Bulletin of the Iranian Mathematical Society Vol. 39 No. 4 (2013), pp 765-777.

STRONG CONVERGENCE THEOREM FOR FINITE FAMILY OF *m*-ACCRETIVE OPERATORS IN BANACH SPACES

N. GURUDWAN* AND B. K. SHARMA

Communicated by Behzad Djafari-Rouhani

ABSTRACT. The purpose of this paper is to propose a composite iterative scheme for approximating a common solution for a finite family of m-accretive operators in a strictly convex Banach space having a uniformly Gateaux differentiable norm. As a consequence, the strong convergence of the scheme for a common fixed point of a finite family of pseudocontractive mappings is also obtained.

1. Introduction

Let E be a real Banach space with dual E^* . The normalized duality mapping from E to 2^{E^*} is defined by

$$J(x) := \{x^* \in E^* : \langle x, x^* \rangle = \|x\|^2, \|x\| = \|x^*\|\},\$$

where $\langle ., . \rangle$ denotes the duality pairing between elements of E and E^* .

Definition 1.1. [2] A mapping $A: D(A) \subseteq E \to E$ is said to be accretive if for all $x, y \in E$, there exists $j(x - y) \in J(x - y)$ such that

$$\langle Ax - Ay, j(x - y) \rangle \ge 0.$$

Keywords: *m*-accretive operators, strictly convex Banach space, uniformly Gateaux differentiable norm, composite iteration, resolvent.

MSC(2010): Primary: 47H06; Secondary: 47H09.

Received: 12 April 2012, Accepted: 20 June 2012.

^{*}Corresponding author

^{© 2013} Iranian Mathematical Society.

If E is a Hilbert space, accretive operators are also called monotone. An operator A is called m-accretive if it is accretive and $\mathcal{R}(I+rA)$, the range of (I+rA), is E for all r > 0; and A is said to satisfy the range condition if $\overline{D(A)} \subseteq \mathcal{R}(I+rA), \forall r > 0$.

Closely related to the class of accretive mappings is the class of pseudocontractive mappings.

Definition 1.2. [3] The mapping $T : E \to E$ is called pseudocontractive if for all $x, y \in E$, there exists $j(x - y) \in J(x - y)$ such that

$$\langle Tx - Ty, j(x - y) \rangle \le ||x - y||^2$$
.

The mapping T is pseudocontractive if and only if (I - T) is accretive.

It is well known that if A is accretive [7], then $J_A := (I + A)^{-1}$ is a nonexpansive single-valued mapping from $\mathcal{R}(I + rA)$ to D(A) and $\mathcal{F}(J_A) = \mathcal{N}(A)$, where $\mathcal{N}(A) := \{x \in D(A) : Ax = 0\} = A^{-1}(0)$ and $\mathcal{F}(J_A) := \{x \in E : J_A x = x\}$. Here we also note that x^* is a zero of the accretive mapping A if and only if it is a fixed point of the pseudocontractive mapping T := I - A.

It is now well known that if A is accretive then the solutions of the equation Ax = 0 correspond to the equilibrium points of some evolution systems [20]. Consequently, considerable research efforts, especially within the past 15 years or so, have been devoted to iterative methods for approximating the zeros of A, when A is accretive (e.g. [6] and references therein with many others).

Let K be a closed convex subset of a real Banach space E. A mapping $T: K \to E$ is called a contraction mapping if there exists $L \in [0, 1)$ such that $||Tx - Ty|| \leq L||x - y||$, for all $x, y \in K$. If L = 1, then T is called nonexpansive.

Clearly the class of nonexpansive mappings is a subset of the class of pseudocontractive mappings.

In 1976, Rockafellar [14] introduced a proximal point algorithm in a Hilbert space for a maximal monotone operator: For any $x_0 \in H$, the sequence $\{x_n\}$ defined by

(1.1)
$$x_{n+1} = J_{r_n} x_n, \forall n \in N$$

where $\{r_n\} \subset (0,\infty)$ satisfies $\liminf_{n\to\infty} r_n > 0$, converges weakly to an element of $A^{-1}0 = \{x \in C : 0 \in Ax\}$. The weak and strong convergence

of the sequence $\{x_n\}$ have been extensively discussed in Hilbert and Banach spaces and in Banach spaces (see e.g. [16] and the references therein).

