 1 . To prove our main results we need the following observation:
Observation 1.3. If the number of edges in a graph G is even(odd) then the $V B I(G)$ contains only even(odd) numbers.
Remark: The largest number in the $\operatorname{VBI}(G)$ is denoted by $\max \operatorname{VI}(G)$.

2. Vertex Balance Index Set of K_{n} and Complete Binary Tree

In this section, we determine vertex balance index set of K_{n} and Complete binary tree.

Theorem 2.1. If $n \equiv 0(\bmod 2)$, then $\operatorname{VBI}\left(K_{n}\right)=\left\{\frac{n^{2}}{4}\right\}$.
Proof. Let f be a vertex-friendly labeling of K_{n} and $n=2 k$. Then $v(0)=v(1)=k$. Therefore, the total number of 1-edges in K_{n} is $\frac{k(k-1)}{2}$ and the total number of 0 -edges is $\frac{k(3 k-1)}{2}$. Hence $|e(0)-e(1)|=k^{2}=$ $\frac{n^{2}}{4}$.

Theorem 2.2. If $n \equiv 1(\bmod 2)$, then $\operatorname{VBI}\left(K_{n}\right)=\left\{\frac{(n-1)^{2}}{4}, \frac{(n-1)(n+3)}{4}\right\}$.
Proof. Let f be a vertex-friendly labeling of K_{n} and $n=2 k+1$. First we choose $v(0)=k$ and $v(1)=k+1$. In this case, the total number of 1-edges in K_{n} is $\frac{(k+1) k}{2}$ and the total number of 0 -edges is $\frac{k(3 k+1)}{2}$. Therefore, $|e(0)-e(1)|=\frac{k(3 k+1)}{2}-\frac{(k+1) k}{2}=k^{2}=\frac{(n-1)^{2}}{4}$.

Next we choose $v(0)=k+1$ and $v(1)=k$. In this case, one can easily check that $|e(0)-e(1)|=\left|\frac{k(3 k+3)}{2}-\frac{k(k-1)}{2}\right|=k(k+2)=\frac{(n-1)(n+3)}{4}$.

Definition 2.3. A complete binary tree of height h is a binary tree which contains exactly 2^{d} vertices at depth $d, 0 \leq d \leq h$.

Theorem 2.4. If T is a complete binary tree of level n, then $\operatorname{VBI}(T)=$ $\left\{0,2,4, \ldots, 2^{n+1}-2\right\}$.
Proof. Let f be a vertex-friendly labeling on T. The complete binary tree T contains $2^{n+1}-1$ vertices. Since $|v(0)-v(1)| \leq 1$, we have $v(1)=2^{n}$ and $v(0)=2^{n}-1$. Now denote the root by $v_{(0,1)}$ and denote the vertices in the $k^{t h}(1 \leq k \leq n)$ level by $v_{(k, 1)}, v_{(k, 2)}, \ldots, v_{\left(k, 2^{k}\right)}$. Now label all the vertices up to $(n-1)^{t h}$ level by ' 0 ' and all the pendent vertices by ' 1 '. Then it is easy to check that $e(0)=2^{n+1}-2$ and there is no 1 -edge in the graph. Thus $|e(0)-e(1)|=2^{n+1}-2$.

Now we interchange the labels of some vertices to get the remaining $V B I$ numbers. For $0 \leq r \leq n-1$, by interchanging the labels of the vertices $v_{\left(n, 2^{r}(2 q-1)\right)}$ and $v_{(n-r-1, q)}\left(1 \leq q \leq 2^{n-r-1}\right)$, we get $|e(0)-e(1)|=2^{n+1-r}-2(q+1),\left(1 \leq q \leq 2^{n-r-1}\right)$.

3. Vertex Balance Index Set of $K_{m, n}$

In this section we find vertex balance index set of $K_{m, n}$ completely.

