Bulletin of the Iranian Mathematical Society Vol. 39 No. 5 (2013), pp 865-880.

LINEAR PRESERVERS OF G-ROW AND G-COLUMN MAJORIZATION ON $M_{n,m}$

A. ARMANDNEJAD*, Z. MOHAMMADI AND F. AKBARZADEH

Communicated by Abbas Salemi Parizi

ABSTRACT. Let A and B be $n \times m$ matrices. The matrix B is said to be g-row majorized (respectively g-column majorized) by A, denoted by $B \prec_g^{row} A$ (respectively $B \prec_g^{column} A$), if every row (respectively column) of B, is g-majorized by the corresponding row (respectively column) of A. In this paper all kinds of g-majorization are studied on $\mathbf{M}_{n,m}$, and the possible structure of their linear preservers will be found. Also all linear operators $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ preserving (or strongly preserving) g-row or g-column majorization will be characterized.

1. Introduction

An $n \times n$ matrix R (not necessarily nonnegative) is called g-row stochastic if Re = e, where $e = (1, 1, ..., 1)^t$. A matrix D is called g-doubly stochastic if both D and D^t are g-row stochastic matrices. The collection of all $n \times n$ g-row stochastic matrices, and $n \times n$ g-doubly stochastic matrices are denoted by \mathbf{GR}_n and \mathbf{GD}_n respectively. Throughout the paper, $\mathbf{M}_{n,m}$ is the set of all $n \times m$ matrices with entries in \mathbb{F} (\mathbb{R} or \mathbb{C}), and $\mathbf{M}_n := \mathbf{M}_{n,n}$. The set of all $n \times 1$ column vectors is denoted by \mathbb{F}^n , and the set of all $1 \times n$ row vectors is denoted by \mathbb{F}_n . The symbol \mathbb{N}_k is used for the set $\{1, \ldots, k\}$. The symbol e_i is the row (or

MSC(2010): Primary: 15A03, 15A04; Secondary: 15A51

Keywords:g-row majorization; g-column majorization; linear preserver.

Received: 25 December 2011, Accepted: 23 July 2012.

^{*}Corresponding author

^{© 2013} Iranian Mathematical Society.

⁸⁶⁵

column) vector with 1 as i^{th} component and 0 elsewhere. The summation of all components of a vector x in \mathbb{F}^n or \mathbb{F}_n is denoted by $\operatorname{tr}(x)$. The symbol $[x_1/x_2/\ldots/x_n]$ (resp. $[x_1 \mid x_2 \mid \ldots \mid x_m]$) is used for the $n \times m$ matrix whose rows (resp. columns) are $x_1, x_2, \ldots, x_n \in \mathbb{F}_m$ (resp. $x_1, x_2, \ldots, x_m \in \mathbb{F}^n$). For a matrix $X = [x_{ij}] \in \mathbf{M}_{n,m}$, its average (column) vector $\overline{X} = [\overline{x_1}/\ldots/\overline{x_n}] \in \mathbb{F}^n$ is defined by the components $\overline{x_i} = m^{-1}(x_{i1} + x_{i2} + \cdots + x_{im})$, for $i \in \mathbb{N}_n$. The letter **J** stands for the (rank-1) square matrix all of whose entries are 1.

For $A, B \in \mathbf{M}_{n,m}$, it is said that A is lgs-majorized (resp. rgsmajorized) by B and denoted by $A \prec_{lgs} B$ (resp. $A \prec_{rgs} B$) if there exists an $n \times n$ (resp. $m \times m$) g-doubly stochastic matrix D such that A = DB (resp. A = BD), see [4, 6].

Let $A, B \in \mathbf{M}_{n,m}$. The matrix A is said to be lgw-majorized (resp. rgw-majorized) by B and denoted by \prec_{lgw} (resp. \prec_{rgw}) if there exists an $n \times n$ (resp. $m \times m$) g-row stochastic matrix R such that A = RB (resp. A = BR), for more details see [2, 5].

Let \prec be a relation on $\mathbf{M}_{n,m}$. A linear operator $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ is said to be a linear preserver (resp. strong linear preserver) of \prec , if $X \prec Y$ implies $TX \prec TY$ (resp. $X \prec Y$ if and only if $TX \prec TY$).

