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ON A CLASS OF SYSTEMS OF n NEUMANN
TWO-POINT BOUNDARY VALUE STURM-LIOUVILLE
TYPE EQUATIONS

SH. HEIDARKHANI

Communicated by Mahmoud Hesaaraki

ABSTRACT. Employing a three critical points theorem, we prove
the existence of multiple solutions for a class of Neumann two-
point boundary value Sturm-Liouville type equations. Using a local
minimum theorem for differentiable functionals the existence of at
least one non-trivial solution is also ensured.

1. Introduction

Consider the following Neumann two-point boundary value Sturm-

Liouville type system
(1.1)

—(pi(x)ui (@) + ri(@)uj(@) + ¢ (@)ui(x) = AFy, (2, u1, ..., un)

z € (0,1),

u;(0) = uy(1) =0
for 1 <i < n, where n > 1 is an integer, p; € C1([0,1)], r;,q; € C°([0,1)]
with p; and ¢; positive functions for 1 < ¢ < n, A is a positive parameter,
F :[0,1] xR™ — R is a function such that F'(.,t1,...,t,) is measurable in

MSC(2010): Primary: 35J35; Secondary: 47J10, 58 E05.
Keywords: Sturm-Liouville type System, multiplicity results, critical point theory.
Received: 27 April 2012, Accepted: 19 June 2012 .
(© 2013 Iranian Mathematical Society.
821



822 Heidarkhani

[0,1] for all (t1,...,t,) € R, F(x,.,...,.) is C! in R™ for every = € [0,1]
and for every o > 0,

n

sup Y |Fy(z, b1, ta)| € LY([0, 1)),

[(t1,..tn)|<0 i=1

and £, denotes the partial derivative of F' with respect to u; for 1 <
1 < n.

Based on a three critical point theorem (Theorem 2.1), we establish
the existence of at least three weak solutions for the system (1.1) under
suitable assumptions on nonlinear term F. Employing a local minimum
theorem for differentiable functionals (Theorem 2.2), under appropriate
hypotheses on F, we also ensure the existence of at least one non-trivial
solution.

Problems of Sturm-Liouville type have been widely investigated. We
refer the reader to the papers [3, 5, 6, 18] and the references therein.

For a thorough account on the subject, we also refer the reader to
[7, 8,9, 10, 11, 12, 13, 14, 15, 16].

In the present paper, our motivation comes from the recent paper [5].

2. Preliminaries and basic notations

Our main tools to prove the results are critical point theorems.
First we recall an immediate consequence of [4, Theorem 3.3](see also
[1, Theorem 5.2]).

Let X be a nonempty set and ®, ¥ : X — R be two functions. for
all 7, rq,ro > infx @, ro > 71, r3 > 0, we define

SUPyed—1(]—oc,r|) qj(“’) - \Ij(u>

= inf
o(r) - S r—(u)
. Y(v) — ¥(u)
B(ri,ra) = inf sup — T A
(ri,m2) wEd=1(]=00,71[) yed—1([ry ro) P(v) — P(u)

SUP @1 (|- oo,ratrsl) ¥ (%)
r3

V(ra,r3) :=
and

a(ri,ra,r3) = max{p(r1), p(r2), y(r2,73) }.
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Theorem 2.1. [4, Theorem 3.3] Let X be a reflexive real Banach space,
P : X — R be a convex, coercive and continuously Gateaux differen-
tiable functional whose Gateaur derivative admits a continuous inverse
on X*, ¥ : X — R be a continuously Gateauz differentiable functional
whose Gateaux derivative is compact, such that

1. infx ® = ®(0) = ¥(0) = 0;

2. for every u*, u** such that ¥(u*) >0 and V(u**) > 0, one has

inf U(su*+ (1 —s)u™)>0.
s€[0,1]

Assume that there are three positive constants ri,rs,rs with r1 < ra,
such that

a(ry,re,r3) < B(ri,re).