Whereas in 1967, one explicit iterative process was first introduced by Halpern [8] in the framework of Hilbert spaces. For any $u \in C, x_0 \in C$, let the sequence $\{x_n\}$ be defined by

(1.2)
$$x_{n+1} = \alpha_n u + (1 - \alpha_n) T x_n, \forall n \ge 0,$$

where $\{\alpha_n\} \subset [0,1]$. For T a nonexpansive mapping, the weak and strong convergence of the sequence $\{x_n\}$ have been investigated by several researchers (see [5, 10] and the references therein).

However, there remains an open question: For the real sequence $\{\alpha_n\}$, are the conditions (C1) $\lim_{n\to\infty} \alpha_n = 0$ and (C2) $\sum_{n=0}^{\infty} \alpha_n = +\infty$ sufficient for the strong convergence of the sequence $\{x_n\}$ defined by the recursive algorithm (1.2) for nonexpansive mappings $T: C \to C$?

In 2000, Kamimura and Takahashi [9] showed a strong convergence theorem for a monotone operator in a Hilbert space: For A a maximal monotone operator and $J_r = (I + rA)^{-1}$ for all r > 0, let the sequence $\{x_n\}$ be defined by

(1.3)
$$x_{n+1} = \alpha_n x + (1 - \alpha_n) J_{r_n} x_n, n \ge 0,$$

where $\{\alpha_n\} \subset [0,1]$ and $\{r_n\} \subset (0,\infty]$ satisfy the conditions (C1) $\lim_{n\to\infty} \alpha_n = 0$ and (C2) $\sum_{n=0}^{\infty} \alpha_n = +\infty$ and $\lim_{n\to\infty} r_n = +\infty$. Then the iterative sequence $\{x_n\}$ converges strongly to some $A^{-1}0$.

In 2005, Kim and Xu [10] extended the result of Kamimura and Takahashi [9] to a uniformly smooth Banach space and that of Benavides-Acedoand-Xu [1] relaxing the condition of a weakly continuous duality map J_{ψ} with gauge ψ giving the result:

Suppose that A is an *m*-accretive operator, and $J_r := (I + rA)^{-1}$ for all r > 0, and the sequence $\{x_n\}$ is defined by (1.3), where $\{\alpha_n\} \subset [0, 1]$ and $\{r_n\} \subset (0, \infty]$ satisfy the following conditions: (C1), (C2) and

(C3) $\sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < +\infty;$ (C4) $\sum_{n=1}^{\infty} \left| 1 - \frac{r_{n+1}}{r_n} \right| < +\infty.$ Then $\{x_n\}$ converges strongly to a zero of A.

This work was further extended by Xu [18] in the framework of Reflexive Banach space having weakly continuous duality map.

This gives rise naturally to the question that we are concerned with:

For the sequence $\{\alpha_n\}$, are the conditions sufficient for the strong convergence of the sequence $\{x_n\}$ defined by (1.3) for a finite family of *m*-accretive operators, when the conditions on $\{r_n\}$ are relaxed? Motivated by (1.3), we introduce the following composite iterative al-

gorithm to prove the strong convergence theorem for the sequence $\{x_n\}$ for a finite family of *m*-accretive operators:

For any $u, x_0 \in C$, let the sequence $\{x_n\}$ be generated by

(1.4)
$$\begin{cases} x_{n+1} = (1-\beta_n)y_n + \beta_n S_r y_n \\ y_n = \alpha_n u + (1-\alpha_n)S_r x_n \end{cases}$$

where $S_r = a_0 I + a_1 J_{A_1} + a_2 J_{A_2} + \dots + a_r J_{A_r}$, with $J_{A_i} = (I + A_i)^{-1}$, for $i = 0, 1, \dots, r, a_i \in (0, 1), \sum_{i=1}^r a_i = 1$ and $\{\alpha_n\}, \{\beta_n\}$ be two real sequences in (0, 1) satisfying appropriate conditions.