The linear preservers and strong linear preservers of lgs-majorization are characterized in [6] as follows:

Proposition 1.1. [6, Theorem 3.3] Let $T : M_{n,m} \to M_{n,m}$ be a linear operator that preserves lgs-majorization. Then one of the following statements holds:

(i) There exist $A_1, A_2, \ldots, A_m \in \mathbf{M}_{n,m}$ such that

 $TX = \sum_{j=1}^{m} \operatorname{tr}(x_j) A_j$, where $X = [x_1 \mid \ldots \mid x_m];$

(ii) There exist $S \in \mathbf{M}_m$, $a_1, \ldots, a_m \in \mathbb{F}^m$ and invertible matrices $B_1, B_2, \ldots, B_m \in \mathbf{GD}_n$, such that $TX = [B_1Xa_1 \mid \ldots \mid B_mXa_m] + \mathbf{J}XS$.

Proposition 1.2. [6, Theorem 3.7] Let $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ be a linear operator. Then T strongly preserves \prec_{lgs} if and only if TX = AXR + JXS, for some $R, S \in \mathbf{M}_m$ and invertible matrix $A \in \mathbf{GD}_n$ such that R(R + nS) is invertible.

In [2, 5], the authors proved that a linear operator $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ strongly preserves lgw-majorization (resp. rgw-majorization) if and only if TX = AXM (resp. TX = MXA), for some invertible matrices $M \in \mathbf{M}_m$ (resp. $M \in \mathbf{M}_n$) and $A \in \mathbf{GR}_n$ (resp. $A \in \mathbf{GR}_m$). In the present paper, we find the possible structure of linear operators that preserve lgw, rgw or rgs-majorization. Also, all linear preservers and strong linear preservers of g-row and g-column majorization will be characterized. To see some kinds of majorization and their linear preservers we refer the readers to [1], [3] and [7]-[11].

2. Lgs-column (rgs-row) majorization on $\mathbf{M}_{n,m}$

In this section we characterize all linear operators on $\mathbf{M}_{n,m}$ that preserve or strongly preserve lgs-column (rgs-row) majorization.

Definition 2.1. Let $A, B \in \mathbf{M}_{n,m}$. It is said that B is lgs-column (resp. rgs-row) majorized by A, written as $B \prec_{lgs}^{column} A$ (resp. $B \prec_{rgs}^{row} A$), if every column (resp. row) of B is lgs- (resp. rgs-) majorized by the corresponding column (resp. row) of A.

We use the following statements to prove the main result of this section.

Proposition 2.2. [6, Theorem 2.4] Let $T : \mathbb{F}^n \to \mathbb{F}^n$ be a linear operator. Then T preserves gs-majorization if and only if one of the following statements holds:

(a) Tx = tr(x)a, for some $a \in \mathbb{F}^n$;

(b) $Tx = \alpha Dx + \beta Jx$, for some $\alpha, \beta \in \mathbb{F}$ and invertible matrix $D \in GD_n$.

Proposition 2.3. [6, Lemma 3.1] Let $A \in GD_n$ be invertible. Then the following conditions are equivalent:

(a) $A = \alpha I + \beta J$, for some $\alpha, \beta \in \mathbb{F}$;

(b) $(Dx + ADy) \prec_{gs} (x + Ay)$, for all $D \in \mathbf{GD}_n$ and for all $x, y \in \mathbb{F}^n$. **Proposition 2.4.** [6, Lemma 3.2] Let $T_1, T_2 : \mathbb{F}^n \to \mathbb{F}^n$ satisfy $T_1(x) = \alpha Ax + \beta Jx$ and $T_2(x) = \operatorname{tr}(x)a$, for some $\alpha, \beta \in \mathbb{F}, \alpha \neq 0$, invertible matrix $A \in \mathbf{GD}_n$ and $a \in (\mathbb{F}^n \setminus \operatorname{Span}\{e\})$. Then there exists a g-doubly stochastic matrix D and a vector $x \in \mathbb{F}^n$ such that $T_1(Dx) + T_2(Dx) \prec_{gs} T_1(x) + T_2(x)$.

