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STRONG CONVERGENCE THEOREM FOR FINITE

FAMILY OF m-ACCRETIVE OPERATORS IN BANACH

SPACES

N. GURUDWAN∗ AND B. K. SHARMA

Communicated by Behzad Djafari-Rouhani

Abstract. The purpose of this paper is to propose a composite
iterative scheme for approximating a common solution for a finite
family of m-accretive operators in a strictly convex Banach space
having a uniformly Gateaux differentiable norm. As a consequence,
the strong convergence of the scheme for a common fixed point of
a finite family of pseudocontractive mappings is also obtained.

1. Introduction

Let E be a real Banach space with dual E∗. The normalized duality
mapping from E to 2E

∗
is defined by

J(x) := {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2, ‖x‖ = ‖x∗‖},
where 〈., .〉 denotes the duality pairing between elements of E and E∗.

Definition 1.1. [2] A mapping A : D(A) ⊆ E → E is said to be accre-
tive if for all x, y ∈ E, there exists j(x− y) ∈ J(x− y) such that

〈Ax−Ay, j(x− y)〉 ≥ 0.
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If E is a Hilbert space, accretive operators are also called monotone.
An operator A is called m-accretive if it is accretive and R(I + rA), the
range of (I + rA), is E for all r > 0; and A is said to satisfy the range

condition if D(A) ⊆ R(I + rA),∀ r > 0.

Closely related to the class of accretive mappings is the class of pseu-
docontractive mappings.

Definition 1.2. [3] The mapping T : E → E is called pseudocontractive
if for all x, y ∈ E, there exists j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 .
The mapping T is pseudocontractive if and only if (I − T ) is accre-

tive.
It is well known that if A is accretive [7], then JA := (I + A)−1 is
a nonexpansive single-valued mapping from R(I + rA) to D(A) and
F(JA) = N (A), where N (A) := {x ∈ D(A) : Ax = 0} = A−1(0) and
F(JA) := {x ∈ E : JAx = x}. Here we also note that x∗ is a zero of the
accretive mapping A if and only if it is a fixed point of the pseudocon-
tractive mapping T := I −A.
It is now well known that if A is accretive then the solutions of the
equation Ax = 0 correspond to the equilibrium points of some evolu-
tion systems [20]. Consequently, considerable research efforts, especially
within the past 15 years or so, have been devoted to iterative methods
for approximating the zeros of A, when A is accretive (e.g. [6] and ref-
erences therein with many others).

Let K be a closed convex subset of a real Banach space E. A map-
ping T : K → E is called a contraction mapping if there exists L ∈ [0, 1)
such that ‖Tx − Ty‖ ≤ L‖x − y‖, for all x, y ∈ K. If L = 1, then T is
called nonexpansive.
Clearly the class of nonexpansive mappings is a subset of the class of
pseudocontractive mappings.

In 1976, Rockafellar [14] introduced a proximal point algorithm in a
Hilbert space for a maximal monotone operator: For any x0 ∈ H, the
sequence {xn} defined by

(1.1) xn+1 = Jrnxn,∀n ∈ N
where {rn} ⊂ (0,∞) satisfies lim inf

n→∞
rn > 0, converges weakly to an

element of A−10 = {x ∈ C : 0 ∈ Ax}. The weak and strong convergence
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of the sequence {xn} have been extensively discussed in Hilbert and
Banach spaces and in Banach spaces (see e.g. [16] and the references
therein).
Whereas in 1967, one explicit iterative process was first introduced by
Halpern [8] in the framework of Hilbert spaces. For any u ∈ C, x0 ∈ C,
let the sequence {xn} be defined by

(1.2) xn+1 = αnu+ (1− αn)Txn,∀n ≥ 0,

where {αn} ⊂ [0, 1]. For T a nonexpansive mapping, the weak and
strong convergence of the sequence {xn} have been investigated by sev-
eral researchers (see [5, 10] and the references therein).
However, there remains an open question: For the real sequence {αn},
are the conditions (C1) lim

n→∞
αn = 0 and (C2)