The purpose of the paper is to prove that the sequence $\{x_n\}$ defined by the composite iteration scheme (1.4) converges strongly to a common zero of a finite family of *m*-accretive operators in a strictly convex Banach space relaxing the restriction of the real sequence $\{r_n\}$, thus we generalize and extend the results of Ceng [4], Kamimura and Takahashi [9], Kim and Xu [10], Qin and Su [13], Xu [18], Zegeye and Shahzad [19] and the references therein.

We also shoe that the sequence $\{x_n\}$ converges strongly to a common fixed point of a finite family of pseudocontractive mappings provided that $(I - A_i)$ is *m*-accretive for each $i \in 1, 2, \dots, r$. Consequently, we give an affirmative answer to the above question.

2. Preliminaries

Definition 2.1. Let *E* be a real Banach space with dual E^* . The norm on *E* is said to be uniformly Gateaux differentiable if for each $y \in S_1(0) := \{x \in E : ||x|| = 1\}$, the limit

$$\lim_{t \to \infty} \frac{\|x + ty\| - \|x\|}{t}$$

exists uniformly for $x \in S_1(0)$.

It is well known that if E has a uniformly Gateaux differentiable norm, then the duality map is norm-to-weak^{*} uniformly continuous on bounded subsets of E [15].

Definition 2.2. A Banach space E is said to be strictly convex [7] if for $a_i \in (0,1), i = 1, 2, \cdots, r$, such that $\sum_{i=1}^r a_i = 1$ we have $||a_1x - 1 + a_2x_2 + \cdots + a_rx_r|| < 1$ for $x_i \in E, i = 1, 2, \cdots, r$ with $||x_i|| = 1, i = 1, 2, \cdots, r$ and $x_i \neq x_j$, for some $i \neq j$.

In a strictly convex Banach space E, we have that if $||x_1|| = ||x_2|| = \cdots = ||x_r|| = ||a_1x_1 + a_2x_2 + \cdots + a_rx_r||$, for $x_i \in E$, $a_i \in (0, 1)$, $i = 1, 2, \cdots, r$, and such that $\sum_{i=1}^r a_i = 1$, then $x_1 = x_2 = \cdots = x_r$ [15].

We shall need the following lemmas to present our result.

Lemma 2.3. [12] Let E be a real normed linear space. Then the following inequality holds: For each $x, y \in E$, we have

$$||x+y||^{2} \le ||x||^{2} + 2\langle y, j(x+y) \rangle, \ \forall \ j(x+y) \in J(x+y).$$

Lemma 2.4. [17] Let $\{a_n\}_{n=1}^{\infty}$ be a non-negative real sequence satisfying the inequality

$$a_{n+1} \le (1 - w_n)a_n + b_n, \ n \ge 0,$$

where $\{w_n\}_{n=1}^{\infty} \subset (0,1)$, $\sum_{n=1}^{\infty} w_n = \infty$, $\lim_{n \to \infty} w_n = 0$. Suppose either (i) $b_n = o(a_n)$, or $\sum_{n=1}^{\infty} |b_n| < \infty$, or $\limsup(\frac{b_n}{a_n}) \le 0$. Then $\lim_{n \to \infty} a_n = 0$.

Theorem 2.5. [11] Let K be a nonempty closed convex subset of a Banach space E which has uniformly Gateaux differentiable norm and $T: K \to E$ a nonexpansive mapping with $\mathcal{F}(T) \neq \emptyset$. Suppose that every nonempty closed convex bounded subset of K has the fixed point property for nonexpansive mappings. Then there exists a continuous path $t \to z_t, 0 < t < 1$, satisfying $z_t = tu + (1-t)Tz_t$, for arbitrary but fixed $u \in K$, which converges strongly to a fixed point of T.