Theorem 3.1. If $m+n \equiv 0(\bmod 4)$ and $m, n \geq \frac{m+n}{4}$, then $\operatorname{VBI}\left(K_{m, n}\right)$ $=\left\{m n-2 i\left(\frac{m+n}{2}-i\right): i=0,1,2, \ldots, \frac{m+n}{4}\right\}$.

Proof. Suppose that $m \leq n$. Let $u_{1}, u_{2}, \ldots, u_{m}$ and $v_{1}, v_{2}, \ldots, v_{n}$ denote all the vertices of $K_{m, n}$. Let f be a vertex-friendly labeling on $K_{m, n}$. Since $m+n$ is even, we have $v(0)=v(1)=\frac{m+n}{2}$. Now we label the vertices $u_{1}, u_{2}, \ldots, u_{m}$ by $^{\prime} 0^{\prime}, v_{1}, v_{2}, \ldots, v_{\frac{m+n}{2}}$ by ${ }^{\prime} 1^{\prime}$ and $v_{\frac{m+n}{2}+1}, v_{\frac{m+n}{2}+2}, \ldots$, v_{n} by ' 0 '. Then the number of 0 -edges is equal to $m n$ and there is no 1 edge in the graph $K_{m, n}$. Therefore $|e(0)-e(1)|=m n=\operatorname{maxV} B I\left(K_{m, n}\right)$.

For $1 \leq i \leq \frac{m+n}{4}$, we label the vertices $u_{1}, u_{2}, \ldots, u_{i}$ by ${ }^{\prime} 1^{\prime}, u_{i+1}, u_{i+2}$, \ldots, u_{m} by ' 0 ' $, v_{1}, v_{2}, \ldots, v_{\frac{m+n}{2}-i}$ by ' 1 ' and $v_{\frac{m+n}{2}-i+1}, v_{\frac{m+n}{2}-i+2}, \ldots, v_{n}$ by ' 0 '. Then it is easy to check that $e(1)=i\left(\frac{m+n}{2}-i\right)$ and $e(0)=$ $m n-i\left(\frac{m+n}{2}-i\right)$. It follows that $|e(0)-e(1)|=m n-2 i\left(\frac{m+n}{2}-i\right)$.

If $i>\frac{m+n}{4}$, then $i=\frac{m+n}{4}+k$ for some positive integer k. Since $m n-2\left(\frac{m+n}{4}+k\right)\left[\frac{m+n}{2}-\left(\frac{m+n}{4}+k\right)\right]=m n-2\left(\frac{m+n}{4}-k\right)\left[\frac{m+n}{2}-\left(\frac{m+n}{4}-k\right)\right]$, we observe that $|e(0)-e(1)|$ corresponding to $i=\frac{m+n}{4}+k$ is the same as $|e(0)-e(1)|$ corresponding to $i=\frac{m+n}{4}-k$.

Hence, if $m+n \equiv 0(\bmod 4)$, then $\operatorname{VBI}\left(K_{m, n}\right)=\left\{m n-2 i\left(\frac{m+n}{2}-i\right)\right.$: $\left.i=0,1,2, \ldots, \frac{m+n}{4}\right\}$.

Theorem 3.2. If $m+n \equiv 1(\bmod 4)$ and $m, n \geq \frac{m+n-1}{4}$, then $\operatorname{VBI}\left(K_{m, n}\right)$ $=\left\{m n-2 i\left(\frac{m+n-1}{2}-i\right), m n-2 i\left(\frac{m+n+1}{2}-i\right): i=0,1,2, \ldots, \frac{m+n-1}{4}\right\}$.