∞∑
n=0

αn = +∞ sufficient

for the strong convergence of the sequence {xn} defined by the recursive
algorithm (1.2) for nonexpansive mappings T : C → C?
In 2000, Kamimura and Takahashi [9] showed a strong convergence the-
orem for a monotone operator in a Hilbert space: For A a maximal
monotone operator and Jr = (I + rA)−1 for all r > 0, let the sequence
{xn} be defined by

(1.3) xn+1 = αnx+ (1− αn)Jrnxn, n ≥ 0,

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞] satisfy the conditions (C1)

lim
n→∞

αn = 0 and (C2)
∞∑
n=0

αn = +∞ and lim
n→∞

rn = +∞. Then the

iterative sequence {xn} converges strongly to some A−10.
In 2005, Kim and Xu [10] extended the result of Kamimura and Taka-
hashi [9] to a uniformly smooth Banach space and that of Benavides-
Acedoand-Xu [1] relaxing the condition of a weakly continuous duality
map Jψ with gauge ψ giving the result:
Suppose that A is an m-accretive operator, and Jr := (I + rA)−1 for all
r > 0, and the sequence {xn} is defined by (1.3), where {αn} ⊂ [0, 1]
and {rn} ⊂ (0,∞] satisfy the following conditions: (C1), (C2) and

(C3)
∞∑
n=1
|αn+1 − αn| < +∞; (C4)

∞∑
n=1

∣∣∣1− rn+1

rn

∣∣∣ < +∞. Then {xn} con-

verges strongly to a zero of A.
This work was further extended by Xu [18] in the framework of Reflexive
Banach space having weakly continuous duality map.
This gives rise naturally to the question that we are concerned with:
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For the sequence {αn}, are the conditions sufficient for the strong con-
vergence of the sequence {xn} defined by (1.3) for a finite family of
m-accretive operators, when the conditions on {rn} are relaxed?
Motivated by (1.3), we introduce the following composite iterative al-
gorithm to prove the strong convergence theorem for the sequence {xn}
for a finite family of m-accretive operators:
For any u, x0 ∈ C, let the sequence {xn} be generated by

(1.4)

{
xn+1 = (1− βn)yn + βnSryn,

yn = αnu+ (1− αn)Srxn

where Sr = a0I + a1JA1 + a2JA2 + · · ·+ arJAr , with JAi = (I + Ai)
−1,

for i = 0, 1, · · · , r, ai ∈ (0, 1),
r∑
i=1

ai = 1 and {αn}, {βn} be two real

sequences in (0, 1) satisfying appropriate conditions.

The purpose of the paper is to prove that the sequence {xn} defined
by the composite iteration scheme (1.4) converges strongly to a com-
mon zero of a finite family of m-accretive operators in a strictly convex
Banach space relaxing the restriction of the real sequence {rn}, thus we
generalize and extend the results of Ceng [4], Kamimura and Takahashi
[9], Kim and Xu [10], Qin and Su [13], Xu [18], Zegeye and Shahzad [19]
and the references therein.
We also shoe that the sequence {xn} converges strongly to a common
fixed point of a finite family of pseudocontractive mappings provided
that (I − Ai) is m-accretive for each i ∈ 1, 2, · · · , r. Consequently, we
give an affirmative answer to the above question.

2. Preliminaries

Definition 2.1. Let E be a real Banach space with dual E∗. The
norm on E is said to be uniformly Gateaux differentiable if for each
y ∈ S1(0) := {x ∈ E : ‖x‖ = 1}, the limit

lim
t→∞

‖x+ ty‖ − ‖x‖
t

exists uniformly for x ∈ S1(0).
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It is well known that if E has a uniformly Gateaux differentiable
norm, then the duality map is norm-to-weak∗ uniformly continuous on
bounded subsets of E [15].