Then, for each X\ € /B(Tllm), 06(7’1,}"2,7"3) , the functional ® — AV has at
least three distinct critical points w,v,w such that u € ®~1(] — oo, r1]),

v € & ([r1,m2]) and w € ®7Y(] — oo, 79 + 13[).

Next, we recall a local minimum theorem for differentiable functionals,
Theorem 2.5 of [17] as given in [2, Theorem 5.1](see also [2, Proposition
2.1] for related results).

For a given non-empty set X, and two functionals &, ¥ : X — R, we
define the following functions

SUPyed—1(ry,raf) Y () — ¥ (v)

o0(ri,me) = inf
(ri,r2) ve®@L(Jr1,m2[) T2 — ®(v)
and
W (v) = SUPyeap—1(]—oom ) Y(u)
p(ry,re) = sup

ve®=1(Jr1,r2]) ®(v) — 1
for all ri,ro €R, rp < 7o,

Theorem 2.2. [2, Theorem 5.1] Let X be a reflexive real Banach space,
®: X — R be a sequentially weakly lower semicontinuous, coercive and
continuously Gateaux differentiable functional whose Gateaux derivative
admits a continuous inverse on X* and ¥ : X — R be a continuously
Gateaux differentiable functional whose Gateaux derivative is compact.
Put I, = & — AU and assume that there are r1,r0 € R, 1 < ro, such

that
d(r1,m2) < p(ri,r2).
Then, for each A E]m, 5(T1rz)[ there is ug x € ®1(Jr1,7a[) such that

I(up ) < In(u) Yu € ®~1(Jr1,m2[) and I{ (up) = 0.
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Let us introduce some notations which will be used later.

Set po; = ming 1) pi(), goi = miny 1) gi(z) and m; = min{pe;, qo;} for
1 <1< n,and set m =min{m;; 1 <i<n}.

Here and in the sequel,

X :=Wh2([0,1]) x ... x WH2([0,1]) = (W'2([0,1]))"

endowed with the norm

n
Ity ey )l =D i
=1

=

1 1 2
where [lu| = ( 2 ie)li(e) + J} ae)us(o) )
For all v > 0 we denote by K(v) the set

n

(2.1) {(tl,...,tn) ER™: Y |t S’y}.
i=1

3. Existence of three solutions

Consider the following Neumann two-point boundary value Sturm-
Liouville type system

—(pi(x)ui(x)) + qi(z)ui(z) = AFy, (x,u1, ..., un) x € (0,1),
(3.1) { £(0) = ui(1) = 0

(2
for 1 <i < n, where n > 1 is an integer, p; € C*([0,1)], ¢; € C°([0,1)]
with p; and g; positive functions for 1 < i < n, A is a positive parameter,
F :[0,1] xR™ — R is a function such that F(.,%1,...,t,) is measurable in
[0,1] for all (ti,...,t,) € R, F(x,.,...,.) is C' in R™ for every x € [0, 1]
and for every o > 0,
n
sup Y |2t ta)| € L0, 1]).
[ty tn)|<0 5=
We say that u = (uq, ..., uy) is a weak solution to the system (3.1) if
u = (u1,...,un) € X and

n

1
Z/o (pi(x)uj(x)vi(x) + gi(z)ui(z)vi(x)) da

n

1
—)\Z/O Fu(x,u1(z), ..., un(z))vi(x)dx = 0

=1
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for every v = (v1, ..., ) € X.
For a given positive constant v, put

1
fo SUD(y,...,tn)eK (V) F($a b,y tn)dm
2
where K(v) = {(t1,....,tn) € R™ : 30 | |ti| < v}(see (2.1)).
We formulate the main result of this section as follows:

a(v) =

Theorem 3.1. Let F': [0,1] x R™ — R satisfies the conditions
F(z,ty,....,tn) >0 for all (z,ty,....t,) € [0,1] x (RU{0})" and
F(z,0,...,0) =0 for every x € [0,1]. Assume that there exist four posi-

tive constants v1, v, 1 and T with vy < n, /%anHﬂ' < 9 < 1 such that

(A1)