Proof. Suppose that $m \leq n$. Let $u_{1}, u_{2}, \ldots, u_{m}$ and $v_{1}, v_{2}, \ldots, v_{n}$ denote all the vertices of $K_{m, n}$. Let f be a vertex-friendly labeling on $K_{m, n}$. Since $m+n$ is odd, first we choose $v(0)=\frac{m+n+1}{2}$ and $v(1)=\frac{m+n-1}{2}$. Now we label the vertices $u_{1}, u_{2}, \ldots, u_{m}$ by ' $0^{\prime}, v_{1}, v_{2}, \ldots, v_{\frac{m+n-1}{2}}$ by ${ }^{\prime} 1^{\prime}$ and $v_{\frac{m+n-1}{2}+1}, v_{\frac{m+n-1}{2}+2}, \ldots, v_{n}$ by ' 0 '. Then the number of 0 -edges is equal to $m n$ and there is no 1 -edge in the graph $K_{m, n}$. Therefore, $|e(0)-e(1)|=m n=\operatorname{maxV} B I\left(K_{m, n}\right)$.

For $1 \leq i \leq \frac{m+n-1}{4}$, we label the vertices $u_{1}, u_{2}, \ldots, u_{i}$ by ${ }^{\prime} 1^{\prime}, u_{i+1}, u_{i+2}$, \ldots, u_{m} by $^{\prime} 0^{\prime}, v_{1}, v_{2}, \ldots, v_{\frac{m+n-1}{2}-i}$ by $^{\prime} 1^{\prime}$ and $v_{\frac{m+n-1}{2}-i+1}, v_{\frac{m+n-1}{2}-i+2}, \ldots$, v_{n} by ' 0 '. Then it is easy to check that $e(1)=i\left(\frac{m+n-1}{2}-i\right)$ and $e(0)=m n-i\left(\frac{m+n-1}{2}-i\right)$. Thus $|e(0)-e(1)|=m n-2 i\left(\frac{m+n-1}{2}-i\right)$.

If $i>\frac{m+n-1}{4}$, then $i=\frac{m+n-1}{4}+k$ for some positive integer k. Since $m n-2\left(\frac{m+n-1}{4}+k\right)\left[\frac{m+n-1}{2}-\left(\frac{m+n-1}{4}+k\right)\right]=m n-2\left(\frac{m+n-1}{4}-\right.$ $k)\left[\frac{m+n-1}{2}-\left(\frac{m+n-1}{4}-k\right)\right]$, we observe that $|e(0)-e(1)|$ corresponding to $i=\frac{m+n-1}{4}+k$ is the same as $|e(0)-e(1)|$ corresponding to $i=\frac{m+n-1}{4}-k$.

Next we choose $v(0)=\frac{m+n-1}{2}$ and $v(1)=\frac{m+n+1}{2}$ and label the vertices $u_{1}, u_{2}, \ldots, u_{m}$ by ' $^{\prime} 0^{\prime}, v_{1}, v_{2}, \ldots, v_{\frac{m+n+1}{2}}$ by ' 1^{\prime} and $v_{\frac{m+n+1}{2}+1}, v_{\frac{m+n+1}{2}+2}$, \ldots, v_{n} by ' 0 '. Then the number of 0 -edges is equal to $m n$ and there is no 1-edge in the graph $K_{m, n}$. Therefore, $|e(0)-e(1)|=m n=$ $\operatorname{maxV} \operatorname{BI}\left(K_{m, n}\right)$.

For $1 \leq i \leq \frac{m+n-1}{4}$, we label the vertices $u_{1}, u_{2}, \ldots, u_{i}$ by $^{\prime} 1^{\prime}, u_{i+1}, u_{i+2}$, \ldots, u_{m} by $^{\prime} 0^{\prime}, v_{1}, v_{2}, \ldots, v_{\frac{m+n+1}{2}-i}$ by ' 1 ' and $v_{\frac{m+n+1}{2}-i+1}, v_{\frac{m+n+1}{2}-i+2}, \ldots$, v_{n} by ' 0 '. Then it is easy to check that $e(1)^{2}=i\left(\frac{m+n+1}{2}-i\right)$ and $e(0)=m n-i\left(\frac{m+n+1}{2}-i\right)$. Thus $|e(0)-e(1)|=m n-2 i\left(\frac{m+n+1}{2}-i\right)$.