Definition 2.2. A Banach space E is said to be strictly convex [7] if for

ai ∈ (0, 1), i = 1, 2, · · · , r, such that
r∑
i=1

ai = 1 we have ‖a1x−1+a2x2 +

· · · + arxr‖ < 1 for xi ∈ E, i = 1, 2, · · · , r with ‖xi‖ = 1, i = 1, 2, · · · , r
and xi 6= xj, for some i 6= j .

In a strictly convex Banach space E, we have that if ‖x1‖ = ‖x2‖ =
· · · = ‖xr‖ = ‖a1x1 + a2x2 + · · · + arxr‖, for xi ∈ E, ai ∈ (0, 1), i =

1, 2, · · · , r, and such that
r∑
i=1

ai = 1, then x1 = x2 = · · · = xr [15].

We shall need the following lemmas to present our result.

Lemma 2.3. [12] Let E be a real normed linear space. Then the fol-
lowing inequality holds: For each x, y ∈ E, we have

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉, ∀ j(x+ y) ∈ J(x+ y).

Lemma 2.4. [17] Let {an}∞n=1 be a non-negative real sequence satisfying
the inequality

an+1 ≤ (1− wn)an + bn, n ≥ 0,

where {wn}∞n=1 ⊂ (0, 1),
∞∑
n=1

wn = ∞, lim
n→∞

wn = 0. Suppose either (i)

bn = o(an), or
∞∑
n=1
|bn| <∞, or lim sup( bnan ) ≤ 0. Then lim

n→∞
an = 0.

Theorem 2.5. [11] Let K be a nonempty closed convex subset of a
Banach space E which has uniformly Gateaux differentiable norm and
T : K → E a nonexpansive mapping with F(T ) 6= ∅. Suppose that every
nonempty closed convex bounded subset of K has the fixed point prop-
erty for nonexpansive mappings. Then there exists a continuous path
t→ zt, 0 < t < 1, satisfying zt = tu+ (1− t)Tzt , for arbitrary but fixed
u ∈ K, which converges strongly to a fixed point of T .

Lemma 2.6. [19] Let K be a nonempty closed convex subset of a
strictly convex Banach space E. Let Ai : K → E, i = 1, 2, · · · , r,
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be a finite family of m-accretive operators such that
r⋂
i=1
N (Ai) 6= ∅.

Let a0, a1, · · · , ar be real numbers in (0, 1) such that
r∑
i=0

ai = 1 and let

Sr := a0I + a1JA1 + · · · + arJAr , where JAi := (I + Ai)
−1. Then Sr is

nonexpansive and F(Sr) =
r⋂
i=1
N (Ai).

3. Main Results

Theorem 3.1. Let E be a strictly convex Banach space with a uniformly
Gateaux differentiable norm and K be a closed convex subset of E. As-
sume that every nonempty closed bounded subset of E has the fixed point
property for nonexpansive self-mappings. Let Ai : K → E, i = 1, · · · , r,
be a finite family of m-accretive operators with

r⋂
i=1
N (Ai) 6= ∅.

For any given u, x0 ∈ K, let the sequence {xn}∞n=1 be generated by the
iterative algorithm{

xn+1 = (1− βn)xn + βnSrxn

yn = αnu+ (1− αn)Srxn, n ≥ 0,
(3.1)

where,
Sr := a0I + a1JA1 + a2JA2 + · · · + arJAr , with JAi := (I + Ai)

−1 for

0 < ai < 1, i = 0, 1, · · · , r,
r∑
i=0

ai = 1 and both {αn}∞n=0, {βn}∞n=0 are

sequences in (0, 1) satisfying the following conditions:

(i) lim
n→∞

αn = 0; (ii)
∞∑
n=0

αn = +∞; (iii) βn ∈ [0, a), for some a ∈ (0, 1);

(iv)
∞∑
n=0
|αn+1 − αn| <∞,

∞∑
n=0
|βn+1 − βn| <∞.