2
max {a(ul), a(va), ﬁa(n)}
v
1 1
m Jo F(2,0,...,0,7)dx — [ supy, ¢ yern) F(@ 1,0 tn)de
2n|qnl[1 7 '
Then, for each
3llan| 172

A€
] fol SUD(¢, .t )eK () F (@5t ey ty)d — fol F(x,0,...,0,7)dx

m { 11 =1 }[
y 75 NN ) 9
4n? a(vr) a(ra)” n?  a(n)

the system (8.1) admits at least three weak solutions v/ = (v, ... vh) €
X (j =1,2,3) such that
n
Z ]vf(x)\ <n for each z € [a,b], j=1,2,3.
i=1

Proof. In order to apply Theorem 2.1 to our problem, we introduce the
functionals ®, ¥ : X — R for each u = (uy,...,u,) € X, as follows

| ui |
u) = -
=1

and



826 Heidarkhani

It is well known that ® and ¥ are well defined and continuously differ-
entiable functionals whose derivatives at the point u = (uq,...,u,) € X
are the functionals ®'(u), U'(u) € X*, given by

n 1
F)) =Y [ i) + a@uon () do
i=1 70
and
! - !
' (u)(v) :Z;/O Fu, (2, u1 (), ..., un (z))vs () da:

for every v = (v1,...,v,) € X, respectively. Moreover, ® is sequentially
weakly lower semicontinuous and ® admits a continuous inverse on X*,
as well as, ¥ : X — X* is a compact operator. Obviously, ® and ¥
satisfy condition 1. of Theorem 2.1. Moreover, since F(z,t1,...,t,) > 0
for all (z,t1,...,t,) € [0,1] x (RU{0})", for every u*, v™* € X with
U(u*) > 0 and ¥(u**) > 0, one has

inf ¥(su* 4+ (1—s)u™)>0.
s€[0,1]

2 2
n-—v;
4n? -

Set w(x) = (0,...,0,7), 11 = m(Q’%)Z, ro = m(g—fl)Q and 73 = m

One has ®(w) = 3/|¢n|[172. So, bearing the condition
vy < m/%anHlTQ < v < n in mind, we get 11 < ®(w) < re and
rg > 0. Since for 1 < i < n,

2
Jus(@)] < 4/ —lluil| ¥ ui € wh2([0,1]),

we obtain

n n n
2 2
(3.2) sup > fui(z)]* <) EHWII2 < > fual
i=1 " = i=1

z€[0,1] ;55
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for each u = (u1,...,un) € X, and so from the definition of ®, we see

that

) —o0,m]) = {u=(u1,..,u,) € X;®(u) <7}

n
= {u EX;ZH’IM’F < 27“1}

which follows

i=1
n 2
- {u € X;Z\ui(x)\Q < % for all z € [0, 1]}
i=1
- {u € X;Z lui(z)| < vy for all z € [0, 1}} ,
=1
sup U (u)
(Ul yeyun ) EP—1(]—00,r1])
1
= sup / F(z,ui(x),...,up(z))dx
(U1 ey ) EP~1(]—00,r1[) /O

1
< / sup F(x,ty,...,ty)dx.
0 (t1ystn)EK(v1)

In a similar way, we get

and

sup W (u)
(U1, ytin ) EB—1 (] —00,r2[)

1
= sup )/0 F(z,ui(x),...,up(z))dx

(U1 yesun ) EP~1(]—00,r2[

1
< / sup F(xz,t1,...,t,)dz
0 (t1,..stn)EK(v2)

sup W(u)
(U1 5oy ) EP—1(]—00,r2+73])