If $i>\frac{m+n-1}{4}$, then $i=\frac{m+n-1}{4}+k$ for some positive integer k. Since $m n-2\left(\frac{m+n-1}{4}+k\right)\left[\frac{m+n+1}{2}-\left(\frac{m+n-1}{4}+k\right)\right]=m n-2\left(\frac{m+n-1}{4}-k+\right.$ 1) $\left[\frac{m+n+1}{2}-\left(\frac{m+n-1}{4}-k+1\right)\right]$, we observe that $|e(0)-e(1)|$ corresponding to $i=\frac{m+n-1}{4}+k$ is the same as $|e(0)-e(1)|$ corresponding to $i=\frac{m+n-1}{4}-k+1$.

Hence if $m+n \equiv 1(\bmod 4)$, then $\operatorname{VBI}\left(K_{m, n}\right)=\left\{m n-2 i\left(\frac{m+n-1}{2}-\right.\right.$ i), $\left.m n-2 i\left(\frac{m+n+1}{2}-i\right): i=0,1,2, \ldots, \frac{m+n-1}{4}\right\}$.

Theorem 3.3. If $m+n \equiv 2(\bmod 4)$ and $m, n \geq \frac{m+n-2}{4}$, then $V B I\left(K_{m, n}\right)$ $=\left\{m n-2 i\left(\frac{m+n}{2}-i\right): i=0,1,2, \ldots, \frac{m+n-2}{4}\right\}$.

Theorem 3.4. If $m+n \equiv 3(\bmod 4)$ and $m, n \geq \frac{m+n+1}{4}$, then $\operatorname{VBI}\left(K_{m, n}\right)$ $=\left\{m n-2 i\left(\frac{m+n-1}{2}-i\right): i=0,1,2, \ldots, \frac{m+n-3}{4}\right\} \bigcup\left\{m n-2 i\left(\frac{m+n+1}{2}-i\right):\right.$ $\left.i=0,1,2, \ldots, \frac{m+n+1}{4}\right\}$.

As the proofs of Theorems 3.3 and 3.4 are same as that of Theorems 3.1 and 3.2 , we omit the proofs.

4. Vertex Balance Index Set of $C_{n} \times P_{2}$

Recently Ying Wang, Yuge Zheng and Sin-Min Lee [4] obtained the edge balance index set of $C_{n} \times P_{2}$. In this section we determine the vertex balance index set of $C_{n} \times P_{2}$.

Theorem 4.1. If $n \equiv 0(\bmod 2)$, then the $\operatorname{VBI}\left(C_{n} \times P_{2}\right)=\{4,6,8, \ldots$, $3 n-6,3 n-4,3 n\}$.

Proof. Let f be a vertex-friendly labeling on $C_{n} \times P_{2}$. In $C_{n} \times P_{2}$, there are $2 n$ vertices and $3 n$ edges. Since the number of vertices is even and $|v(0)-v(1)| \leq 1$, we have $v(0)=v(1)=n$. First we label the vertices of $C_{n} \times P_{2}$ in order to obtain the $\operatorname{maxV} \operatorname{BI}\left(C_{n} \times P_{2}\right)$.

We denote the vertices of outer cycle of $C_{n} \times P_{2}$ by $v_{1}, v_{2}, \ldots, v_{n}$ and vertices of inner cycle by $u_{1}, u_{2}, \ldots, u_{n}$. We label the vertices $v_{2 q-1}, u_{2 q}\left(1 \leq q \leq \frac{n}{2}\right)$ by ' 1 ', and $v_{2 q}, u_{2 q-1}\left(1 \leq q \leq \frac{n}{2}\right)$ by ${ }^{\prime} 0^{\prime}$. Then the number of 0 -edges is equal to $3 n$ and there is no 1 -edge in the construction. Thus $|e(0)-e(1)|=3 n=\operatorname{maxVBI}\left(C_{n} \times P_{2}\right)$.