Lemma 2.6. [19] Let K be a nonempty closed convex subset of a strictly convex Banach space E. Let $A_i : K \to E, i = 1, 2, \dots, r$,

Niyati and Sharma

be a finite family of m-accretive operators such that $\bigcap_{i=1}^{r} \mathcal{N}(A_i) \neq \emptyset$. Let a_0, a_1, \dots, a_r be real numbers in (0, 1) such that $\sum_{i=0}^{r} a_i = 1$ and let $S_r := a_0I + a_1J_{A_1} + \dots + a_rJ_{A_r}$, where $J_{A_i} := (I + A_i)^{-1}$. Then S_r is nonexpansive and $\mathcal{F}(S_r) = \bigcap_{i=1}^{r} \mathcal{N}(A_i)$.

3. Main Results

Theorem 3.1. Let E be a strictly convex Banach space with a uniformly Gateaux differentiable norm and K be a closed convex subset of E. Assume that every nonempty closed bounded subset of E has the fixed point property for nonexpansive self-mappings. Let $A_i : K \to E, i = 1, \dots, r$, be a finite family of m-accretive operators with $\bigcap_{i=1}^{r} \mathcal{N}(A_i) \neq \emptyset$.

For any given $u, x_0 \in K$, let the sequence $\{x_n\}_{n=1}^{\infty}$ be generated by the iterative algorithm

(3.1)
$$\begin{cases} x_{n+1} = (1 - \beta_n)x_n + \beta_n S_r x_n \\ y_n = \alpha_n u + (1 - \alpha_n)S_r x_n, \ n \ge 0, \end{cases}$$

where,

$$\begin{split} S_r &:= a_0 I + a_1 J_{A_1} + a_2 J_{A_2} + \dots + a_r J_{A_r}, \text{ with } J_{A_i} := (I + A_i)^{-1} \text{ for } \\ 0 &< a_i < 1, i = 0, 1, \dots, r, \sum_{i=0}^r a_i = 1 \text{ and both } \{\alpha_n\}_{n=0}^{\infty}, \{\beta_n\}_{n=0}^{\infty} \text{ are } \\ sequences in (0,1) \text{ satisfying the following conditions:} \\ (i) \lim_{n \to \infty} \alpha_n = 0; (ii) \sum_{n=0}^{\infty} \alpha_n = +\infty; (iii) \beta_n \in [0,a), \text{ for some } a \in (0,1); \\ (iv) \sum_{n=0}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty, \sum_{n=0}^{\infty} |\beta_{n+1} - \beta_n| < \infty. \\ \text{Then the sequence } \{x_n\}_{n=1}^{\infty} \text{ converges strongly to a common solution of } \\ \text{the equations } A_i x = 0, \text{ for } i = 1, 2, \dots, r. \end{split}$$

Proof. By Lemma 2.6, we have that S_r is well-defined, nonexpansive and $\mathcal{F}(S_r) = \bigcap_{i=1}^r \mathcal{N}(A_i)$, where $\mathcal{F}(S_r)$ is the fixed point set of S_r . We shall first show that $\{x_n\}_{n=1}^{\infty}$ is bounded.

Let
$$x^* \in \mathcal{F}(S_r) = \bigcap_{i=1}^r \mathcal{N}(A_i)$$
, it follows from (3.1) that
 $\|y_n - x^*\| = \|\alpha_n(u - x^*) + (1 - \alpha_n)(S_r x_n - x^*)\|$
 $\leq \alpha_n \|u - x^*\| + (1 - \alpha_n)\|S_r x_n - x^*\|$
 $\leq \alpha_n \|u - x^*\| + (1 - \alpha_n)\|x_n - x^*\|$
(3.2) $\leq \max\{\|u - x^*\|, \|x_n - x^*\|\},$

also we have,

(3.3)
$$\begin{aligned} \|x_{n+1} - x^*\| &\leq (1 - \beta_n) \|y_n - x^*\| + \beta_n \|y_n - x^*\| \\ &= \|y_n - x^*\| \\ &\leq \max\{\|u - x^*\|, \|x_n - x^*\|\} \end{aligned}$$

and (3.3) implies that

$$||x_n - x^*|| \le \max\{||u - x^*||, ||x_0 - x^*||\},\$$

for all integers $n \ge 0$,

which implies that $\{x_n\}$ and hence $\{y_n\}$ is bounded. Also since $||S_r x_n - x^*|| \le ||x_n - x^*||$ and $||S_r y_n - x^*|| \le ||y_n - x^*||$, so we get that $\{S_r x_n\}$ and $\{S_r y_n\}$ are also bounded. By using condition (i), we get