1
= sup /0 F(x,ui(x),...,up(z))dx

(U1 ey ) €D~ (]—00,ra+73])

1
g/ sup F(x,ty,....t,)dx.
0 (t1,...,tn)EK (1)
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So, taking into account that 0 € ®~1(] — oo, r1[), one has

1
supueq)fl(]_oom[)\ll(u) _ fo Sup(y, tn)eK(Vl)F(x,tl,...,tn)d:r

< uedT(zeon)) A o Jo P
p(r) < 7“1 = m(%)? ’
_ v ! F(z,t1,....1,)d
o(ra) < SUPycd 1 (]—oo,ra)) ¥ (1) < lo Sup(tl,A..,tn)EK(V;ﬁ; 2(1‘ 1 )dx
T2 m(3%)

and
SUPyed—1(]—o0,ratrsl) P (%)
3

y(ry,re) <

1
< f Sup(tl, At )GK(n)F(.T,tl,...,tn)dI‘

= ?72 12
22 4n2

On the other hand, for each u € ®~1(] — oo, r1[), one has
fol F(z,wi(x),...,wp(x))dx — fol F(z,ui(z),...;un(z))dz

3

ﬁ(rlaTQ) > 12 12
S ||w21|| o HuéH
1
fo (@, w1 (), oy wp(x))dz — [ sup, 4 yer ) F (@t ty)de
3llan]l172
1 1
2 Jo F(x,0,...,0,7)dx — [y supg, 1 yerw) F(@,t1, . tn)de
llgnlly 7 '

Thanks to assumption (A1) we observe that

a(ri,ro,m3) < B(r1,72).
Therefore, taking into account that the weak solutions of the system

(3.1) are exactly the solutions of the equation ®'(u) — AV/'(u) = 0, and
recalling (3.2), Theorem 2.1 follows the conclusion. O

Remark 3.2. The weak solutions of the system (3.1) where F is a
Cl-function, by using standard methods, belong to C?([0,1]). Namely,
in this case, the classical and the weak solutions of the system (3.1)
coincide.

Now, we point out the following direct consequence of Theorem 3.1.

Theorem 3.3. Let F': [0,1] x R® — R satisfies the conditions
F(z,ty,....tn) >0 for all (xz,t1,....t,) € [0,1] x (RU{0})" and
F(z,0,...,0) =0 for every x € [0,1]. Assume that there exist three pos-

itive constants v1, K and T with v1 < n anle < \/»K, such that
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(aZilnTy) 0,..,0,7)d
(AQ) a(ul) < 12+ an\h fo IT2 0,7) x’.

22llanlly Jo F(@,0,...0,7)da
(Ag) ( ) < 2 1+71 0 2
Then, for each

m

\ L+ oo Hlanl)172 m 1 1

e | e min | H
2 gnlls fo F(z,0,...,0,7)dz 4n

the system (3.1) admits at least three weak solutions vi = (v],...,v},) €
X (j =1,2,3) such that

Z]v )| <k for each z € [a,b], j=1,2,3.

Proof. Since m < 1, from (A2) one has
1
o sw,. ek ) F@s b tn)da
a(yl) = 1/2
1
1
fo SUD(4,.,... 4 )€K (1) F(x,ty, ..., ty)dx
< m 2
2n?|[gn|l1 1
m 1
_ 2n2||qn‘|1 Jo F(,0,..,0,7)dz
5 :
L+ sl 7

By choosing vy = %/@ and n = K, from (A3) one has

_m 1
(3.3)  a(r) = a(ili) < 2a(k) < 2n2\|qnm||1 Jo F(CL’,O,;.,O,’T)dx
\/i 1 + W T
and
___m 1

(3.4) 7772@(77) = 2a(k) < 2n2||QnH1 fo F(z,0,...,0,7)dz

. 5 = '

