
Bulletin of the Iranian Mathematical Society Vol. 39 No. 5 (2013), pp 821-840.

ON A CLASS OF SYSTEMS OF n NEUMANN

TWO-POINT BOUNDARY VALUE STURM-LIOUVILLE

TYPE EQUATIONS

SH. HEIDARKHANI

Communicated by Mahmoud Hesaaraki

Abstract. Employing a three critical points theorem, we prove
the existence of multiple solutions for a class of Neumann two-
point boundary value Sturm-Liouville type equations. Using a local
minimum theorem for differentiable functionals the existence of at
least one non-trivial solution is also ensured.

1. Introduction

Consider the following Neumann two-point boundary value Sturm-
Liouville type system
(1.1) −(pi(x)u′i(x))′ + ri(x)u′i(x) + qi(x)ui(x) = λFui(x, u1, ..., un)

x ∈ (0, 1),
u′i(0) = u′i(1) = 0

for 1 ≤ i ≤ n, where n ≥ 1 is an integer, pi ∈ C1([0, 1)], ri, qi ∈ C0([0, 1)]
with pi and qi positive functions for 1 ≤ i ≤ n, λ is a positive parameter,
F : [0, 1]×Rn → R is a function such that F (., t1, ..., tn) is measurable in
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[0, 1] for all (t1, ..., tn) ∈ Rn, F (x, ., ..., .) is C1 in Rn for every x ∈ [0, 1]
and for every % > 0,

sup
|(t1,...,tn)|≤%

n∑
i=1

|Fti(x, t1, ..., tn)| ∈ L1([0, 1]),

and Fui denotes the partial derivative of F with respect to ui for 1 ≤
i ≤ n.

Based on a three critical point theorem (Theorem 2.1), we establish
the existence of at least three weak solutions for the system (1.1) under
suitable assumptions on nonlinear term F . Employing a local minimum
theorem for differentiable functionals (Theorem 2.2), under appropriate
hypotheses on F , we also ensure the existence of at least one non-trivial
solution.

Problems of Sturm-Liouville type have been widely investigated. We
refer the reader to the papers [3, 5, 6, 18] and the references therein.

For a thorough account on the subject, we also refer the reader to
[7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

In the present paper, our motivation comes from the recent paper [5].

2. Preliminaries and basic notations

Our main tools to prove the results are critical point theorems.
First we recall an immediate consequence of [4, Theorem 3.3](see also

[1, Theorem 5.2]).

Let X be a nonempty set and Φ,Ψ : X −→ R be two functions. for
all r, r1, r2 > infX Φ, r2 > r1, r3 > 0, we define

ϕ(r) := inf
u∈Φ−1(]−∞,r[)

supu∈Φ−1(]−∞,r[) Ψ(u)−Ψ(u)

r − Φ(u)

β(r1, r2) := inf
u∈Φ−1(]−∞,r1[)

sup
v∈Φ−1([r1,r2[)

Ψ(v)−Ψ(u)

Φ(v)− Φ(u)
,

γ(r2, r3) :=
supu∈Φ−1(]−∞,r2+r3[) Ψ(u)

r3

and

α(r1, r2, r3) := max{ϕ(r1), ϕ(r2), γ(r2, r3)}.
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Theorem 2.1. [4, Theorem 3.3] Let X be a reflexive real Banach space,
Φ : X −→ R be a convex, coercive and continuously Gâteaux differen-
tiable functional whose Gâteaux derivative admits a continuous inverse
on X∗, Ψ : X −→ R be a continuously Gâteaux differentiable functional
whose Gâteaux derivative is compact, such that

1. infX Φ = Φ(0) = Ψ(0) = 0;
2. for every u∗, u∗∗ such that Ψ(u∗) ≥ 0 and Ψ(u∗∗) ≥ 0, one has

inf
s∈[0,1]

Ψ(su∗ + (1− s)u∗∗) ≥ 0.

Assume that there are three positive constants r1, r2, r3 with r1 < r2,
such that

α(r1, r2, r3) < β(r1, r2).

Then, for each λ ∈
]

1
β(r1,r2) ,

1
α(r1,r2,r3)

[
, the functional Φ − λΨ has at

least three distinct critical points u, v, w such that u ∈ Φ−1(] −∞, r1[),
v ∈ Φ−1([r1, r2[) and w ∈ Φ−1(]−∞, r2 + r3[).

Next, we recall a local minimum theorem for differentiable functionals,
Theorem 2.5 of [17] as given in [2, Theorem 5.1](see also [2, Proposition
2.1] for related results).

For a given non-empty set X, and two functionals Φ,Ψ : X → R, we
define the following functions

δ(r1, r2) = inf
v∈Φ−1(]r1,r2[)

supu∈Φ−1(]r1,r2[) Ψ(u)−Ψ(v)

r2 − Φ(v)

and

ρ(r1, r2) = sup
v∈Φ−1(]r1,r2[)

Ψ(v)− supu∈Φ−1(]−∞,r1[) Ψ(u)

Φ(v)− r1

for all r1, r2 ∈ R, r1 < r2.

