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STRONG CONVERGENCE THEOREM FOR FINITE
FAMILY OF m-ACCRETIVE OPERATORS IN BANACH
SPACES
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ABSTRACT. The purpose of this paper is to propose a composite
iterative scheme for approximating a common solution for a finite
family of m-accretive operators in a strictly convex Banach space
having a uniformly Gateaux differentiable norm. As a consequence,
the strong convergence of the scheme for a common fixed point of
a finite family of pseudocontractive mappings is also obtained.

1. Introduction

Let E be a real Banach space with dual E*. The normalized duality
mapping from E to 2F" is defined by

J(z) = {z" € B*: (z,2") = ||z||? [|lz]| = [l2"]]},

where (.,.) denotes the duality pairing between elements of E and E*.

Definition 1.1. [2] A mapping A: D(A) C E — E is said to be accre-
tive if for all x,y € E, there exists j(x —y) € J(x —y) such that

(Az — Ay, j(@ —y)) > 0.
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If E is a Hilbert space, accretive operators are also called monotone.
An operator A is called m-accretive if it is accretive and R(I +1rA), the
range of (I +1A), is E for all > 0; and A is said to satisfy the range
condition if D(A) CR(I +1rA),Yr > 0.

Closely related to the class of accretive mappings is the class of pseu-
docontractive mappings.

Definition 1.2. [3] The mapping T : E — E is called pseudocontractive
if for all x,y € E, there exists j(x —y) € J(x — y) such that
(Tz =Ty, j(x—y)) < |z -yl

The mapping T is pseudocontractive if and only if (I — T') is accre-
tive.
It is well known that if A is accretive [7], then Jq := (I + A)~! is
a nonexpansive single-valued mapping from R(I 4+ rA) to D(A) and
F(Ja) = N(A), where N(A) := {z € D(A) : Az = 0} = A~1(0) and
F(Ja):={x € E: Jyxz = x}. Here we also note that z* is a zero of the
accretive mapping A if and only if it is a fixed point of the pseudocon-
tractive mapping T := I — A.
It is now well known that if A is accretive then the solutions of the
equation Az = 0 correspond to the equilibrium points of some evolu-
tion systems [20]. Consequently, considerable research efforts, especially
within the past 15 years or so, have been devoted to iterative methods
for approximating the zeros of A, when A is accretive (e.g. [6] and ref-
erences therein with many others).

Let K be a closed convex subset of a real Banach space E. A map-
ping T': K — F is called a contraction mapping if there exists L € [0, 1)
such that ||Tz — Ty| < L||z — y||, for all z,y € K. If L = 1, then T is
called nonexpansive.

Clearly the class of nonexpansive mappings is a subset of the class of
pseudocontractive mappings.

In 1976, Rockafellar [14] introduced a proximal point algorithm in a
Hilbert space for a maximal monotone operator: For any zg € H, the
sequence {z,} defined by

(1.1) Tnt1 = Jr, Tn,Vn € N
where {r,} C (0,00) satisfies liminfr, > 0, converges weakly to an
n—oo

element of A710 = {x € C : 0 € Az}. The weak and strong convergence
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of the sequence {z,} have been extensively discussed in Hilbert and
Banach spaces and in Banach spaces (see e.g. [16] and the references
therein).

Whereas in 1967, one explicit iterative process was first introduced by
Halpern [8] in the framework of Hilbert spaces. For any v € C,zy € C,
let the sequence {z,} be defined by

(1.2) Tpt1 = apu + (1 — )Ty, Vn >0,

where {a,} C [0,1]. For T a nonexpansive mapping, the weak and
strong convergence of the sequence {x,} have been investigated by sev-
eral researchers (see [5, 10] and the references therein).