Now we interchange the labels of some vertices to get the remaining $V B I$ numbers. For example, by interchanging the labels of v_{1} and v_{n} ($v_{1} \longleftrightarrow v_{n}$) the number of 0 -edges will decrease where as the number of 1 -edges will increase and hence the difference $|e(0)-e(1)|$ will reduce. i.e, $u_{1} \longleftrightarrow u_{n}$ $u_{1} \longleftrightarrow u_{n}, v_{2} \longleftrightarrow u_{2} \quad|e(0)-e(1)|=3 n-6$ $v_{2} \longleftrightarrow u_{2}, v_{4} \longleftrightarrow u_{4} \quad|e(0)-e(1)|=3 n-8$ $u_{1} \longleftrightarrow u_{n}, v_{2} \longleftrightarrow u_{2}, v_{4} \longleftrightarrow u_{4} \quad|e(0)-e(1)|=3 n-10$ \vdots
$v_{2} \longleftrightarrow u_{2}, v_{4} \longleftrightarrow u_{4}, \ldots, v_{n-2} \longleftrightarrow u_{n-2} \quad|e(0)-e(1)|=n+4$
$u_{1} \longleftrightarrow u_{n}, v_{2} \longleftrightarrow u_{2}, v_{4} \longleftrightarrow u_{4}$,
$\ldots, v_{n-2} \longleftrightarrow u_{n-2} \quad|e(0)-e(1)|=n+2$
$u_{1} \longleftrightarrow u_{n}, v_{2} \longleftrightarrow u_{2}, v_{4} \longleftrightarrow u_{4}, \ldots, v_{n-2} \longleftrightarrow u_{n-2}$,
$v_{n-1} \longleftrightarrow u_{2} \quad|e(0)-e(1)|=n$
$u_{1} \longleftrightarrow u_{n}, v_{2} \longleftrightarrow u_{2}, v_{4} \longleftrightarrow u_{4} \ldots v_{n-2} \longleftrightarrow u_{n-2}$,
$v_{n-1} \longleftrightarrow u_{2}, v_{n-2} \longleftrightarrow u_{3} \quad|e(0)-e(1)|=n-2$

$$
\vdots
$$

$$
u_{1} \longleftrightarrow u_{n}, v_{2} \longleftrightarrow u_{2}, v_{4} \longleftrightarrow u_{4}, \ldots, v_{n-2} \longleftrightarrow u_{n-2}
$$

$$
v_{n-1} \longleftrightarrow u_{2}, v_{n-2} \longleftrightarrow u_{3}, \ldots, v_{\frac{n}{2}+2} \longleftrightarrow u_{\frac{n}{2}-1} \quad|e(0)-e(1)|=6
$$

$$
u_{1} \longleftrightarrow u_{n}, v_{2} \longleftrightarrow u_{2}, v_{4} \longleftrightarrow u_{4}, \ldots, v_{n-2} \stackrel{{ }^{2}}{\longleftrightarrow} u_{n-2}
$$

$$
v_{n-1} \longleftrightarrow u_{2}, v_{n-2} \longleftrightarrow u_{3}, \ldots, v_{\frac{n}{2}+1} \longleftrightarrow u_{\frac{n}{2}} \quad|e(0)-e(1)|=4
$$

And by the similar construction it is easy to show that the numbers 0,2 and $3 n-2$ do not belong to $\operatorname{VBI}\left(C_{n} \times P_{2}\right)$.

Theorem 4.2. If $n \equiv 1(\bmod 2)$, then the $\operatorname{VBI}\left(C_{n} \times P_{2}\right)=\{5,7,9, \ldots$, $3 n-4,3 n-2\}$.

Proof. Let f be a vertex-friendly labeling of $C_{n} \times P_{2}$. There are $2 n$ vertices and $3 n$ edges in the graph $C_{n} \times P_{2}$. Since the number of vertices is even and $|v(0)-v(1)| \leq 1$, we have $v(0)=v(1)=n$. First we label the vertices of $C_{n} \times P_{2}$ in order to obtain the $\max V B I\left(C_{n} \times P_{2}\right)$.