Theorem 2.2. [2, Theorem 5.1] Let X be a reflexive real Banach space,
Φ : X → R be a sequentially weakly lower semicontinuous, coercive and
continuously Gâteaux differentiable functional whose Gâteaux derivative
admits a continuous inverse on X∗ and Ψ : X → R be a continuously
Gâteaux differentiable functional whose Gâteaux derivative is compact.
Put Iλ = Φ − λΨ and assume that there are r1, r2 ∈ R, r1 < r2, such
that

δ(r1, r2) < ρ(r1, r2).

Then, for each λ ∈] 1
ρ(r1,r2) ,

1
δ(r1,r2) [ there is u0,λ ∈ Φ−1(]r1, r2[) such that

Iλ(u0,λ) ≤ Iλ(u) ∀u ∈ Φ−1(]r1, r2[) and I ′λ(u0,λ) = 0.
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Let us introduce some notations which will be used later.
Set p0i = min[0,1] pi(x), q0i = min[0,1] qi(x) and mi = min{p0i, q0i} for

1 ≤ i ≤ n, and set m = min{mi; 1 ≤ i ≤ n}.
Here and in the sequel,

X := W 1,2([0, 1])× ...×W 1,2([0, 1]) = (W 1,2([0, 1]))n

endowed with the norm

‖(u1, ..., un)‖∗ =
n∑
i=1

‖ui‖

where ||ui|| =
( ∫ 1

0 (pi(x)|u′i(x)|2 +
∫ 1

0 qi(x)|ui(x)|2)dx
) 1

2
.

For all γ > 0 we denote by K(γ) the set

(2.1)

{
(t1, ..., tn) ∈ Rn :

n∑
i=1

|ti| ≤ γ

}
.

3. Existence of three solutions

Consider the following Neumann two-point boundary value Sturm-
Liouville type system

(3.1)

{
−(pi(x)u′i(x))′ + qi(x)ui(x) = λFui(x, u1, ..., un) x ∈ (0, 1),
u′i(0) = u′i(1) = 0

for 1 ≤ i ≤ n, where n ≥ 1 is an integer, pi ∈ C1([0, 1)], qi ∈ C0([0, 1)]
with pi and qi positive functions for 1 ≤ i ≤ n, λ is a positive parameter,
F : [0, 1]×Rn → R is a function such that F (., t1, ..., tn) is measurable in
[0, 1] for all (t1, ..., tn) ∈ Rn, F (x, ., ..., .) is C1 in Rn for every x ∈ [0, 1]
and for every % > 0,

sup
|(t1,...,tn)|≤%

n∑
i=1

|Fti(x, t1, ..., tn)| ∈ L1([0, 1]).

We say that u = (u1, ..., un) is a weak solution to the system (3.1) if
u = (u1, ..., un) ∈ X and

n∑
i=1

∫ 1

0

(
pi(x)u′i(x)v′i(x) + qi(x)ui(x)vi(x)

)
dx

−λ
n∑
i=1

∫ 1

0
Fui(x, u1(x), ..., un(x))vi(x)dx = 0
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for every v = (v1, ..., vn) ∈ X.
For a given positive constant ν, put

a(ν) :=

∫ 1
0 sup(t1,...,tn)∈K(ν) F (x, t1, ..., tn)dx

ν2

where K(ν) = {(t1, ..., tn) ∈ Rn :
∑n

i=1 |ti| ≤ ν}(see (2.1)).
We formulate the main result of this section as follows:

Theorem 3.1. Let F : [0, 1]× Rn → R satisfies the conditions
F (x, t1, ..., tn) ≥ 0 for all (x, t1, ..., tn) ∈ [0, 1]× (R ∪ {0})n and
F (x, 0, ..., 0) = 0 for every x ∈ [0, 1]. Assume that there exist four posi-

tive constants ν1, ν2, η and τ with ν1 < n
√

2
m ||qn||1τ < ν2 < η such that

(A1)

max
{
a(ν1), a(ν2),

η2

η2 − ν2
2

a(η)
}

<
m

2n2||qn||1

∫ 1
0 F (x, 0, ..., 0, τ)dx−

∫ 1
0 sup(t1,...,tn)∈K(ν1) F (x, t1, ..., tn)dx

τ2
.

Then, for each

λ ∈
] 1

2 ||qn||1τ
2∫ 1

0 sup(t1,...,tn)∈K(ν1) F (x, t1, ..., tn)dx−
∫ 1

0 F (x, 0, ..., 0, τ)dx

,
m

4n2
min

{ 1

a(ν1)
,

1

a(ν2)
,
η2 − ν2

2

η2

1

a(η)

}[
the system (3.1) admits at least three weak solutions vj = (vj1, . . . , v

j
n) ∈

X (j = 1, 2, 3) such that

n∑
i=1

|vji (x)| ≤ η for each x ∈ [a, b], j = 1, 2, 3.