However, there remains an open question: For the real sequence {,},

o0
are the conditions (C1) lim a,, = 0 and (C2) ) a, = +oo sufficient
n—o0 —

n=
for the strong convergence of the sequence {x,} defined by the recursive
algorithm (1.2) for nonexpansive mappings 7' : C' — C?
In 2000, Kamimura and Takahashi [9] showed a strong convergence the-
orem for a monotone operator in a Hilbert space: For A a maximal
monotone operator and J, = (I +7rA)~! for all > 0, let the sequence
{z} be defined by
(1.3) Tnt1 = anx + (1 — o)y, Tp,n >0,
where {a,} C [0,1] and {r,} C (0,00] satisfy the conditions (C1)
oo

lim o, = 0 and (C2) )  a, = +oo and lim r, = +o0o. Then the
n—00 n—=0 n—00
iterative sequence {z,} converges strongly to some A~10.
In 2005, Kim and Xu [10] extended the result of Kamimura and Taka-
hashi [9] to a uniformly smooth Banach space and that of Benavides-
Acedoand-Xu [1] relaxing the condition of a weakly continuous duality
map Jy with gauge v giving the result:
Suppose that A is an m-accretive operator, and J, := (I +7A)~! for all
r > 0, and the sequence {z,} is defined by (1.3), where {a,,} C [0,1]
and {r,} C (0, 0] satisfy the following conditions: (C1), (C2) and

oo

(C3) 3= lant1 —an| < +o00; (C4) 37 1 — "2
n=1 =1

verges strongly to a zero of A.

This work was further extended by Xu [18] in the framework of Reflexive
Banach space having weakly continuous duality map.

This gives rise naturally to the question that we are concerned with:

< 4o00. Then {z,} con-
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For the sequence {«,}, are the conditions sufficient for the strong con-
vergence of the sequence {x,} defined by (1.3) for a finite family of
m-accretive operators, when the conditions on {r,} are relaxed?
Motivated by (1.3), we introduce the following composite iterative al-
gorithm to prove the strong convergence theorem for the sequence {z,}
for a finite family of m-accretive operators:

For any u,zg € C, let the sequence {x,} be generated by

{anrl = (1 - Bn)yn + BnSryn,

1.4
( ) Yn = apu + (1 - an)ern

where S, = apl + a1Ja, + agJa, + -+ arJa,, with Ju, = (I + AL
T

for i = 0,1,---,7, a; € (0,1),> a; = 1 and {ay,}, {Bn} be two real
i=1

sequences in (0, 1) satisfying app?opriate conditions.

The purpose of the paper is to prove that the sequence {x,} defined

by the composite iteration scheme (1.4) converges strongly to a com-
mon zero of a finite family of m-accretive operators in a strictly convex
Banach space relaxing the restriction of the real sequence {r,}, thus we
generalize and extend the results of Ceng [4], Kamimura and Takahashi
[9], Kim and Xu [10], Qin and Su [13], Xu [18], Zegeye and Shahzad [19]
and the references therein.
We also shoe that the sequence {z,} converges strongly to a common
fixed point of a finite family of pseudocontractive mappings provided
that (I — A;) is m-accretive for each ¢ € 1,2,--- ,r. Consequently, we
give an affirmative answer to the above question.

2. Preliminaries

Definition 2.1. Let E be a real Banach space with dual E*. The
norm on E is said to be uniformly Gateauz differentiable if for each
y € 51(0):={z € E: || =1}, the limit

ety — e
t—00 t

exists uniformly for x € S1(0).
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It is well known that if F has a uniformly Gateaux differentiable
norm, then the duality map is norm-to-weak™ uniformly continuous on
bounded subsets of F [15].

Definition 2.2. A Banach space E is said to be strictly convez [7] if for
T
a; € (0,1),s=1,2,--- ,r, such that Y a; = 1 we have ||ajx — 1+ asxs+
i=1
o Fapxy|| <1 forxp € Eji=1,2,--- 1 with ||z;|| = 1,i=1,2,--- |r
and x; # x;, for some i # j .

In a strictly convex Banach space E, we have that if ||z1|| = ||x2] =
<o = ||lo|| = |larz1 + agxe + -+ - + apzy ||, for ; € E, a; € (0,1),i =
T
1,2,--+,r, and such that Y a; =1, then 1 = 29 = -+ = 2, [15].
i=1

We shall need the following lemmas to present our result.

Lemma 2.3. [12] Let E be a real normed linear space. Then the fol-
lowing inequality holds: For each x,y € E, we have

lz +ylI? < llzl|* + 2{y. j(z + ), ¥V iz +y) € J(z +y).