Lemma 2.5. Let $a \in \mathbb{F}^m$. The linear operator $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ defined by $TX = [Xa \mid \ldots \mid Xa]$, preserves lgs-column majorization if and only if $a \in \bigcup_{i=1}^m \text{Span}\{e_i\}$.

Proof. If $a \in \bigcup_{i=1}^{m} \text{Span}\{e_i\}$, it is easy to show that T preserves \prec_{lgs}^{column} . Conversely, let T preserve \prec_{lgs}^{column} . Assume that $a = (a_1, \ldots, a_m)^t \notin \bigcup_{i=1}^{m} \text{Span}\{e_i\}$. Then there exist distinct $i, j \in \mathbb{N}_m$ such that $a_i, a_j \neq 0$. Without loss of generality assume that $a_1, a_2 \neq 0$. Put

$$X := \begin{pmatrix} -a_2 & -a_1 \\ a_2 & a_1 \end{pmatrix} \oplus 0, \ Y := \begin{pmatrix} a_2 & -a_1 \\ -a_2 & a_1 \end{pmatrix} \oplus 0 \in \mathbf{M}_{n,m}.$$

It is clear that $X \prec_{lgs}^{column} Y$, so $Xa \prec_{lgs} Ya$. But Ya = 0 and $Xa \neq 0$, which is a contradiction.

For every $i, j \in \mathbb{N}_m$, consider the embedding $E^j : \mathbb{F}^m \to \mathbf{M}_{n,m}$ by $E^j(x) = xe_j$ and projection $E_i : \mathbf{M}_{n,m} \to \mathbb{F}^n$ by $E_i(A) = Ae_i$. It is easy to show that for every linear operator $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$,

$$TX = \left[\sum_{j=1}^{m} T_1^j x_j \middle| \dots \middle| \sum_{j=1}^{m} T_m^j x_j \right],$$

where $T_i^j = E_i \circ T \circ E^j$ and $X = [x_1 | \dots | x_m]$. If T preserves \prec_{lgs}^{column} , it is clear that $T_i^j : \mathbb{F}^n \to \mathbb{F}^n$ preserves \prec_{lgs} .

Now, we state the main theorem of this section.

Theorem 2.6. Let $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ be a linear operator. Then T preserves lgs-column majorization if and only if there exist $A_1, \ldots, A_m \in \mathbf{M}_{n,m}, b_1, \ldots, b_m \in \bigcup_{i=1}^m \mathrm{Span}\{e_i\}$, invertible matrices $B_1, \ldots, B_m \in \mathbf{GD}_n$, and $S \in \mathbf{M}_m$ such that for every $i \in \mathbb{N}_m$, $b_i = 0$ or $A_1e_i = \cdots = A_me_i = 0$ and for all $X = [x_1 \mid \ldots \mid x_m] \in \mathbf{M}_{n,m}$,

(2.1)
$$TX = \sum_{j=1}^{m} \operatorname{tr}(x_j) A_j + [B_1 X b_1 | \dots | B_m X b_m] + J X S_j$$

Proof. First, assume that the condition (2.1) holds. Suppose $X = [x_1 \mid \dots \mid x_m], Y = [y_1 \mid \dots \mid y_m] \in \mathbf{M}_{n,m}$ and $X \prec_{lgs}^{column} Y$. Since for every $i \in \mathbb{N}_m$, $b_i = 0$ or $A_1e_i = \dots = A_me_i = 0$, it is easy to see that $TXe_i \prec_{lgs} TYe_i$ and hence $TX \prec_{lgs}^{column} TY$. Conversely, assume that T preserves \prec_{lgs}^{column} . For every $i, j \in \mathbb{N}_m, T_i^j : \mathbb{F}^n \to \mathbb{F}^n$ preserves \prec_{lgs} . Then, each T_i^j is of the form (a) or (b) in Proposition 2.2. Let

$$\mathbf{I} = \{k \in \mathbb{N}_m : \exists l \in \mathbb{N}_m \text{ such that } T_k^l \text{ is of the form } (b) \text{ with } \alpha_k^l \neq 0\}$$

For every $k \in \mathbf{I}$ there exists $l \in \mathbb{N}_m$ such that $T_k^l x = \alpha_k^l B_k x + \beta_k^l \mathbf{J} x$ for some invertible matrix $B_k \in \mathbf{GD}_n$ and $\alpha_k^l \neq 0, \beta_k^l \in \mathbb{F}$.