Proof. In order to apply Theorem 2.1 to our problem, we introduce the
functionals Φ, Ψ : X → R for each u = (u1, ..., un) ∈ X, as follows

Φ(u) =

n∑
i=1

||ui||2

2

and

Ψ(u) =

∫ 1

0
F (x, u1(x), ..., un(x))dx.



826 Heidarkhani

It is well known that Φ and Ψ are well defined and continuously differ-
entiable functionals whose derivatives at the point u = (u1, ..., un) ∈ X
are the functionals Φ′(u),Ψ′(u) ∈ X∗, given by

Φ′(u)(v) =
n∑
i=1

∫ 1

0

(
pi(x)u′i(x)v′i(x) + qi(x)ui(x)vi(x)

)
dx

and

Ψ′(u)(v) =
n∑
i=1

∫ 1

0
Fui(x, u1(x), ..., un(x))vi(x)dx

for every v = (v1, ..., vn) ∈ X, respectively. Moreover, Φ is sequentially
weakly lower semicontinuous and Φ′ admits a continuous inverse on X∗,
as well as, Ψ′ : X → X∗ is a compact operator. Obviously, Φ and Ψ
satisfy condition 1. of Theorem 2.1. Moreover, since F (x, t1, ..., tn) ≥ 0
for all (x, t1, ..., tn) ∈ [0, 1] × (R ∪ {0})n, for every u∗, u∗∗ ∈ X with
Ψ(u∗) ≥ 0 and Ψ(u∗∗) ≥ 0, one has

inf
s∈[0,1]

Ψ(su∗ + (1− s)u∗∗) ≥ 0.

Set w(x) = (0, ..., 0, τ), r1 = m( ν12n)2, r2 = m( ν22n)2 and r3 = m
η2−ν22

4n2 .

One has Φ(w) = 1
2 ||qn||1τ

2. So, bearing the condition

ν1 < n
√

2
m ||qn||1τ

2 < ν2 < η in mind, we get r1 < Φ(w) < r2 and

r3 > 0. Since for 1 ≤ i ≤ n,

|ui(x)| ≤
√

2

mi
||ui|| ∀ ui ∈W 1,2([0, 1]),

we obtain

(3.2) sup
x∈[0,1]

n∑
i=1

|ui(x)|2 ≤
n∑
i=1

2

mi
||ui||2 ≤

2

m

n∑
i=1

||ui||2
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for each u = (u1, ..., un) ∈ X, and so from the definition of Φ, we see
that

Φ−1(]−∞, r1[) = {u = (u1, ..., un) ∈ X; Φ(u) < r1}

=

{
u ∈ X;

n∑
i=1

||ui||2 < 2r1

}

⊆

{
u ∈ X;

n∑
i=1

|ui(x)|2 < ν2
1

n2
for all x ∈ [0, 1]

}

⊆

{
u ∈ X;

n∑
i=1

|ui(x)| ≤ ν1 for all x ∈ [0, 1]

}
,

which follows

sup
(u1,...,un)∈Φ−1(]−∞,r1[)

Ψ(u)

= sup
(u1,...,un)∈Φ−1(]−∞,r1[)

∫ 1

0
F (x, u1(x), ..., un(x))dx

≤
∫ 1

0
sup

(t1,...,tn)∈K(ν1)
F (x, t1, ..., tn)dx.

In a similar way, we get

sup
(u1,...,un)∈Φ−1(]−∞,r2[)

Ψ(u)

= sup
(u1,...,un)∈Φ−1(]−∞,r2[)

∫ 1

0
F (x, u1(x), ..., un(x))dx

≤
∫ 1

0
sup

(t1,...,tn)∈K(ν2)
F (x, t1, ..., tn)dx

and

sup
(u1,...,un)∈Φ−1(]−∞,r2+r3[)

Ψ(u)

= sup
(u1,...,un)∈Φ−1(]−∞,r2+r3[)

∫ 1

0
F (x, u1(x), ..., un(x))dx

≤
∫ 1

0
sup

(t1,...,tn)∈K(η)
F (x, t1, ..., tn)dx.
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So, taking into account that 0 ∈ Φ−1(]−∞, r1[), one has