Then the sequence {xn}∞n=1 converges strongly to a common solution of
the equations Aix = 0, for i = 1, 2, · · · , r.

Proof. By Lemma 2.6, we have that Sr is well-defined, nonexpansive and

F(Sr) =
r⋂
i=1
N (Ai), where F(Sr) is the fixed point set of Sr.

We shall first show that {xn}∞n=1 is bounded.
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Let x∗ ∈ F(Sr) =
r⋂
i=1
N (Ai), it follows from (3.1) that

‖yn − x∗‖ = ‖αn(u− x∗) + (1− αn)(Srxn − x∗)‖
≤ αn‖u− x∗‖+ (1− αn)‖Srxn − x∗‖
≤ αn‖u− x∗‖+ (1− αn)‖xn − x∗‖
≤ max{‖u− x∗‖, ‖xn − x∗‖},(3.2)

also we have,

‖xn+1 − x∗‖ ≤ (1− βn)‖yn − x∗‖+ βn‖yn − x∗‖
= ‖yn − x∗‖(3.3)

≤ max{‖u− x∗‖, ‖xn − x∗‖}

and (3.3) implies that

‖xn − x∗‖ ≤ max{‖u− x∗‖, ‖x0 − x∗‖},

for all integers n ≥ 0,
which implies that {xn} and hence {yn} is bounded.
Also since ‖Srxn−x∗‖ ≤ ‖xn−x∗‖ and ‖Sryn−x∗‖ ≤ ‖yn−x∗‖, so we get
that {Srxn} and {Sryn} are also bounded. By using condition (i), we get

(3.4) ‖yn − Srxn‖ = αn‖u− Srxn‖ → 0 as n→∞.

We now show that lim
n→∞

‖xn+1 − xn‖ = 0 and lim
n→∞

‖xn − Srxn‖ = 0.

From (3.1),we have

‖yn − yn−1‖ = ‖(1− αn)(Srxn − Srxn−1) + (u− Srxn−1)(αn − αn−1)‖
≤ (1− αn)‖Srxn − Srxn−1‖+ |αn − αn−1| ‖u− Srxn−1‖
≤ (1− αn)‖xn − xn−1‖+ |αn − αn−1|M1,(3.5)

where M1 is a constant such that M1 := sup{‖u− Srxn−1‖}
Moreover, again from (3.1), we have

xn+1 = (1− βn)yn + βnSryn,

xn = (1− βn−1)yn−1 + βn−1Sryn−1,
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so that using (3.5),

‖xn+1 − xn‖ ≤ (1− βn)‖yn − yn−1‖+ βn‖Sryn − Sryn−1‖
+ |βn − βn−1| ‖Sryn−1 − yn−1‖
≤ (1− βn)‖yn − yn−1‖+ βn‖yn − yn−1‖

+ |βn − βn−1| ‖Sryn−1 − yn−1‖
= ‖yn − yn−1‖+ |βn − βn−1| ‖Sryn−1 − yn−1‖
≤ (1− αn)‖xn − xn−1‖+M1 |αn − αn−1|

+ |βn − βn−1| ‖Sryn−1 − yn−1‖
≤ (1− αn)‖xn − xn−1‖+M2(|αn − αn−1|+ |βn − βn−1|),(3.6)

where M2 is a constant such that M2 > max{‖Sr − yn−1‖,M1}.
By assumptions (i)-(iv), we have

lim
n→∞

αn = 0;
∞∑
n=1

αn = +∞ and
∞∑
n=0

(|αn+1 − αn| + |βn+1 − βn|) < ∞.

Thus, by applying Lemma 2.4 to (3.6), we get that

(3.7) lim
n→∞

‖xn+1 − xn‖ = 0.