We show that if $k \in \mathbf{I}$, then T_k^j is of form (b) with same invertible matrix $B_k \in \mathbf{GD}_n$, for every $j \in \mathbb{N}_m$.

Suppose $k \in \mathbf{I}$, then there exist $l \in \mathbb{N}_n$, $\alpha_k^l \neq 0$, $\beta_k^l \in \mathbb{F}$, invertible matrix $B_k \in \mathbf{GD}_n$ such that $T_k^l x = \alpha_k^l B_k x + \beta_k^l \mathbf{J} x$. For every $x, y \in \mathbb{F}^n$ define $X = xe_j + ye_l \in \mathbf{M}_{n,m}$. It is clear that $DX \prec_{lgs}^{column} X$, and hence $TDX \prec_{lgs}^{column} TX$, for all $D \in \mathbf{GD}_n$. This implies that $T_k^j Dx + T_k^l Dy \prec_{lgs} T_k^j x + T_k^l y$. Then by Propositions 2.3 and 2.4, there exist $\alpha_k^j, \beta_k^j \in \mathbb{F}$ such that $T_k^j x = \alpha_k^j B_k x + \beta_k^j \mathbf{J} x$. For $k \in \mathbf{I}$, set $b_k :=$ $(\alpha_k^1, \ldots, \alpha_k^m)^t$, $s_k := (\beta_k^1, \ldots, \beta_k^m)^t \in \mathbb{F}^m$ and for $k \in (\mathbb{N}_m \setminus \mathbf{I})$ set $b_k =$ $s_k := 0 \in \mathbb{F}^m$. Define $S := [s_1 \mid \ldots \mid s_m] \in \mathbf{M}_m$.

If $k \notin \mathbf{I}$, then T_k^j is of form (a) for every $j \in \mathbb{N}_m$ and hence $T_k^j x = (\operatorname{tr} x)a_k^j$, for some $a_k^j \in \mathbb{F}^n$. For $k \in \mathbf{I}$, put $a_k^j = 0$ and define $A_j := [a_1^j \mid \dots \mid a_m^j] \in \mathbf{M}_{n,m}$.

It is clear that for every $i \in \mathbb{N}_m$, $b_i = 0$ or $A_1 e_i = \cdots = A_m e_i = 0$ and by a straightforward calculation one may show that for any $X = [x_1 \mid \dots \mid x_m] \in \mathbf{M}_{n,m}$,

$$TX = \sum_{j=1}^{m} \operatorname{tr}(x_j) A_j + [B_1 X b_1 | \dots | B_m X b_m] + \mathbf{J} X S.$$

If $b_j \notin \bigcup_{i=1}^m \operatorname{Span}\{e_i\}$ for some $j \in \mathbb{N}_m$, then Lemma 3.7 implies that T is not a linear preserver of \prec_{lgs}^{column} which is a contradiction. Therefore $b_1, \ldots, b_m \in \bigcup_{i=1}^m \operatorname{Span}\{e_i\}$, as desired. \Box

The structure of strong linear preservers of lgs-column majorization is characterized as follows:

Theorem 2.7. Let $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ be a linear operator. Then T strongly preserves lgs-column majorization if and only if there exist invertible matrices $B_1, \ldots, B_m \in \mathbf{GD}_n$, $S \in \mathbf{M}_m$ and, $b_1, \ldots, b_m \in \bigcup_{i=1}^m \mathrm{Span}\{e_i\}$ such that D(D+nS) is invertible and