ϕ(r1) ≤
supu∈Φ−1(]−∞,r1[) Ψ(u)

r1
≤
∫ 1

0 sup(t1,...,tn)∈K(ν1) F (x, t1, ..., tn)dx

m( ν12n)2
,

ϕ(r2) ≤
supu∈Φ−1(]−∞,r2[) Ψ(u)

r2
≤
∫ 1

0 sup(t1,...,tn)∈K(ν1) F (x, t1, ..., tn)dx

m( ν22n)2

and

γ(r1, r2) ≤
supu∈Φ−1(]−∞,r2+r3[) Ψ(u)

r3

≤
∫ 1

0 sup(t1,...,tn)∈K(η) F (x, t1, ..., tn)dx

m
η2−ν22

4n2

On the other hand, for each u ∈ Φ−1(]−∞, r1[), one has

β(r1, r2) ≥
∫ 1

0 F (x,w1(x), ..., wn(x))dx−
∫ 1

0 F (x, u1(x), ..., un(x))dx∑n
i=1

||wi||2
2 −

∑n
i=1

||ui||2
2

≥
∫ 1

0 F (x,w1(x), ..., wn(x))dx−
∫ 1

0 sup(t1,...,tn)∈K(ν1) F (x, t1, ..., tn)dx
1
2 ||qn||1τ2

=
2

||qn||1

∫ 1
0 F (x, 0, ..., 0, τ)dx−

∫ 1
0 sup(t1,...,tn)∈K(ν1) F (x, t1, ..., tn)dx

τ2
.

Thanks to assumption (A1) we observe that

α(r1, r2, r3) < β(r1, r2).

Therefore, taking into account that the weak solutions of the system
(3.1) are exactly the solutions of the equation Φ′(u) − λΨ′(u) = 0, and
recalling (3.2), Theorem 2.1 follows the conclusion. �

Remark 3.2. The weak solutions of the system (3.1) where F is a
C1-function, by using standard methods, belong to C2([0, 1]). Namely,
in this case, the classical and the weak solutions of the system (3.1)
coincide.

Now, we point out the following direct consequence of Theorem 3.1.

Theorem 3.3. Let F : [0, 1]× Rn → R satisfies the conditions
F (x, t1, ..., tn) ≥ 0 for all (x, t1, ..., tn) ∈ [0, 1]× (R ∪ {0})n and
F (x, 0, ..., 0) = 0 for every x ∈ [0, 1]. Assume that there exist three pos-

itive constants ν1, κ and τ with ν1 < n
√

2
m ||qn||1τ <

1√
2
κ such that
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(A2) a(ν1) <
( m

2n2||qn||1
)2

1+ m

2n2||qn||1

∫ 1
0 F (x,0,...,0,τ)dx

τ2
;

(A3) a(κ) < 1
2

m

2n2||qn||1
1+ m

2n2||qn||1

∫ 1
0 F (x,0,...,0,τ)dx

τ2

Then, for each

λ ∈
]1 + m

2n2||qn||1
m

2n2||qn||1

1
2 ||qn||1τ

2∫ 1
0 F (x, 0, ..., 0, τ)dx

,
m

4n2
min

{ 1

a(ν1)
,

1

2a(κ)

}[
the system (3.1) admits at least three weak solutions vj = (vj1, . . . , v

j
n) ∈

X (j = 1, 2, 3) such that

n∑
i=1

|vji (x)| ≤ κ for each x ∈ [a, b], j = 1, 2, 3.

Proof. Since m
2n2||qn||1 < 1, from (A2) one has

a(ν1) =

∫ 1
0 sup(t1,...,tn)∈K(ν1) F (x, t1, ..., tn)dx

ν2
1

<

∫ 1
0 sup(t1,...,tn)∈K(ν1) F (x, t1, ..., tn)dx

m
2n2||qn||1 ν

2
1

<

m
2n2||qn||1

1 + m
2n2||qn||1

∫ 1
0 F (x, 0, ..., 0, τ)dx

τ2
.

By choosing ν2 = 1√
2
κ and η = κ, from (A3) one has

(3.3) a(ν2) = a(
1√
2
κ) ≤ 2a(κ) <

m
2n2||qn||1

1 + m
2n2||qn||1

∫ 1
0 F (x, 0, ..., 0, τ)dx

τ2

and

(3.4)
η2

η2 − ν2
2

a(η) = 2a(κ) <

m
2n2||qn||1

1 + m
2n2||qn||1

∫ 1
0 F (x, 0, ..., 0, τ)dx

τ2
.

Moreover, bearing the condition ν1 < n
√

2
m ||qn||1τ in mind, from (A2)

we deduce

m

2n2||qn||1

∫ 1
0 F (x, 0, ..., 0, τ)dx−

∫ 1
0 sup(t1,...,tn)∈K(ν1) F (x, t1, ..., tn)dx

τ2
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>
m

2n2||qn||1

∫ 1
0 F (x, 0, ..., 0, τ)dx

τ2
−
∫ 1

0 sup(t1,...,tn)∈K(ν1) F (x, t1, ..., tn)dx

ν2
1

>
( m

2n2||qn||1
−

( m
2n2||qn||1 )2

1 + m
2n2||qn||1

)∫ 1
0 F (x, 0, ..., 0, τ)dx

τ2

=

m
2n2||qn||1

1 + m
2n2||qn||1

∫ 1
0 F (x, 0, ..., 0, τ)dx

τ2
.