(3.4)
$$||y_n - S_r x_n|| = \alpha_n ||u - S_r x_n|| \to 0 \text{ as } n \to \infty.$$

We now show that $\lim_{n\to\infty} ||x_{n+1} - x_n|| = 0$ and $\lim_{n\to\infty} ||x_n - S_r x_n|| = 0$. From (3.1), we have

$$||y_n - y_{n-1}|| = ||(1 - \alpha_n)(S_r x_n - S_r x_{n-1}) + (u - S_r x_{n-1})(\alpha_n - \alpha_{n-1})||$$

$$\leq (1 - \alpha_n)||S_r x_n - S_r x_{n-1}|| + |\alpha_n - \alpha_{n-1}| ||u - S_r x_{n-1}||$$

$$(3.5) \leq (1 - \alpha_n)||x_n - x_{n-1}|| + |\alpha_n - \alpha_{n-1}| M_1,$$

where M_1 is a constant such that $M_1 := \sup\{||u - S_r x_{n-1}||\}$ Moreover, again from (3.1), we have

$$x_{n+1} = (1 - \beta_n)y_n + \beta_n S_r y_n, x_n = (1 - \beta_{n-1})y_{n-1} + \beta_{n-1} S_r y_{n-1},$$

so that using (3.5),

$$\begin{aligned} \|x_{n+1} - x_n\| &\leq (1 - \beta_n) \|y_n - y_{n-1}\| + \beta_n \|S_r y_n - S_r y_{n-1}\| \\ &+ |\beta_n - \beta_{n-1}| \|S_r y_{n-1} - y_{n-1}\| \\ &\leq (1 - \beta_n) \|y_n - y_{n-1}\| + \beta_n \|y_n - y_{n-1}\| \\ &+ |\beta_n - \beta_{n-1}| \|S_r y_{n-1} - y_{n-1}\| \\ &= \|y_n - y_{n-1}\| + |\beta_n - \beta_{n-1}| \|S_r y_{n-1} - y_{n-1}\| \\ &\leq (1 - \alpha_n) \|x_n - x_{n-1}\| + M_1 |\alpha_n - \alpha_{n-1}| \\ &+ |\beta_n - \beta_{n-1}| \|S_r y_{n-1} - y_{n-1}\| \\ \end{aligned}$$

$$(3.6) \qquad \leq (1 - \alpha_n) \|x_n - x_{n-1}\| + M_2 (|\alpha_n - \alpha_{n-1}| + |\beta_n - \beta_{n-1}|), \end{aligned}$$

where M_2 is a constant such that $M_2 > \max\{\|S_r - y_{n-1}\|, M_1\}$. By assumptions (i)-(iv), we have $\lim_{n \to \infty} \alpha_n = 0; \sum_{n=1}^{\infty} \alpha_n = +\infty \text{ and } \sum_{n=0}^{\infty} (|\alpha_{n+1} - \alpha_n| + |\beta_{n+1} - \beta_n|) < \infty.$ Thus, by applying Lemma 2.4 to (3.6), we get that

(3.7)
$$\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0.$$

Again by (3.1),

$$\begin{aligned} \|x_{n+1} - y_n\| &= \beta_n \|S_r y_n - y_n\| \\ &\leq \beta_n (\|S_r y_n - S_r x_n\| + \|S_r x_n - y_n\|) \\ &\leq \beta_n (\|y_n - x_n\| + \|S_r x_n - y_n\|) \\ &\leq a (\|y_n - x_{n+1}\| + \|x_{n+1} - x_n\| + \|S_r x_n - y_n\|) \end{aligned}$$

which implies that

$$||x_{n+1} - y_n|| \le \frac{a}{1-a}(||x_{n+1} - x_n|| + ||S_r x_n - y_n||)$$

It is obvious from (3.4) and (3.7) that

(3.8)
$$\lim_{n \to \infty} \|x_{n+1} - y_n\| = 0,$$

and (3.8) implies that

$$\lim_{n \to \infty} \|x_n - y_n\| = 0.$$

Since we have,

$$||x_n - S_r x_n|| \le ||x_n - x_{n+1}|| + ||x_{n+1} - y_n|| + ||y_n - S_r x_n||$$