Lemma 2.4. [17] Let {a, }5°; be a non-negative real sequence satisfying
the inequality
ap+1 < (1 —wyp)an + by, n >0,

o0
where {w, }5°, C (0,1), > w, = oo, lim w, = 0. Suppose either (i)
n=1 n—oo

o0
by, = o(an), or > |by| < oo, or limsup(g—") <0. Then lim a, =0.

n—=1 n n—o0
Theorem 2.5. [11] Let K be a nonempty closed convezr subset of a
Banach space E which has uniformly Gateaux differentiable norm and
T : K — E a nonexpansive mapping with F(T) # (). Suppose that every
nonempty closed convexr bounded subset of K has the fized point prop-
erty for nonerpansive mappings. Then there exists a continuous path
t— 2,0 <t <1, satisfying zy = tu+ (1 —t)Tz , for arbitrary but fized
u € K, which converges strongly to a fixed point of T'.

Lemma 2.6. [19] Let K be a nonempty closed convex subset of a
strictly convexr Banach space E. Let A; : K — E, i = 1,2,---,r,
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be a finite family of m-accretive operators such that (\ N(4;) # 0.
i=1

T

Let ag,a1,- -+ ,a, be real numbers in (0,1) such that > a; = 1 and let
i=0

Sy =aol +a1Ja, +---+ arJA where Ja, := (I + A;)~L. Then S, is

nonezpansive and F(S,) = ﬂ N(4).

3. Main Results

Theorem 3.1. Let E be a strictly convex Banach space with a uniformly
Gateaux differentiable norm and K be a closed convex subset of E. As-
sume that every nonempty closed bounded subset of E has the fixed point
property for nonexpansive self-mappings. Let A; : K — E,i=1,---,r,
be a finite family of m-accretive operators with ﬂ N(A;) #0.

=1
For any given u,xo € K, let the sequence {xn}2, be generated by the

iterative algorithm

(31) {x”+1 = (1 - /Bn)‘rn + anrxn

Yn =opu+ (1 —ap)Srzy, n>0,

where,
Sy = apl +arJa, + asJa, + -+ apda,, with Ja, == (I + A;)~ for

T

0 <a <1l,i=01-,r Eaz = 1 and both {an}72 o, {Bn}i, are
sequences in (0,1) satzsfymg the following conditions:

(2) le ay = 05 (1) Z oy = +o00; (i) By € [0, a), for some a € (0,1);
n—00 n=0

o0 oo
(i?)) Z |an+1 - an’ < 00, Z ’/Bn—i-l - /Bn| < 0.
n=0 n=0
Then the sequence {xy}o | converges strongly to a common solution of
the equations A;jx =0, fori=1,2,---r
Proof. By Lemma 2.6, we have that S, is well-defined, nonexpansive and

F(Sy) = ﬂ N (4A;), where F(S,) is the fixed point set of S,.
We shall ﬁrst show that {x,}5° is bounded.
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Let z* € F(S,) = (| N(4)), it follows from (3.1) that
i=1
[yn — ™[l = llam(u — 2%) + (1 — an) (Srzn — 27)||
< anllu — 27| + (1 = an)||Srzn — 27|
< anllu— 27| + (1 — an)[lzn — 27

(32) < max{[ju — &[], [ln — 27|},
also we have,

[nt1 — 2% < (1= Bo)llyn — 27| + Bullyn — 27|
(3.3) = llyn — 27|

< max{|fu =z, [lzn — 2"}
and (3.3) implies that
[ — 2| < max{fu — 27|, |lzo — 2™},

for all integers n > 0,

which implies that {z, } and hence {y,} is bounded.