Hence, using again Assumptions (A2) and (A3), owing to (3.3) and
(3.4), we observe that all assumptions of Theorem 3.1 are satisfied. So,
by applying Theorem 3.1 we have the conclusion. �

We here want to point out a simple version of Theorem 3.3 when
n = 1.

Let p1 = p, q1 = q and m1 = m. Let f : [0, 1] × R → R be an
L1-Carathéodory function. Let F be the function defined by F (x, t) =∫ t

0 f(x, s)ds for each (x, t) ∈ [0, 1] × R. Then, we have the following
existence result.

Theorem 3.4. Let the function f satisfies the condition f(x, t) ≥ 0 for
all x ∈ [0, 1] and for all t ≥ 0. Assume that there exist three positive

constants ν1, κ and τ with ν1 <
√

2
m ||q||1τ <

1√
2
κ such that

(A4)

∫ 1
0 sup|t|≤ν1 F (x,t)dx

ν21
<

( m
2||q||1

)2

1+ m
2||q||1

∫ 1
0 F (x,τ)dx

τ2
;

(A5)
∫ 1
0 sup|t|≤κ F (x,t)dx

κ2
< 1

2

m
2||q||1

1+ m
2||q||1

∫ 1
0 F (x,τ)dx

τ2
.

Then, for each

λ ∈
]1 + m

2||q||1
m

2||q||1

1
2 ||q||1τ

2∫ 1
0 F (x, τ)dx

,
m

4
min

{ ν2
1∫ 1

0 sup|t|≤ν1 F (x, t)dx
,

κ2

2
∫ 1

0 sup|t|≤κ F (x, t)dx

}[
the problem

(3.5)

{
−(p(x)u′(x))′ + q(x)u′(x) = λf(x, u) x ∈ (0, 1),
u′(0) = u′(1) = 0

admits at least three weak solutions vj ∈ W 1,2([0, 1]) (j = 1, 2, 3) such
that

|vj(x)| ≤ κ for each x ∈ [a, b], j = 1, 2, 3.
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The following result gives the existence of at least three weak solutions
in W 1,2([0, 1]) to the problem (3.5) in the autonomous case.

Let f : R→ R be a continuous function satisfying f(t) ≥ 0 for every

t ≥ 0, and put F (t) =
∫ t

0 f(ξ)dξ for all t ∈ R. We have the following
result as a straightforward consequence of Theorem 3.4.

Theorem 3.5. Assume that there exist three positive constants ν1, κ

and τ with ν1 <
√

2
m ||q||1τ <

1√
2
κ such that

(A6) f(t) ≥ 0 for each t ∈ [−κ, 0];

(A7) F (ν1)
ν21

<
( m
2||q||1

)2

1+ m
2||q||1

F (τ)
τ2

;

(A8) F (κ)
κ2

< 1
2

m
2||q||1

1+ m
2||q||1

F (τ)
τ2

.

Then, for each

λ ∈
]2||q||21 + ||q||1m

2m

τ2

F (τ)
,
m

4
min

{ ν2
1

F (ν1)
,
1

2

κ2

F (κ)

}[
the problem

(3.6)

{
−(p(x)u′(x))′ + q(x)u′(x) = λf(u) x ∈ (0, 1),
u′(0) = u′(1) = 0

admits at least three classical solutions vj ∈ W 1,2([0, 1]) (j = 1, 2, 3)
such that

|vj(x)| ≤ κ for each x ∈ [a, b], j = 1, 2, 3.

As an example of the results, the following consequence, ensures the
existence of at least two non-trivial classical solutions to the problem
(3.6).

Theorem 3.6. Let f : R→]0,+∞[ be a continuous function such that

lim
t→0+

f(t)

t
= lim

t→+∞

f(t)

t
= 0.

Then, for every λ > inf
{

2||q||21+||q||1m
2m

τ2

F (τ) : τ > 0, F (τ) > 0
}

, the

problem (3.6) admits at least two non-trivial classical solutions.

Proof. Fix λ > inf
{

2||q||21+||q||1m
2m

τ2

F (τ) : τ > 0, F (τ) > 0
}

, and let τ be

a positive constant such that F (τ) > 0 and λ >
2||q||21+||q||1m

2m
τ2

F (τ) . Since

limt→0+
f(t)
t = 0, there is a positive constant ν1 with ν1 <

√
2
m ||q||1τ
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such that F (ν1)
ν21

< m
4λ , and since limt→+∞

f(t)
t = 0, there is a positive

constant κ with
√

2
m ||q||1τ < 1√

2
κ such that F (κ)

κ2
< m

8λ . Therefore,

Theorem 3.5 follows the conclusion. �

We end this section by giving the following result which provides the
existence of at least three weak solutions for the system (1.1).