Again by (3.1),

‖xn+1 − yn‖ = βn‖Sryn − yn‖
≤ βn(‖Sryn − Srxn‖+ ‖Srxn − yn‖)
≤ βn(‖yn − xn‖+ ‖Srxn − yn‖)
≤ a(‖yn − xn+1‖+ ‖xn+1 − xn‖+ ‖Srxn − yn‖)

which implies that

‖xn+1 − yn‖ ≤
a

1− a
(‖xn+1 − xn‖+ ‖Srxn − yn‖)

It is obvious from (3.4) and (3.7) that

(3.8) lim
n→∞

‖xn+1 − yn‖ = 0,

and (3.8) implies that

lim
n→∞

‖xn − yn‖ = 0.



Convergence of m-accretive operators 773

Since we have,

‖xn − Srxn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖+ ‖yn − Srxn‖
≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖+ αn‖u− Srxn‖

Thus using equations (3.4), (3.7) and (3.8) above, it follows that

(3.9) ‖xn − Srxn‖ → 0 as n→∞.

We next show that

lim sup
n→∞

〈u− z, j(xn − z)〉 ≤ 0,

for some z ∈ F(Sr) =
r⋂
i=1
N (Ai).

For t ∈ (0, 1), let zt ∈ E be the unique fixed point of the contraction
mapping Ht given by

Htx := tu+ (1− t)Srx, x ∈ E.

Then by Theorem 2.5, we get that

zt = tu+ (1− t)Srzt → z ∈ F(Sr) =
r⋂
i=1
N (Ai) as t→ 0.

Applying Lemma 2.3 to (zt − xn), we have

‖zt − xn‖2 = ‖t(u− xn) + (1− t)(Srzt − xn)‖2

≤ (1− t)2‖Srzt − xn‖2 + 2t〈u− xn, j(zt − xn)〉
≤ (1− t)2(‖Srzt − Srxn‖+ ‖Srxn − xn‖)2

+ 2t(〈u− zt, j(zt − xn)〉+ ‖zt − xn‖2)

≤ (1 + t2)‖zt − xn‖2 + ‖Srxn − xn‖[2‖zt − xn‖
+ (1− t)2‖Srxn − xn‖]− 2t〈u− zt, j(xn − zt)〉,

hence,

〈u− zt, j(xn − zt)〉 ≤
t

2
‖zt − xn‖2 +

‖Srxn − xn‖
2t

(2‖zt − xn‖

+ ‖Srxn − xn‖)(3.10)

But by (3.9), ‖Srxn − xn‖ → 0 as n→∞.
Thus letting n→∞ in (3.10), we get that

(3.11) lim sup
n→∞

〈u− zt, j(xn − zt)〉 ≤
t

2
M∗,



774 Niyati and Sharma

where M∗ is a constant such that ‖zt − xn‖2 ≤ M∗, ∀ t ∈ (0, 1) and
n ≥ 1.
Since zt → z and the duality mapping j is norm-to-weak∗ uniformly
continuous on bounded subsets of E, thus letting t→ 0 in (3.11) follows
that

(3.12) lim sup
n→∞

〈u− z, j(xn − z)〉 ≤ 0.

Again since {yn} is also bounded and

‖yn − Sryn‖ ≤ yn − xn + ‖xn − Srxn‖+ ‖Srxn − Sryn‖
≤ yn − xn + ‖xn − Srxn‖+ ‖xn − yn‖
2 ≤ yn − xn + ‖xn − Srxn‖
→ 0.

Thus from 3.12,

(3.13) lim sup
n→∞

〈u− z, j(yn − z)〉 ≤ 0.