$$\le ||x_n - x_{n+1}|| + ||x_{n+1} - y_n|| + \alpha_n ||u - S_r x_n||$$

Thus using equations (3.4), (3.7) and (3.8) above, it follows that

(3.9)
$$||x_n - S_r x_n|| \to 0 \text{ as } n \to \infty.$$

We next show that

$$\limsup_{n \to \infty} \langle u - z, j(x_n - z) \rangle \le 0,$$

for some $z \in \mathcal{F}(S_r) = \bigcap_{i=1}^r \mathcal{N}(A_i)$. For $t \in (0, 1)$, let $z_t \in E$ be the unique fixed point of the contraction mapping H_t given by

$$H_t x := tu + (1-t)S_r x, \ x \in E.$$

Then by Theorem 2.5, we get that $z_t = tu + (1-t)S_r z_t \rightarrow z \in \mathcal{F}(S_r) = \bigcap_{i=1}^r \mathcal{N}(A_i) \text{ as } t \rightarrow 0.$ Applying Lemma 2.3 to $(z_t - x_n)$, we have

$$\begin{aligned} \|z_t - x_n\|^2 &= \|t(u - x_n) + (1 - t)(S_r z_t - x_n)\|^2 \\ &\leq (1 - t)^2 \|S_r z_t - x_n\|^2 + 2t \langle u - x_n, j(z_t - x_n) \rangle \\ &\leq (1 - t)^2 (\|S_r z_t - S_r x_n\| + \|S_r x_n - x_n\|)^2 \\ &+ 2t (\langle u - z_t, j(z_t - x_n) \rangle + \|z_t - x_n\|^2) \\ &\leq (1 + t^2) \|z_t - x_n\|^2 + \|S_r x_n - x_n\| [2\|z_t - x_n\| \\ &+ (1 - t)^2 \|S_r x_n - x_n\|] - 2t \langle u - z_t, j(x_n - z_t) \rangle, \end{aligned}$$

hence,

$$\langle u - z_t, j(x_n - z_t) \rangle \leq \frac{t}{2} \|z_t - x_n\|^2 + \frac{\|S_r x_n - x_n\|}{2t} (2\|z_t - x_n\|)$$

$$(3.10) \qquad \qquad + \|S_r x_n - x_n\|)$$

But by (3.9), $||S_r x_n - x_n|| \to 0$ as $n \to \infty$. Thus letting $n \to \infty$ in (3.10), we get that

(3.11)
$$\limsup_{n \to \infty} \langle u - z_t, j(x_n - z_t) \rangle \le \frac{t}{2} M^*,$$

where M^* is a constant such that $||z_t - x_n||^2 \leq M^*$, $\forall t \in (0, 1)$ and $n \geq 1$.

Since $z_t \to z$ and the duality mapping j is norm-to-weak^{*} uniformly continuous on bounded subsets of E, thus letting $t \to 0$ in (3.11) follows that

(3.12)
$$\limsup_{n \to \infty} \langle u - z, j(x_n - z) \rangle \le 0.$$

Again since $\{y_n\}$ is also bounded and

$$||y_n - S_r y_n|| \le y_n - x_n + ||x_n - S_r x_n|| + ||S_r x_n - S_r y_n||$$

$$\le y_n - x_n + ||x_n - S_r x_n|| + ||x_n - y_n||$$

$$2 \le y_n - x_n + ||x_n - S_r x_n||$$

$$\to 0.$$

Thus from 3.12,

(3.13)
$$\limsup_{n \to \infty} \langle u - z, j(y_n - z) \rangle \le 0.$$

Finally, we show that $\{x_n\}$ converges strongly to z. From (3.1) and (3.3), we have