Put m′i = min
{

min[0,1] e
−Ripi, min[0,1] e

−Riqi

}
where Ri is a primi-

tive of ri
pi

for 1 ≤ i ≤ n, and put m′ = min{m′i; 1 ≤ i ≤ n}. Then, we

have the following result.

Theorem 3.7. Let F : [0, 1]× Rn → R satisfy the conditions
F (x, t1, ..., tn) ≥ 0 for all (x, t1, ..., tn) ∈ [0, 1]× (R ∪ {0})n and
F (x, 0, ..., 0) = 0 for every x ∈ [0, 1]. Assume that there exist four pos-

itive constants ν1, ν2, η and τ with ν1 < n
√

2
m′ ||e−Rnqn||1τ < ν2 < η

where ||e−Rnqn||1 =
∫ 1

0 e
−Rn(x)qn(x)dx such that

(A9)

max
{
a(ν1), a(ν2),

η2

η2 − ν2
2

a(η)
}

< m′
∫ 1

0 F (x, 0, ..., 0, τ)dx−
∫ 1

0 sup(t1,...,tn)∈K(ν1) F (x, t1, ..., tn)dx

2n2||e−Rnqn||1τ2
.

Then, for each

λ ∈
] 1

2 ||e
−Rnqn||1τ2

max{||e−Ri ||1; 1 ≤ i ≤ n}

× 1( ∫ 1
0 sup(t1,...,tn)∈K(ν1) F (x, t1, ..., tn)dx−

∫ 1
0 F (x, 0, ..., 0, τ)dx

)
,
m

4n2

1

min{||e−Ri ||1; 1 ≤ i ≤ n}
min

{ 1

a(ν1)
,

1

a(ν2)
,
η2 − ν2

2

η2

1

a(η)

}[
the system (1.1) admits at least three weak solutions vj = (vj1, . . . , v

j
n) ∈

X (j = 1, 2, 3) such that

n∑
i=1

|vji (x)| ≤ η for each x ∈ [a, b], j = 1, 2, 3.
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Proof. Taking into account that the solutions of the system −(e−Ripi(x)u′i(x))′ + e−Riqi(x)ui(x) = λe−RiFui(x, u1, ..., un)
x ∈ (0, 1),
u′i(0) = u′i(1) = 0

and the solutions of the system (1.1) coincide, Theorem 3.1 follows the
conclusion. �

4. Existence of a non-trivial solution

In this section, by the use of Theorem 2.2, we prove that under appro-
priate assumptions on F , the system (1.1) admits at least one non-trivial
weak solution.

For given a nonnegative constant ν and a positive constant τ with
m( νn)2 6= 2τ2||qn||1, put

bτ (ν) :=

∫ 1
0 sup(t1,...,tn)∈K(ν) F (x, t1, ..., tn)dx−

∫ 1
0 F (x, 0, ..., 0, τ)dx

m
2 ( νn)2 − τ2||qn||1

where K(ν) = {(t1, ..., tn) ∈ Rn :
∑n

i=1 |ti| ≤ ν} (see (2.1)) and ||qn||1 =∫ 1
0 qn(x)dx.

We formulate the main result of this section as follows:

Theorem 4.1. Assume that there exist a non-negative constant ν1 and

two positive constants ν2 and τ with ν1 < n
√

2
m ||qn||1τ < ν2 such that

(B1) bτ (ν2) < bτ (ν1).

Then, for each λ ∈
]

1
2

1
bτ (ν1) ,

1
2

1
bτ (ν2)

[
the system (3.1) admits at least

one non-trivial weak solution u0 = (u01, . . . , u0n) ∈ X such that m2 (ν1n )2 <∑n
i=1 ||u0i||2 < m

2 (ν2n )2.

Proof. In order to apply Theorem 2.2 to our problem, we take Φ and
Ψ as in the proof of Theorem 3.1. Set w(x) = (0, ..., 0, τ), r1 = m( ν12n)2

and r2 = m( ν22n)2. One has Φ(w) = 1
2 ||qn||1τ

2. So, bearing the condition

ν1 < n
√

2
m ||qn||1τ

2 < ν2 in mind, we get

r1 < Φ(w) < r2.
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From the definition of Φ and recalling (3.2), we see that

Φ−1(]−∞, r2[) = {u = (u1, ..., un) ∈ X; Φ(u) < r2}

=

{
u ∈ X;

n∑
i=1

||ui||2 < 2r2

}

⊆

{
u ∈ X;

n∑
i=1

|ui(x)|2 < ν2
2

n2
for all x ∈ [0, 1]

}

⊆

{
u ∈ X;

n∑
i=1

|ui(x)| ≤ ν2 for all x ∈ [0, 1]

}
,

which follows

sup
(u1,...,un)∈Φ−1(]−∞,r2[)

Ψ(u)

= sup
(u1,...,un)∈Φ−1(]−∞,r2[)

∫ 1

0
F (x, u1(x), ..., un(x))dx

≤
∫ 1

0
sup

(t1,...,tn)∈K(ν2)
F (x, t1, ..., tn)dx.