772 -V 1+ W T2

Moreover, bearing the condition v < ny/2||g,|[17 in mind, from (A2)
we deduce

m fO dl‘ — fO sup(tl tn)EK (11) F(I‘, tl, ceey tn)dﬂf
2n2||gnl[1 72
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m fol F(CC, 0, ceey 0, T)dﬂ? fO sup(tl tn)EK (1) F((IZ tl, ceny t )dl’

-----

>

32 lnll TZ “
( m (3lfge)” \ Jo F ,0,7)dx

202lgally 1+ gty =

m fo (z,0,...,0,7)dx

R 72 '

Hence, using again Assumptions (A2) and (A3), owing to (3.3) and
(3.4), we observe that all assumptions of Theorem 3.1 are satisfied. So,
by applying Theorem 3.1 we have the conclusion. O

We here want to point out a simple version of Theorem 3.3 when
n = 1.

Let p1 = p, ¢1 = g and m;y = m. Let f : [0,1] x R — R be an
Li- Caratheodory function. Let F' be the function defined by F(x,t) =
fo x,s)ds for each (z,t) € [0,1] x R. Then, we have the following
existence result.

Theorem 3.4. Let the function f satisfies the condition f(xz,t) > 0 for
all © € [0,1] and for all t > 0. Assume that there exist three positive

constants v1, k and T with v1 < \/ Z|q|iT < %/{ such that

(A4) fol sup‘tlgyzl F(x,t)dx < (W)2 fgl F(cc,T)d:c )
vy

. Yoy
A5 Jo supp <, F(z,t)dz 1 QHqHI fol F(z,m)dz
(45) "2 SATEE- T

Then, for each

A€

}1+2mh sllallir?
m 1
3Malls fo F(z,7)dx
2 2
o mm{ . ] R }[
4 fo SUP|¢|<y, F(x,t)dz 2f0 SUP|y|<x F(x,t)dz

the problem

' w'(0)=u'(1)=0

admits at least three weak solutions vi € W12([0,1]) (j = 1,2,3) such
that

|v/(z)| < K for each x € [a,b], j=1,2,3.
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The following result gives the existence of at least three weak solutions
in W12([0,1]) to the problem (3.5) in the autonomous case.
Let f: R — R be a continuous function satisfying f(t) > 0 for every

t > 0, and put F(t) = fot f(&)d¢ for all t € R. We have the following
result as a straightforward consequence of Theorem 3.4.

Theorem 3.5. Assume that there exist three positive constants vy, K

and T with v1 < \/ Z||q|iT < %m such that

(A6) f(t) >0 for each t € [—k, 0;
v (oram)? F(r
(A7) Fl(/%l) <’ F7) .

1 . T2
T 27all

(Ag) F) o 1 3y F(r)

2 [ L R——)
K T
T 2l

Then, for each

2|lqlI? 2 1
AE}!MM+¢Mhm T Tnm{ vi 1 }[
F(lll) 2

2m F(r)" 4
the problem

—(p(2)u' (7)) + q(x)u(z) = Af(u) z € (0,1),
(3.6) {wéyﬁmnzg

admits at least three classical solutions v/ € W12([0,1]) (j = 1,2,3)

such that '
|v/(x)] < Kk for each x € [a,b], j =1,2,3.

As an example of the results, the following consequence, ensures the
existence of at least two non-trivial classical solutions to the problem
(3.6).

Theorem 3.6. Let f : R —]0,+00] be a continuous function such that

lim 1) = lim M =0.
t—0+ t t—+oo ¢

Then, for every A\ > inf{2”qH%+”qH1mFT(i) 17> 0, F(r) > 0}, the

2m

problem (3.6) admits at least two non-trivial classical solutions.