Also since || Spx, —2*|| < ||z —2*| and ||Sryn—2*|| < |lyn—2*|, so we get
that {S,z,} and {S,y, } are also bounded. By using condition (i), we get

(3.4) lyn — Sran|| = anllu — Srzy| — 0 as n — oo.
We now show that lim ||zp41 — 2| =0 and lim ||z, — Syz,| = 0.
n—oo n—oo

From (3.1),we have

lyn — yn-1ll = [[(1 = an)(Sr2n — Srzn—1) + (U — Spzn_1)(n — a1
< (1 - an)HSr-Tn - Srzvnle + |an - an71| HU - ernfln
(3.5) < (1 —ap)|lxn — xp—1]] + o — @n—1| My,

where M is a constant such that M; := sup{||lu — Syxp—1]}
Moreover, again from (3.1), we have

Tnt+l = (1 - /Bn)yn + BnSryn,
Tn = (1 - /Bn—l)yn—l + Bn—lsryn—la
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so that using (3.5),

[Zn+1 — 2ol < (1= Ba)llyn — Yn—1ll + BullSryn — Sryn-1l
+18n = Bn-1] 15:yn-1 — yn—1||
< (1= B)llyn — Yn—1ll + Ballyn — yn—1l|
+18n = Bn-1] 15:yn-1 — yn—1||
= lyn = Yn-1ll + [Bn — Ba—1| |Sryn—1 — Yn—1l
< (1= ap)llen — zp-1l] + M1 | — ap—1|
+18n = Bo-1] 15:yn-1 — yn—1||
(3.6) < (1 = an)llzn — zn-all + Ma(lan — an—1| + |Bn — Bn-1l),
where M, is a constant such that My > max{|[|S, — yn—1], M1}
By assumptions (i)-(iv), we have
nh_)noloom = 0; i an = +00 and i (loany1 — an| + [Bri1 — Bal) < oc.

Thus, by applying Lemma 2.4 to (3.6), we get that

(3.7) [ €01 = @l = 0.

lim
n—oo

Again by (3.1),

[Zn+1 = Ynll = BnllSryn — ynll
< BulllSryn — Sranll + [|1Srzn — ynll)
< Bulllyn — zall + [[Sran — yall)
< a(llyn — Tns1ll + 2041 — Zall + [[Srzn — yall)

which implies that

a
|11 — ynll < E(me—l — || + [|Srzn — ynll)
It is obvious from (3.4) and (3.7) that
(3) T l241 — all = 0.
and (3.8) implies that

lim ||z, —ynl = 0.
n—oo
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Since we have,
[2n = Srzall < ll2n — znprll + 201 = ynll + llyn — Sraall
< [lzn = @ngall + 201 = yall + anllu — Sen||
Thus using equations (3.4), (3.7) and (3.8) above, it follows that
(3.9) |xn, — Srxp| — 0 asn — oco.
We next show that

limsup(u — z, j(z, — 2)) <0,

n—o0

for some z € F(S,) = ﬁ N(4).
i=1

For t € (0,1), let z; € E be the unique fixed point of the contraction
mapping H; given by

Hix:=tu+ (1 —t)Syz, x € E.
Then by Theorem 2.5, we get that
z=tu+ (1 —1)Srz — z € F(Sy) = ﬁ N(4;) ast — 0.
Applying Lemma 2.3 to (z; — xy,), Wel :hlave
2t = al® = lt(u — 2n) + (1 = 1)(Sp2t — @) ||?
< (1= )?|Srzt — | + 2t(u — mp, (20 — 1))
<(1- t)2(HSTZt = Span|| + [[Sran — an)Q
+ 2t ((u — 2, 5(20 — 20)) + |12 — 20]1?)
< (L+ )zt = @nll® + 1Sran — all2]l2 — 20l
+ (1= )?]18,zn — znll] = 2t(u — 2t (25 — 2t)),

hence,
) t Srx T
(21,3 — 2)) < bl — w2l g g
(3.10) + ||Srxn — zp]])
But by (3.9), ||Srzn — x| — 0 as n — oo.
Thus letting n — oo in (3.10), we get that
t
(3.11) limsup(u — z¢, j(zp — 2¢)) < =M™,
n—00 2
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where M* is a constant such that ||z; — z,[|> < M*, ¥ ¢t € (0,1) and
n > 1.