$$||x_{n+1} - z||^2 \le ||y_n - z||^2$$

= $||\alpha_n(u - z) + (1 - \alpha_n)(S_r x_n - z)||^2$
 $\le (1 - \alpha_n)^2 ||S_r x_n - z||^2 + 2\alpha_n \langle u - z, j(y_n - z) \rangle$
 $\le (1 - \alpha_n) ||x_n - z||^2 + \delta_n,$

where $\delta_n := 2\alpha_n c_n$ and $\limsup_{n \to \infty} c_n \leq 0$ for $c_n := \langle u - z, j(y_n - z) \rangle$. Thus, applying Lemma 2.4 and using (3.13)above, we get that $\{x_n\}$ converges strongly to z, a common solution of the equations $A_i x = 0$, for $i = 1, 2, \dots, r$.

Corollary 3.2. Let E, K be as defined in Theorem 3.1 and $A: K \to E$ be accretive operator satisfying the range condition with $\mathcal{N}(A) \neq \emptyset$. For any given $u, x_0 \in K$, let the iterative sequence $\{x_n\}_{n=1}^{\infty}$ be generated by the algorithm

(3.14)
$$\begin{cases} y_n = \beta_n x_n + (1 - \beta_n) J_A x_n \\ x_{n+1} = \alpha_n u + (1 - \alpha_n) y_n, \ n \ge 0, \end{cases}$$

where $J_A := (I + A)^{-1}$ and both $\{\alpha_n\}_{n=1}^{\infty}, \{\beta_n\}_{n=1}^{\infty}$ are as defined in Theorem 3.1.

Then the sequence $\{x_n\}_{n=1}^{\infty}$ converges strongly to a solution of the equation Ax = 0.

Proof. Putting $A_1 = A_2 = \cdots A_r = A$, we get the required result from Theorem 3.1.

Theorem 3.3. Let $E, K, \{\alpha_n\}_{n=1}^{\infty}, \{\beta_n\}_{n=1}^{\infty}$ be as in Theorem3.1 and let $\{T_i\}_{i=1}^r : K \to E$ be a finite family of pseudocontractive mappings such that for each $i = 1, 2, \dots, r$, $(I - T_i)$ is m-accretive on K with

$$\bigcap_{i=1} \mathcal{F}(T_i) \neq \emptyset$$

For any given $u, x_0 \in K$, let the iterative sequence $\{x_n\}_{n=1}^{\infty}$ be generated by the algorithm

(3.15)
$$\begin{cases} y_n = \beta_n x_n + (1 - \beta_n) S_r x_n \\ x_{n+1} = \alpha_n u + (1 - \alpha_n) y_n, \ n \ge 0, \end{cases}$$

where.

 $S_r := a_0 I + a_1 J_{A_1} + a_2 J_{A_2} + \dots + a_r J_{A_r}$, with $J_{A_i} := (I + (I - T_i))^{-1}$ for $0 < a_i < 1, i = 0, 1, \cdots, r, \sum_{i=0}^r a_i = 1$ and both $\{\alpha_n\}_{n=1}^\infty, \{\beta_n\}_{n=1}^\infty$ are sequences in (0,1) satisfying the following conditions: (i) $\lim_{n \to \infty} \alpha_n = 0$; (ii) $\sum_{n=1}^{\infty} \alpha_n = +\infty$; (iii) $\beta_n \in [0, a)$, for some $a \in (0, 1)$; (iv) $\sum_{n=0}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty$, $\sum_{n=0}^{\infty} |\beta_{n+1} - \beta_n| < \infty$. Then the sequence $\{x_n\}_{n=1}^{\infty}$ converges strongly to a common fixed point

of $\{T_i\}_{i=1}^r$.

Proof. Clearly, $\mathcal{F}(T_i) = \mathcal{N}(A_i)$ and hence $\bigcap_{i=1}^r \mathcal{F}(T_i) = \bigcap_{i=1}^r \mathcal{N}(A_i) \neq \emptyset$. Also, each A_i is *m*-accretive $(i = 1, 2, \cdots, r)$. Thus the proof follows from Theorem 3.1.