Proof. Fix X\ > inf{quH%;;quHlm FT(QT) 1 >0, F(r) > 0}, and let 7 be

2|lgl13+lglim 1
2m F(

lim, o+ @ = 0, there is a positive constant vy with 11 < y/2||g|i7

a positive constant such that F(7) > 0 and X\ >

2 .
. Since
)
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f(®)

t

such that ( 1) < Z”\, and since limg_, 4o = 0, there is a positive

K 8A
Theorem 3.5 follows the conclusion. O

constant & Wlth  2llglh < %/{ such that &) < 7 Therefore,

We end this section by giving the following result which provides the
existence of at least three weak solutions for the system (1.1).

Put m/ = min { ming 1 e Hip;, min[o 1€ _Riqz} where R; is a primi-
tive of pl for 1 < i < n, and put m' = min{m}; 1 < i < n}. Then, we
have the following result.

Theorem 3.7. Let F': [0,1] x R" — R satisfy the conditions
F(xz,t1,....tn) >0 for all (z,t1,....,ty) € [0,1] x (RU{0})" and
F(z,0,...,0) = 0 for every x € [0,1]. Assume that there exist four pos-

itive constants vy, va, 1 and T with v; < n,/%He—annHlT < vy <1

where ||e fng,||1 = fo e (@) g, (x)dz such that

(A9)
2
-
max {o(0n),a(v2), 5 zal)}
<m fol F(x,0,...,0,7)dx — fol SUD(¢,,... tn)EK (1) F(x,ty,...,ty)dz

2n2|le=Bng,||1 72
Then, for each

] e Brg, |17
max{||e~fi||; 1 <i<n}

1

X
(fol SUD(, . t)ek () F (@, T, s ) da — fol F(z,0, dx)

m 1 . { 1 1 77 — 1/2 } [
— min
" 4An2 min{||le~Fi|1; 1 <i < n} a(vy) a(re) 0%  a(n)

the system (1.1) admits at least three weak solutions v/ = (vl, AR
X (7 =1,2,3) such that

n

Z ]vf(:c)] <n for each x € [a,b], j =1,2,3.
i=1
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Proof. Taking into account that the solutions of the system

—(e fipy(@)uj(2)) + e Mgi(z)ui(z) = e Fy (2, ua, ..., un)

z € (0,1),

u;(0) = ui(1) = 0

and the solutions of the system (1.1) coincide, Theorem 3.1 follows the
conclusion. O

4. Existence of a non-trivial solution

In this section, by the use of Theorem 2.2, we prove that under appro-
priate assumptions on F', the system (1.1) admits at least one non-trivial
weak solution.

For given a nonnegative constant v and a positive constant 7 with

m(%)? # 27%||qul]1, put

b () = fol SUD(t, o )ek(v) F (@11, o tn)da — fol F(z,0,...,0,7)dz
o 7 (3)? = manlh
where K(v) = {(t1,....tn) € R": 37 | |t;| < v} (see (2.1)) and ||gn|[1 =

1
fo qn(x)dz.
We formulate the main result of this section as follows:

Theorem 4.1. Assume that there exist a non-negative constant vy and
two positive constants vy and T with v1 < n, /%anHlT < vy such that

(B1) by (v2) < br(11).

Then, for each \ € %lel), %bT(lm)[ the system (3.1) admits at least

one non-trivial weak solution ug = (ug1, . .., uon) € X such that %(%)2 <
D luoil|* < F(%22)%.

Proof. In order to apply Theorem 2.2 to our problem, we take ® and
U as in the proof of Theorem 3.1. Set w(z) = (0,...,0,7), r1 = m(4L)?
and 7o = m(¥2)2. One has ®(w) = 3||g,|[172. So, bearing the condition

V1 < ny /%anHﬂJ < v in mind, we get

ry < ®(w) < ro.
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From the definition of ® and recalling (3.2), we see that
Y] =00, ) = {u= (u,..,un) € X;P(u) <1}

n
= {u c X,ZHquQ < 2’/“2}

=1

n 2

- {u € X,Zl\uz(x)\Q < % for all z € [0, l]}

C {u € X,Z\ul(m)\ <y forall z €0, 1]} ,
i=1

which follows
sup U (u)
(U1, eytn ) EP 1 (]—00,r2()
1
= sup / F(z,ui(x),...,up(x))dx
(Ulyeeryun ) EP~1(]—00,m2[) JO