So, one has

δ(r1, r2) ≤
supu∈Φ−1(]−∞,r2[) Ψ(u)−Ψ(w)

r2 − Φ(w)

≤
∫ 1

0 sup(t1,...,tn)∈K(ν2) F (x, t1, ..., tn)dx−Ψ(w)

r2 − Φ(w)

≤ 2bτ (ν2).

On the other hand, by similar reasoning as before, one has

ρ(r1, r2) ≥
Ψ(w)− supu∈Φ−1(]−∞,r1[) Ψ(u)

Φ(w)− r1

≥
Ψ(w)−

∫ 1
0 sup(t1,...,tn)∈K(ν1) F (x, t1, ..., tn)dx

Φ(w)− r1

≥ 2bτ (ν1).

Hence, from Assumption (B1), one has δ(r1, r2) < ρ(r1, r2). Therefore,
applying Theorem 2.2, taking into account that the weak solution of the
system (3.1) are exactly the solution of the equation Φ′(u)−λΨ′(u) = 0,
we have the conclusion. �
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Now we point out the following consequence of Theorem 4.1.

Theorem 4.2. Assume that there exist two positive constants ν and τ

with n
√

2
m ||qn||1τ < ν such that

(B2)

∫ 1
0 sup(t1,...,tn)∈K(ν) F (x,t1,...,tn)dx

ν2
< m

2n2||qn||1

∫ 1
0 F (x,0,...,0,τ)dx

τ2
;

(B3) F (x, 0, ..., 0) = 0 for every x ∈ [0, 1].

Then, for each

λ ∈

]
1
2 ||qn||1τ

2∫ 1
0 F (x, 0, ..., 0, τ)dx

,
m( ν

2n)2∫ 1
0 sup(t1,...,tn)∈K(ν) F (x, t1, ..., tn)dx

[
the system (3.1) admits at least one non-trivial weak solution u0 =
(u01, . . . , u0n) ∈ X such that

∑n
i=1 ||ui||∞ < ν.

Proof. By the use of Theorem 4.1 and taking ν1 = 0, ν2 = ν we get the
conclusion. Indeed, owing to our assumptions, one has

bτ (ν2) <

(
1− 2n2||qn||1τ2

mν2

) ∫ 1
0 sup(t1,...,tn)∈K(ν) F (x, t1, ..., tn)dx

m
2 ( νn)2 − τ2||qn||1

=

(
1− ||qn||1τ

2

m
2

( ν
n

)2

) ∫ 1
0 sup(t1,...,tn)∈K(ν) F (x, t1, ..., tn)dx

m
2 ( νn)2 − τ2||qn||1

=

∫ 1
0 sup(t1,...,tn)∈K(ν) F (x, t1, ..., tn)dx

m
2 ( νn)2

.

On the other hand, taking Assumption (B3) into account, one has∫ 1
0 F (x, 0, ..., 0, τ)dx

||qn||1τ2
= bτ (ν1).

Moreover, taking (3.2) into account,
∑n

i=1 ||ui||∞ < ν whenever Φ(u) <
r2. Now, owing to assumption (B2), it is sufficient to invoke Theorem
4.1 for concluding the proof. �

Here we want to point out a simple version of Theorem 4.1 when
n = 1.

Let p1 = p, q1 = q and m1 = m. Let f : [0, 1] × R → R be an
L1-Carathéodory function. Let F be the function defined by F (x, t) =
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0 f(x, s)ds for each (x, t) ∈ [0, 1] × R. For given nonnegative constant

ν and a positive constant τ with mν2 6= 2τ2||q||1, put

cτ (ν) :=

∫ 1
0 sup|t|≤ν F (x, t)dx−

∫ 1
0 F (x, τ)dx

m
2 ν

2 − τ2||q||1
.

We have the following result.

Theorem 4.3. Assume that there exist a non-negative constant ν1 and

two positive constants ν2 and τ with ν1 <
√

2
m ||q||1τ < ν2 such that

(B4) cτ (ν2) < cτ (ν1).

Then, for each λ ∈
]

1
2

1
cτ (ν1) ,

1
2

1
cτ (ν2)

[
the problem (3.5) admits at least

one non-trivial weak solution u0 ∈W 1,2([0, 1]) such that

m

2
ν2

1 <
n∑
i=1

||u0i||2 <
m

2
ν2

2 .

The last result gives the existence of at least one non-trivial weak
solution in W 1,2([0, 1]) to the problem (3.5) in the autonomous case.

Let f : R → R be a continuous function, and put F (t) =
∫ t

0 f(ξ)dξ
for all t ∈ R. We have the following result as a direct consequence of
Theorem 4.3.