(2.2)
$$TX = [B_1Xb_1 \mid \ldots \mid B_mXb_m] + JXS,$$

where $D = [b_1 | ... | b_m].$

Proof. The fact that the condition (2.2) is sufficient for T to be a strong linear preserver of \prec_{lgs}^{column} is easy to prove. So, we prove the necessity of the conditions. Assume that T is a strong linear preserver of \prec_{lgs}^{column} . It can be easily seen that T is invertible. By Theorem 2.6, there exist $A_1, \ldots, A_m \in \mathbf{M}_{n,m}, b_1, \ldots, b_m \in \bigcup_{i=1}^m \mathrm{Span}\{e_i\}, S \in \mathbf{M}_m$, and invertible matrices $B_1, \ldots, B_m \in \mathbf{GD}_n$ such that for all $X = [x_1 \mid \ldots \mid x_m] \in$ $\mathbf{M}_{n,m}, TX = \sum_{i=1}^n \mathrm{tr}(x_i)A_i + [B_1Xb_1 \mid \ldots \mid B_mXb_m] + \mathbf{J}XS$ and for every $i \in \mathbb{N}_m$, $b_i = 0$ or $A_1e_i = \cdots = A_me_i = 0$. We show that for every $j \in \mathbb{N}_m$, $A_j = 0$. Assume that there exists $j \in \mathbb{N}_m$, such that $A_j \neq 0$. Without loss of generality suppose that $A_je_1 \neq 0$, then $b_1 = 0$. Set $V := \operatorname{Span}\{b_2, \ldots, b_m\}$, so $\dim V \leq m - 1$. It follows that there exists $0 \neq s \in V^{\perp}$. Set $X := [s^t/-s^t/0/\ldots/0] \in \mathbf{M}_{n,m}$. Then X is nonzero and TX = 0, which is a contradiction. Therefore $A_j = 0$, for every $j \in \mathbb{N}_m$.

Now, we prove (by contradiction) that D is invertible. Indeed, assume that D is not invertible. Choose a nonzero $s \in (\text{Span}\{b_1, \ldots, b_m\})^{\perp}$ and put $X := [s^t/-s^t/0/\ldots/0] \in \mathbf{M}_{n,m}$. Then X is nonzero and TX = 0, which is a contradiction. Therefore D is invertible.

Finally, we show that D+nS is invertible. Assume, by contradiction, that D+nS is not invertible. Choose a nonzero $x \in \mathbb{F}_m$ such that (D+nS)x = 0 and put $X := [x/\dots/x] \in \mathbf{M}_{n,m}$. Then X is nonzero and

$$TX = [B_1Xb_1 \mid \ldots \mid B_mXb_m] + \mathbf{J}XS = X(D+nS) = 0,$$

which is a contradiction. Therefore D + nS is invertible and the proof is complete.

Let $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ be a linear operator. Define $\tau : \mathbf{M}_{m,n} \to \mathbf{M}_{m,n}$ by $\tau X = (TX^t)^t$. It is easy to see that T is a (strong) linear preserver of \prec_{rgs}^{row} if and only if τ is a (strong) linear preserver of \prec_{lgs}^{column} . Combining this fact and previous theorems, we have the following corollaries:

Corollary 2.8. Let $T : \mathbb{F}_n \to \mathbb{F}_n$ be a linear operator. Then T preserves rgs-majorization if and only if one of the following statements holds:

(a) Tx = tr(x)a, for some $a \in \mathbb{F}_n$;

(b) $Tx = \alpha xD + \beta xJ$, for some $\alpha, \beta \in \mathbb{F}$ and invertible matrix $D \in GD_n$.

Corollary 2.9. Let $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ be a linear operator. Then T preserves rgs-row majorization if and only if there exist $A_1, \ldots, A_n \in \mathbf{M}_{n,m}, b_1, \ldots, b_n \in \bigcup_{i=1}^n \text{Span}\{e_i\}$, invertible matrices $B_1, \ldots, B_n \in \mathbf{GD}_m$, and $S \in \mathbf{M}_n$ such that for every $i \in \mathbb{N}_n$, $b_i = 0$ or $e_i A_1 = \cdots = e_i A_n = 0$ and for all $X = [x_1/\ldots/x_n] \in \mathbf{M}_{n,m}$,

$$TX = \sum_{j=1}^{n} \operatorname{tr}(x_j) A_j + [b_1 X B_1 / \dots / b_n X B_n] + SX J.$$

Corollary 2.10. Let $T : M_{n,m} \to M_{n,m}$ be a linear operator. Then T strongly preserves rgs-row majorization if and only if there exist