1
< / sup F(x,ty,...,t,)dx.
0 (t1,tn)EK(v2)

So, one has

SUPyed—1(]—o0,ra) \Ij(u) - \P(w)

6(r1,r2) < p— Yo
fol SUD(¢,,... t) €K (v2) F(x,ty,....,ty)dz — ¥(w)
- ro — ®(w)
S Qb.,-(ljg).

On the other hand, by similar reasoning as before, one has

U(w) — SUPyeq—1() oo, [) ¥(u)

p(ri,re) > S(w) =11
1
- W(w) = fo SUPy,.. ek ) F (@t s tn)de
- O(w) —ry
Z 2bT(V1).

Hence, from Assumption (B1), one has §(r1,72) < p(r1,r2). Therefore,
applying Theorem 2.2, taking into account that the weak solution of the
system (3.1) are exactly the solution of the equation ®'(u)— AV’ (u) = 0,
we have the conclusion. O
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Now we point out the following consequence of Theorem 4.1.

Theorem 4.2. Assume that there exist two positive constants v and T

with n /%anHlT < v such that

(BQ) fol SUP(¢q,..., tn)EK(v) F(xvtlv"'vtn)dx m fol F(J},O,...,O,T)dm'
v? 2n2[lgnl1 s '

(B3) F(x,0,...,0) =0 for every z € [0, 1].

Then, for each

311177 m(5;)°

A€ )
fol F(z,0,...,0,7)dz fol SUD(g,tyek(v) F (@11, tn)de

the system (3.1) admits at least one non-trivial weak solution ug =
(o1, .- uon) € X such that Y i ||uilleo < v.

Proof. By the use of Theorem 4.1 and taking 1y = 0, 1o = v we get the
conclusion. Indeed, owing to our assumptions, one has

2n2||gn|[172 ) 1
b ( ) (]. — %) fO SuP(tl,...,tn)eK(u) F(.T,tl, ,tn)dl‘
1) < >
’ 3 (52 = 7llanlh

n T2 1
(]. — %) fO Sup(tl’m’tn)eK(y) F(I‘7t1, 7t’ﬂ)dx

5 (5)? = 7llanlh

2
1
Jo supy e w) F(@,trs o tn)da
m /v\2 .
7 (5)

On the other hand, taking Assumption (B3) into account, one has

fol F(x,0,..,0,7)dx

g1 72

= bT(Vl).

Moreover, taking (3.2) into account, > ., ||u||cc < v whenever ®(u) <
ro. Now, owing to assumption (B2), it is sufficient to invoke Theorem
4.1 for concluding the proof. U

Here we want to point out a simple version of Theorem 4.1 when
n=1.

Let pp = p, 1 = q and m;y = m. Let f : [0,1] Xx R — R be an
L!-Carathéodory function. Let F' be the function defined by F(z,t) =
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fo x, s)ds for each (z,t) € [0,1] x R. For given nonnegative constant
v and a positive constant 7 with mv? # 272||q||1, put

o () i 3Py Pl tydz — Jy Pl 7)de
T 77— 7l

We have the following result.

Theorem 4.3. Assume that there exist a non-negative constant v and
two positive constants vy and T with vy < \/ Z||q|[1T < vy such that

(B4) c:(v2) < cr(v1).

Then, for each \ € } 3 Cf(lyl), %c ) [ the problem (3.5) admits at least

one non-trivial weak solution ug € W12([0,1]) such that

n
m m
57/12 < El [Juoil |* < D) 3.
1=

The last result gives the existence of at least one non-trivial weak
solution in W12([0, 1]) to the problem (3.5) in the autonomous case.
Let f : R — R be a continuous function, and put F(¢ fo

for all t € R. We have the following result as a direct consequence Of
Theorem 4.3.