Theorem 4.4. Assume that there exist a non-negative constant ν1 and

two positive constants ν2 and τ with ν1 <
√

2
m ||q||1τ < ν2 such that

(B5) f(t) ≥ 0 for each t ∈ [−ν2, max{ν2, τ}];
(B6) F (ν2)−F (τ)

m
2

( ν
n

)2−τ2||q||1 <
F (ν1)−F (τ)

m
2

( ν
n

)2−τ2||q||1 .

Then, for each λ ∈
]

1
2

m
2

( ν
n

)2−τ2||q||1
F (ν1)−F (τ) , 1

2

m
2

( ν
n

)2−τ2||q||1
F (ν2)−F (τ)

[
the problem (3.6)

admits at least one non-trivial classical solution u0 ∈ W 1,2([0, 1]) such
that

m

2
ν2

1 <

n∑
i=1

||u0i||2 <
m

2
ν2

2 .

As an example, we point out the following special case of the main
result.
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Theorem 4.5. Let g : R → R be a nonnegative function such that

limt→0+
g(t)
t = +∞.

Then, for each λ ∈
]
0, m

4 supν>0
ν2∫ ν

0 g(ξ)dξ

[
, the problem{

−(p(x)u′(x))′ + q(x)u′(x) = λg(u) x ∈ (0, 1),
u′(0) = u′(1) = 0

admits at least one non-trivial classical solution in W 1,2([0, 1]).

Proof. For fixed λ as in the conclusion, there exists a positive constant
ν such that

λ <
m

4

ν2∫ ν
0 g(ξ)dξ

.

Moreover, the condition limt→0+
g(t)
t = +∞ implies limt→0+

∫ t
0 g(ξ)dξ

t2
=

+∞. Therefore, a positive constant τ satisfying τ < ν√
2
m
||q||1

can be

chosen such that
1

λ
(
||q||1

2
) <

∫ τ
0 g(ξ)dξ

τ2
.

Hence, the conclusion follows from Theorem 4.4 with ν1 = 0, ν2 = ν and
f(t) = g(t) for every t ∈ R. �

Remark 4.6. For fixed ρ put λρ := m
4 supν∈]0,ρ[

ν2∫ ν
0 g(ξ)dξ

. The result of

Theorem 4.5 for every λ ∈]0, λρ[ holds with |u0(x)| < ρ for all x ∈ [0, 1]
where u0 is the ensured non-trivial classical solution in W 1,2([0, 1]) (see
[7, Remark 4.3]).

We present the following example to illustrate the result.

Example 1. Consider the problem

(4.1)

{
−(exu′)′ + exu = λ(1 + e−u

+
(u+)2(3− u+)) x ∈ (0, 1),

u′(0) = u′(1) = 0.

where u+ = max{u, 0}. Let

g(t) = 1 + e−t
+

(t+)2(3− t+)

for all t ∈ R where t+ = max{t, 0}. It is clear that limt→0+
g(t)
t = +∞.

Hence, by applying Theorem 4.5, since m = 1, for every λ ∈]0, e
4(1+e) [

the problem (4.1) has at least one non-trivial classical solution u0 ∈
W 1,2([0, 1]) such that ||u0||∞ < 1.
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Finally, we give the following existence property of the system (1.1).

Put m′i = min
{

min[0,1] e
−Ripi, min[0,1] e

−Riqi

}
where Ri is a primi-

tive of ri
pi

for 1 ≤ i ≤ n, and put m′ = min{m′i; 1 ≤ i ≤ n}.
For given a nonnegative constant ν and a positive constant τ with

m′( νn)2 6= 2τ2||qn||1, put

dτ (ν) :=

∫ 1
0 sup(t1,...,tn)∈K(ν) F (x, t1, ..., tn)dx−

∫ 1
0 F (x, 0, ..., 0, τ)dx

m′

2 ( νn)2 − τ2||e−Rnqn||1

where K(ν) = {(t1, ..., tn) ∈ Rn :
∑n

i=1 |ti| ≤ ν} (see (2.1)) and

||e−Rnqn||1 =
∫ 1

0 e
−Rn(x)qn(x)dx.

Then, we have the following result.

Theorem 4.7. Assume that there exist a non-negative constant ν1 and

two positive constants ν2 and τ with ν1 < n
√

2
m′ ||e−Rnqn||1τ < ν2 such

that

(B7) dτ (ν2) < dτ (ν1).

Then, for each

λ ∈
]

1
2 max{||e−Ri ||1; 1≤i≤n}

1
dτ (ν1) ,

1
2 min{||e−Ri ||1; 1≤i≤n}

1
dτ (ν2)

[
the system

(1.1) admits at least one non-trivial weak solution u0 = (u01, . . . , u0n) ∈
X such that m′

2 (ν1n )2 <
∑n

i=1 ||u0i||2 < m′

2 (ν2n )2.

Proof. By the same reasoning as in the proof of Theorem 3.7, Theorem
4.1 follows the conclusion. �
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