 $B_1, \ldots, B_n \in \mathbf{GD}_m, S \in \mathbf{M}_n \text{ and } b_1, \ldots, b_n \in \bigcup_{i=1}^n \operatorname{Span}\{e_i\} \text{ such that } D(D+mS) \text{ is invertible and}$

$$TX = [b_1 X B_1 / \dots / b_n X B_n] + SX J,$$

where $D = [b_1 / ... / b_n].$

3. Rgw and lgw-majorization on
$$\mathbf{M}_{n,m}$$

In this section, we begin to study the structure of linear preservers of rgw and lgw-majorization on $\mathbf{M}_{n,m}$, and then the linear operators $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ preserving or strongly preserving rgw-row (lgwcolumn) majorization will be characterized.

In the following theorems we state some results from [2].

Proposition 3.1. [2, Theorem 2.3] Let $T : \mathbb{F}_m \to \mathbb{F}_m$ be a linear operator. Then, T preserves \prec_{rgw} if and only if one of the following statements holds:

(i) $Tx = \alpha xB$, for some $\alpha \in \mathbb{F}$ and some invertible $B \in GR_n$;

(ii) $Tx = \alpha xB$, for some $\alpha \in \mathbb{F}$ and some $B \in \mathbf{GR}_n$ such that $\{x : xB = 0\} = \{x : tr(x) = 0\}.$

Proposition 3.2. [2, Lemma 2.6] Let $A \in M_n$ and α be a nonzero scalar in \mathbb{F} . Then $A = \gamma$ **I** for some $\gamma \in \mathbb{F}$ if and only if we have

 $\alpha xRA + yR \prec_{rgw} \alpha xA + y, \ \forall x, y \in \mathbb{F}_m, \forall R \in \mathbf{GR}_m.$

Lemma 3.3. Let $A \in \mathbf{GR}_m$ be invertible and $0 \neq \alpha \in \mathbb{F}$. Define $T_1 : \mathbb{F}_m \to \mathbb{F}_m$ by $T_1x = \alpha xA$ and suppose $T_2 : \mathbb{F}_m \to \mathbb{F}_m$ is a linear preserver of \prec_{raw} such that

$$T_1xR + T_2yR \prec_{rqw} T_1x + T_2y,$$

for all $x, y \in \mathbb{F}_m$ and $R \in \mathbf{GR}_m$. Then there exists $\lambda \in \mathbb{F}$ such that $T_2 x = \lambda x A$.

Proof. Since T_2 preserves \prec_{rgw} , T_2 is of form (i) or (ii) in Proposition 3.1. Assume that T_2 is of form (ii), then $T_2x = \operatorname{tr}(x)a$ for some nonzero $a \in \mathbb{F}_m$. Let $x = -\frac{1}{\alpha}aA^{-1}$, and set $y := e_1$. Then we have

$$\alpha xRA + \operatorname{tr}(yR)a \prec_{rgw} \alpha xA + \operatorname{tr}(y)a,$$

for all $R \in \mathbf{GR}_m$. It follows that

$$\alpha(-\frac{1}{\alpha}aA^{-1})RA + \operatorname{tr}(e_1R)a \prec_{rgw} \alpha(-\frac{1}{\alpha}aA^{-1})A + \operatorname{tr}(e_1)a = -a + a = 0.$$

So $-aA^{-1}RA + a = 0$, for all $R \in \mathbf{GR}_m$. Thus aR = a, for all $R \in \mathbf{GR}_m$, and hence a = 0, a contradiction. Therefore, $T_2x = \beta xA_2$, for some

 $\beta \in \mathbb{F}$ and invertible matrix $A_2 \in \mathbf{GR}_m$. Now, by Proposition 3.2, $T_2x = \lambda x A$, for some $\lambda \in \mathbb{F}$.

For every $i, j \in \mathbb{N}_n$ consider the embedding $E^j : \mathbb{F}_m \to \mathbf{M}_{n,m}$ and the projection $E_i : \mathbf{M}_{n,m} \to \mathbb{F}_m$, where $E^j(x) = e_j x$ and $E_i(A) = e_i A$. It is easy to prove that for every linear operator $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$,

$$TX = T[x_1/\cdots/x_n] = \left[\sum_{j=1}^n T_1^j x_j/\cdots/\sum_{j=1}^n T_n^j x_j\right], \text{ where } x_i \text{ is the } i^{th} \text{ row}$$

of X and $T_i^j = E_i \circ T \circ E^j$. If $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ preserves rgwmajorization, then its easy to see that $T_i^j : \mathbb{F}_m \to \mathbb{F}_m$ preserves rgwmajorization.