Finally, we show that {xn} converges strongly to z.
From (3.1) and (3.3), we have

‖xn+1 − z‖2 ≤ ‖yn − z‖2

= ‖αn(u− z) + (1− αn)(Srxn − z)‖2

≤ (1− αn)2‖Srxn − z‖2 + 2αn〈u− z, j(yn − z)〉
≤ (1− αn)‖xn − z‖2 + δn,

where δn := 2αncn and lim supn→∞ cn ≤ 0 for cn := 〈u− z, j(yn − z)〉.
Thus, applying Lemma 2.4 and using (3.13)above, we get that {xn}
converges strongly to z, a common solution of the equations Aix = 0,
for i = 1, 2, · · · , r. �

Corollary 3.2. Let E,K be as defined in Theorem 3.1 and A : K → E
be accretive operator satisfying the range condition with N (A) 6= ∅.
For any given u, x0 ∈ K, let the iterative sequence {xn}∞n=1 be generated
by the algorithm {

yn = βnxn + (1− βn)JAxn

xn+1 = αnu+ (1− αn)yn, n ≥ 0,
(3.14)

where JA := (I + A)−1 and both {αn}∞n=1, {βn}∞n=1 are as defined in
Theorem 3.1.
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Then the sequence {xn}∞n=1 converges strongly to a solution of the equa-
tion Ax = 0.

Proof. Putting A1 = A2 = · · ·Ar = A, we get the required result from
Theorem 3.1. �

Theorem 3.3. Let E,K, {αn}∞n=1, {βn}∞n=1 be as in Theorem3.1 and
let {Ti}ri=1 : K → E be a finite family of pseudocontractive mappings
such that for each i = 1, 2, · · · , r, (I − Ti) is m-accretive on K with
r⋂
i=1
F(Ti) 6= ∅.

For any given u, x0 ∈ K, let the iterative sequence {xn}∞n=1 be generated
by the algorithm {

yn = βnxn + (1− βn)Srxn

xn+1 = αnu+ (1− αn)yn, n ≥ 0,
(3.15)

where,
Sr := a0I + a1JA1 + a2JA2 + · · · + arJAr , with JAi := (I + (I − Ti))−1

for 0 < ai < 1, i = 0, 1, · · · , r,
r∑
i=0

ai = 1 and both {αn}∞n=1, {βn}∞n=1 are

sequences in (0, 1) satisfying the following conditions:

(i) lim
n→∞

αn = 0; (ii)
∞∑
n=1

αn = +∞; (iii) βn ∈ [0, a), for some a ∈ (0, 1);

(iv)
∞∑
n=0
|αn+1 − αn| <∞,

∞∑
n=0
|βn+1 − βn| <∞.

Then the sequence {xn}∞n=1 converges strongly to a common fixed point
of {Ti}ri=1.

Proof. Clearly, F(Ti) = N (Ai) and hence
r⋂
i=1
F(Ti) =

r⋂
i=1
N (Ai) 6= ∅.

Also, each Ai is m-accretive (i = 1, 2, · · · , r). Thus the proof follows
from Theorem 3.1. �

Remark 3.4. Theorem 3.1 and Theorem 3.3 are significant generaliza-
tion and extension of the results of Ceng [4], Kim and Xu [10], Qin [13],
Xu [18], Zegeye and Shahzad [19] in several aspects as:

1. For the sequences {αn}∞n=1 and {βn}∞n=1, satisfying the condi-
tions (i), (ii) and (iii) is sufficient for the strong convergence of
the algorithms (3.1) for a finite family of m-accretive operators.
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Thus the restriction on the sequence {αn}∞n=1 of satisfying con-
ditions (iii) and (iii∗) [19] can be dispensed with.

2. The use of the sequence {rn}∞n=1 with the restriction [13] is com-
pletely removed.

3. Also, our theorem extends the result of Ceng [4] to a finite family
of m-accretive operators thus extending many other results with
their references.

4. If βn = 0 in (3.1), then we get the iterative sequence {xn} defined
by (1.3), generalizing the results of Kim and Xu [10], Xu [18],
Zegeye and Shahzad [19] and the references therein to a finite
family of m-accretive operators in a more general space setting.
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