Remark 3.4. Theorem 3.1 and Theorem 3.3 are significant generalization and extension of the results of Ceng [4], Kim and Xu [10], Qin [13], Xu [18], Zegeye and Shahzad [19] in several aspects as:

1. For the sequences $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$, satisfying the conditions (i), (ii) and (iii) is sufficient for the strong convergence of the algorithms (3.1) for a finite family of m-accretive operators.

Thus the restriction on the sequence $\{\alpha_n\}_{n=1}^{\infty}$ of satisfying conditions (iii) and (iii^{*}) [19] can be dispensed with.

- 2. The use of the sequence $\{r_n\}_{n=1}^{\infty}$ with the restriction [13] is completely removed.
- 3. Also, our theorem extends the result of Ceng [4] to a finite family of m-accretive operators thus extending many other results with their references.
- 4. If $\beta_n = 0$ in (3.1), then we get the iterative sequence $\{x_n\}$ defined by (1.3), generalizing the results of Kim and Xu [10], Xu [18], Zegeye and Shahzad [19] and the references therein to a finite family of m-accretive operators in a more general space setting.

Acknowledgments

The author wish to thank the reviewers for the valuable comments and suggestions.

References

- T. D. Benavides, G. L. Acedo and H. K. Xu, Iterative solutions for zeros of accretive operators, *Math. Nachr.* 248/249 (2003) 62–71.
- [2] F. E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967) 875–882.
- [3] F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967) 197–228.
- [4] L. C. Ceng, A. R. Khan, Q. H. Ansari and J. C. Yao, Strong convergence of composite iterative schemes for zeros of m-accretive operators in Banach spaces, *Nonlinear Anal.* **70** (2009), no. 5, 1830–1840.
- [5] C. E. Chidume and C. O. Chidume, Iterative approximation of fixed points of nonexpansive mappings, J. Math. Anal. Appl. 318 (2006), no. 1, 288–295.
- [6] C. E. Chidume and H. Zegeye, Approximation methods for nonlinear operator equations, Proc. Amer. Math. Soc. 131 (2003), no. 8, 2467–2478.
- [7] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, 1990.
- [8] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967) 957–961.
- [9] S. Kamimura and W. Takahashi, Approximating solutions of maximal monotone operators in Hilbert space, J. Approx. Theory 106 (2000), no. 2, 226–240.
- [10] T. H. Kim, H. K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal. 61 (2005), no. 1-2, 51–60.

- [11] C. H. Morales and J. S. Jung, Convergence of paths for pseudocontractive mappings in Banach spaces, Proc. Amer. Math. Soc. 128 (2000), no. 11, 3411-3419.
- [12] W. V. Petryshyn, A characterization of strict convexity of Banach spaces and other uses of duality mappings, J. Funct. Anal. 6 (1970) 282–291.
- [13] X. Qin and Y. Su, Approximation of a zero point of accretive operator in Banach spaces, J. Math. Anal. Appl. 329 (2007), no. 1, 415–424.
- [14] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM.
 J. Control Optimization 14 (1976), no. 5, 877–898.
- [15] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
- [16] W. Takahashi and Y. Ueda, On Reichs strong convergence theorems for resolvents of accretive operators, J. Math. Anal. Appl. 104 (1984) 546–553.
- [17] H. K. Xu, Iterative algorithm for nonlinear operators, J. London. Math. Soc. (2)
 66 (2002), no. 1, 240–256.
- [18] H. K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators, J. Math. Anal. Appl. 314 (2006), no. 2, 631–643.
- [19] H. Zegeye and N. Shahzad, Strong convergence theorems for a common zero for a finite family of *m*-accretive mappings, *Nonlinear Anal.* 66 (2007), no. 5, 1161–1169.
- [20] E. Zeidler, Nonlinear Functional Analysis and its Applications, Part II: Monotone Operators, Springer-Verlag, New York, 1985.

Niyati Gurudwan

School of Studies in Mathematics, Pt. Ravishankar Shukla University Raipur, 492010, Chhattisgarh, India

Email: niyati.kuhu@gmail.com

B.K.Sharma

School of Studies in Mathematics, Pt. Ravishankar Shukla University Raipur, 492010, Chhattisgarh, India

Email: sharmabk07@gmail.com