Now, we find the possible structure of linear operators preserving \prec_{rgw} on $\mathbf{M}_{n,m}$.

Theorem 3.4. If a linear operator $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ preserves rgwmajorization, then there exist $\mathcal{A} \in \mathbf{M}_n(\mathbb{F}_m)$, $b_1, \ldots, b_n \in \mathbb{F}_n$, and invertible matrices $A_1, \ldots, A_n \in \mathbf{GR}_m$, such that

$$TX = m\mathcal{A}\overline{X} + [b_1XA_1/\dots/b_nXA_n], \ \forall X \in M_{n,m}.$$

Proof. For every $p \in \mathbb{N}_n$, one of the following cases holds:

Case 1: there exists $q \in \mathbb{N}_n$ such that $T_p^q x = \alpha x A_p$ for some $0 \neq \alpha \in \mathbb{F}$ and invertible $A_p \in \mathbf{GR}_m$. We show that for all $j \in \mathbb{N}_n$, $T_p^j x = \lambda_p^j x A_p$, for some $\lambda_p^j \in \mathbb{F}$. For $x, y \in \mathbb{F}_m$ put $X = e_p x + e_j y$. It is clear that $XR \prec_{rgw} X$, for all $R \in \mathbf{GR}_m$, therefore $TXR \prec_{rgw} TX$, for all $R \in$ \mathbf{GR}_m and hence,

$$T_p^q x R + T_p^j y R \prec_{rgw} T_p^q x + T_p^j y, \ \forall x, y \in \mathbb{F}_m, \forall R \in \mathbf{GR}_m.$$

Use Lemma 3.3 to conclude that $T_p^j x = \lambda_p^j x A_p$, for some $\lambda_p^j \in \mathbb{F}$. Put

$$b_p := (\lambda_p^1, \dots, \lambda_p^n) \in \mathbb{F}_n$$

and $\mathcal{A}_{(p)} = 0 \in \mathbb{F}_n(\mathbb{F}_m).$

Case 2: For every $q \in \mathbb{N}_n$, T_p^q is of form (*ii*) in Proposition 3.1. Then $T_p^q x = \operatorname{tr}(x)a_p^q$ for some $a_p^q \in \mathbb{F}_m$. Put $\mathcal{A}_{(p)} = [a_p^1 \dots a_p^n] \in \mathbb{F}_n(\mathbb{F}_m)$ and $b_p = 0 \in \mathbb{F}_m$. Now, Let $\mathcal{A} = [\mathcal{A}_{(1)} / \dots / \mathcal{A}_{(n)}]$. Then

$$TX = T[x_1/\dots/x_n]$$

=
$$\left[\sum_{j=1}^n T_1^j x_j/\dots/\sum_{j=1}^n T_n^j x_j\right]$$

=
$$[b_1 X A_1/\dots/b_n X A_n] + m \mathcal{A}\overline{X}$$

where $\mathcal{A} \in \mathbf{M}_n(\mathbb{F}_m)$, $b_1, \ldots, b_n \in \mathbb{F}_n$, and $A_1, \ldots, A_n \in \mathbf{GR}_m$ are invertible matrices.

Corollary 3.5. Let $\{b_1, \ldots, b_n\} \subset \mathbb{F}_n$ and dim $(\text{Span}\{b_1, \ldots, b_n\}) \geq 2$. Assume that $A_1, \ldots, A_n \in \mathbf{GR}_m$ are invertible and define $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ by $TX = [b_1 X A_1 / \ldots / b_n X A_n]$. If T preserves \prec_{rgw} , then there exist $B \in \mathbf{M}_m$ and invertible $A \in \mathbf{GR}_m$ such that TX = BXA.