Denote the vertices of $C_{n} \times P_{2}$ as in Theorem 4.1. Now we label the vertices $v_{2 q-1}\left(1 \leq q \leq \frac{n-1}{2}+1\right)$ and $u_{2 q}\left(1 \leq q \leq \frac{n-1}{2}\right)$ by ' 1 ', $v_{2 q}\left(1 \leq q \leq \frac{n-1}{2}\right)$ and $u_{2 q-1}\left(1 \leq q \leq \frac{n-1}{2}\right)$ by ' 0 '. Then the number of 0 -edges is equal to $3 n-1$ and 1 -edges is equal to one. Thus, $|e(0)-e(1)|=|3 n-1-1|=3 n-2=\operatorname{maxVBI}\left(C_{n} \times P_{2}\right)$.

Now we interchange the labels of some vertices to get the remaining $V B I$ numbers. For example, by interchanging the labels of u_{n} and u_{n-1}, the number of 0 -edges will decrease, where as the number of 1-edges will increase and hence the difference $|e(0)-e(1)|$ will reduce.

\vdots
$u_{n} \longleftrightarrow u_{n-1}, v_{2} \longleftrightarrow u_{2}, v_{4} \longleftrightarrow u_{4}, \ldots, v_{n-3} \longleftrightarrow u_{n-3}$,
$v_{n-2} \longleftrightarrow u_{1}, v_{n-3} \longleftrightarrow u_{2}, \ldots v_{\frac{n+3}{2}} \longleftrightarrow u_{\frac{n-5}{2}} \quad|e(0)-e(1)|=7$
$u_{n} \longleftrightarrow u_{n-1}, v_{2} \longleftrightarrow u_{2}, v_{4} \longleftrightarrow{ }_{u} u_{4}, \ldots, v_{n-3}^{2} \longleftrightarrow u_{n-3}$,
$v_{n-2} \longleftrightarrow u_{1}, v_{n-3} \longleftrightarrow u_{2}, \ldots v_{\frac{n+1}{2}} \longleftrightarrow u_{\frac{n-3}{2}} \quad|e(0)-e(1)|=5$.
And by the similar construction it is easy to show that the numbers 1 and 3 do not belong to $\operatorname{VBI}\left(C_{n} \times P_{2}\right)$.

Acknowledgments

We thank the referee for helpfull remarks and usefull suggestion. The first author is thankful to the Department of Science and Technology, Government of India, New Delhi for the financial support under the grant DST/SR/S4/MS:490/07.

References

[1] I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combin. 23 (1987) 201-207.
[2] J. A. Gallian, A dynamic survey of graph labeling, Electronic J. Combin. 5 (1998), 43 pages.
[3] Ha. Kwong, S. M. Lee and H. K. Ng, On friendly index sets of 2-regular graphs, Discrete Math. 308 (2008), no. 23, 5522-5532.
[4] J. Lu, Y. Zheng and S. M. Lee, On the Edge-balance Index sets of $C_{n} \times P_{2}$, Proc. Jangjeon Math. Soc. 12 (2009), no. 1, 360-363.

Ch. Adiga, A. S. Shrikanth and M. A. Sriraj
Department of Studies in Mathematics, University of Mysore, Manasagangothri, Mysore-577006, India
Email: c_adiga@hotmail.com
Email: shrikanth.ait@gmail.com
Email: srinivasa_sriraj@yahoo.co.in

C. K. Subbaraya

Department of Mathematics, Adichunchanagiri Institute of Technology,
Chikamagalur - 577102, India
Email: subrayack@gmail.com

[^0]: MSC(2010): Primary: 05C78; Secondary: 05C07
 Keywords: Vertex labeling, Vertex-friendly, Vertex balance index set. Received: 11 January 2011, Accepted: 18 May 2011.
 *Corresponding author
 (c) 2013 Iranian Mathematical Society.