Theorem 4.4. Assume that there exist a non-negative constant v1 and
two positive constants vy and T with v1 < \/ Z||q|[iT < v2 such that

(B5) f(t) > 0 for each t € [—va, max{ve, T}];

)
Flve) - F(r) Fln)-F(2)
(B6) mys = < =)=l

m

Then, for each \ € } FG° a1 5 () = llall [ the problem (3.6)

v

2 F(n)-F(r) * 2 F(va)-F(7)
admits at least one non-trivial classical solution ug € W2([0,1]) such
that

n
m m
57/12 < El HUOZHQ < EV%
1=

As an example, we point out the following special case of the main
result.
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Theorem 4.5. Let g : R — R be a nonnegative function such that
lim; o+ @ = +00.
m V2
Then, for each \ € }0, 71 Sup,~o T 9@ | the problem
—(p(x)u/(z))" + q(x)u'(z) = Ag(u) =« € (0,1),
w'(0)=4/(1) =0
admits at least one non-trivial classical solution in W12([0,1]).

Proof. For fixed A as in the conclusion, there exists a positive constant
v such that

N ™ v?
4 [ 9(&)de
t
Moreover, the condition lim;_,q+ @ = 400 implies lim; g+ Lo gt(f)dé =
4o00. Therefore, a positive constant 7 satisfying 7 < Vll T can be
m 14111
chosen such that
-
L gl _ Ji o(€)de
A2 T2
Hence, the conclusion follows from Theorem 4.4 with vy = 0, 1o = v and
f(t) =g(t) for every t € R. O
2
Remark 4.6. For fized p put A, := F sup,¢jo 77 ;/(g)dg‘ The result of

Theorem 4.5 for every X €]0, \,[ holds with |ug(x)| < p for all x € [0, 1]
where ug is the ensured non-trivial classical solution in WH2([0,1]) (see
[7, Remark 4.3]).

We present the following example to illustrate the result.
Example 1. Consider the problem
—(e"u') + e"u=N1+e* (wh)2(3—ut)) ze€(0,1),
(41> / /
' (0) =u/(1) =0.
where ut = max{u,0}. Let
gty =1+ (t")B %)

for all t € R where tT = max{t,0}. It is clear that lim,_,y+ @ = +00.

Hence, by applying Theorem 4.5, since m = 1, for every A €]0, ﬁ[
the problem (4.1) has at least one non-trivial classical solution ug €

WL2([0,1]) such that |Jupl|eo < 1.
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Finally, we give the following existence property of the system (1.1).

Put m/ = min { mingg 1] e fip,;, ming e’Riqi} where R; is a primi-
tive of ;7? for 1 <i <n, and put m' = min{m}; 1 <i <n}.

For given a nonnegative constant v and a positive constant 7 with
m' (%)% # 27°(|qul]1, put
F(xz,ty, ..., tn)dx — fol F(z,0,...,0,7)dz

v)
552 = el

1
_ fo SUD(ty,....tn)EK(

d-(v) :

where K (v) = {(t1,....tn) € R": 70 | |t;] < v} (see (2.1)) and
”e_annHl e f()l e_Rn(I)qn(x)dx'
Then, we have the following result.

Theorem 4.7. Assume that there exist a non-negative constant vy and

two positive constants vo and T with vy < ny /%He—annHﬂ < vy such

that
(B7) dr(v2) < d-(11).

Then, for each

1 1 1 1
A€ }QInax{He_RiHn i<y &) Tmin{le Tl 1<i<n] o) | the system
(1.1) admits at least one non-trivial weak solution uy = (ug1, ..., uon) €

X such that B-(%)? < 0y [|uoil 2 < B (%),

n

Proof. By the same reasoning as in the proof of Theorem 3.7, Theorem
4.1 follows the conclusion. 0
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