Since z; — z and the duality mapping j is norm-to-weak* uniformly
continuous on bounded subsets of E, thus letting t — 0 in (3.11) follows
that

(3.12) limsup(u — z, j(z, — 2)) < 0.

n—o0

Again since {y,} is also bounded and
Hyn - SrynH <Yn — Ty + ||xn - ernH + HSrfEn - Sryn”
S Yn — Tn + |20 — Srznll + |20 — yull
2 < yp — Ty + ||z — Srzn|

— 0.
Thus from 3.12,
(3.13) limsup(u — 2, j(yn — 2)) < 0.
n—0o0

Finally, we show that {x,} converges strongly to z.
From (3.1) and (3.3), we have
l2nt1 = 2lI” < llyn — 2|
= [lan(u —2) + (1 — an)(Srzn — Z)||2
<(1- O‘n>2HST$n - Z||2 + 20 (u = 2, j(Yn — 2))
< (1= ap)||zn — 2||? + 04,
where 6,, := 2a,¢p, and limsup,,_, ¢, < 0 for ¢, := (u — z,j(yn — 2)).
Thus, applying Lemma 2.4 and using (3.13)above, we get that {x,}

converges strongly to z, a common solution of the equations A;x = 0,
fori=1,2,---,r. O

Corollary 3.2. Let E, K be as defined in Theorem 3.1 and A: K — E
be accretive operator satisfying the range condition with N'(A) # 0.

For any given u,xog € K, let the iterative sequence {x,}22, be generated
by the algorithm

(3.14) { Yo = Batn + (1= B) Jaz

Tnt+1 = Qplu + (1 - Oén)ym n Z O)

where Ja = (I + A)~% and both {an}o 1, {Bn}5, are as defined in
Theorem 3.1.
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Then the sequence {x,}5°; converges strongly to a solution of the equa-
tion Ax = 0.

Proof. Putting Ay = Ay = --- A, = A, we get the required result from
Theorem 3.1. ]

Theorem 3.3. Let E, K, {a,}5°1,{8.}5%, be as in Theorem3.1 and
let {T;}_, : K — E be a finite family of pseudocontractive mappings
such that for each i = 1,2,--- ,r, (I —1T;) is m-accretive on K with

N F(T) £ 0

For any given u,xg € K, let the iterative sequence {xy}22, be generated
by the algorithm

Tnt1 = apu+ (1 —ap)yn, n >0,

where,
Sy 1= aol +arJa, +azJa, + -+ apJa,, with Ja, = (I+ (1 = T;))~"

for0<a;<1,i=0,1,---,r, Za,—l and both {an}02 1, {Bn}22 are
sequences in (0,1) satzsfymg the followmg conditions:

(1) h_}m ay, = 0; (i) Z oy, = +00; (1) By, € [0,a), for some a € (0,1);
n—oo n=1

0o 00
(iv) > Japy1 — an| <00, 3 [Bag1 — Bal < o0o.
n=0 n=0

Then the sequence {x,}32 | converges strongly to a common fized point

of {Ti}gzl'

Proof. Clearly, F(T;) = N(A;) and hence ﬂ F(T;) = ﬂ N(A;) # 0.

=1
Also, each A; is m-accretive (¢ = 1,2,---,7). Thus the proof follows

from Theorem 3.1. O

Remark 3.4. Theorem 3.1 and Theorem 3.3 are significant generaliza-
tion and extension of the results of Ceng [4], Kim and Xu [10], Qin [13],
Xu [18], Zegeye and Shahzad [19] in several aspects as:

1. For the sequences {an}02, and {Bn}o°, satisfying the condi-
tions (i), (ii) and (iii) is sufficient for the strong convergence of

the algorithms (3.1) for a finite family of m-accretive operators.
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Thus the restriction on the sequence {on}o2, of satisfying con-
ditions (iit) and (ii5*) [19] can be dispensed with.

2. The use of the sequence {ry,}>2, with the restriction [13] is com-
pletely removed.

3. Also, our theorem extends the result of Ceng [4] to a finite family
of m-accretive operators thus extending many other results with
their references.

4. If B, = 0in (3.1), then we get the iterative sequence {x,} defined
by (1.3), generalizing the results of Kim and Xu [10], Xu [18],
Zegeye and Shahzad [19] and the references therein to a finite
family of m-accretive operators in a more general space setting.
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