Proof. Without loss of generality we can assume that $\{b_1, b_2\}$ is a linearly independent set. Let $X \in \mathbf{M}_{n,m}$, $R \in \mathbf{GR}_m$ be arbitrary. Then $XR \prec_{rgw} X$, and hence $TXR \prec_{rgw} TX$. It follows that

- $\begin{bmatrix} b_1 X R A_1 / \dots / b_n X R A_n \end{bmatrix} \prec_{rgw} \begin{bmatrix} b_1 X A_1 / \dots / b_n X A_n \end{bmatrix}$ $\Rightarrow b_1 X R A_1 + b_2 X R A_2 \prec_{rgw} b_1 X A_1 + b_2 X A_2$
- $\Rightarrow b_1 X R + b_2 X R (A_2 A_1^{-1}) \prec_{rgw} b_1 X + b_2 X (A_2 A_1^{-1}).$

Since $\{b_1, b_2\}$ is linearly independent, for every $x, y \in \mathbb{F}^n$, there exists $B_{x,y} \in \mathbf{M}_{n,m}$ such that $b_1 B_{x,y} = x$ and $b_2 B_{x,y} = y$. Put $X = B_{x,y}$ in the above relation. Thus,

$$xR + yR(A_2A_1^{-1}) \prec_{rgw} x + y(A_2A_1^{-1}), \forall R \in \mathbf{GR}_m, \forall x, y \in \mathbb{F}_m.$$

Then by Proposition 3.2, $(A_2A_1^{-1}) = \alpha$ **I** and hence $A_2 = \alpha A_1$, for some $0 \neq \alpha \in \mathbb{F}$. For every $i \geq 3$, if $b_i = 0$ we can choose $A_i = A_1$; if $b_i \neq 0$ then $\{b_1, b_i\}$ or $\{b_2, b_i\}$ is linearly independent. By the same argument as above, we conclude that $A_i = \gamma_i A_1$, for some $0 \neq \gamma_i \in \mathbb{F}$, or $A_i = \lambda_i A_2$, for some $0 \neq \lambda_i \in \mathbb{F}$.

Define $A = A_1$. Then for every $i \ge 2$, $A_i = \alpha_i A$, for some $\alpha_i \in \mathbb{F}$ and we get

$$TX = [b_1 X A / (r_2 b_2) X A / \dots / (r_n b_n) X A] = B X A,$$

where $B = [b_1 \mid r_2 b_2 / \dots / r_n b_n]$, for some $r_2, \dots, r_m \in \mathbb{F}$.

If $A \in \mathbf{GR}_m$ is invertible and $B \in \mathbf{M}_n$, it is easy to see that $X \mapsto BXA$ is a linear preserver of \prec_{rgw} . But the following example shows that there exist linear preservers of \prec_{rqw} which are not of this form.

Example 3.6. Let $T: M_2 \to M_2$ be such that $TX = \begin{pmatrix} x_{11} & x_{12} \\ -x_{11} - x_{12} & x_{11} + x_{22} \end{pmatrix}$ where $X = [x_{ij}]$. We show that T preserves \prec_{rgw} but T is not of the form $X \mapsto MXA$. Let $X = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}$ and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and suppose that $X \prec_{rgw} Y$. If $y_{11} + y_{12} = 0$, so $x_{11} + x_{12} = 0$, and $TX \prec_{rgw} TY$. Let $y_{11} + y_{12} \neq 0$. Without loss of generality assume that $y_{11} + y_{12} = 1$. Since $X \prec_{rgw} Y$, there exists $R \in \mathbf{GR}_2$, such that X = YR. Let $R = \begin{pmatrix} a & 1-a \\ b & 1-b \end{pmatrix}$ and $y = (\lambda, 1-\lambda)$. Put $S := \begin{pmatrix} \alpha & 1-\alpha \\ \alpha-1 & 2-\alpha \end{pmatrix}$, where $\alpha = \lambda(a-b) + b - \lambda + 1$. Therefore $S \in \mathbf{GR}_2$ and TYS = TX. So $TX \prec_{rqw} TY$. By a straightforward calculation one may show that T is not of the form $X \mapsto BXA$.

The proof of the following lemma is similar to the proof of Lemma 2.5.

Lemma 3.7. Let $a \in \mathbb{F}_n$. The linear operator $T : M_{n,m} \to M_{n,m}$ defined by TX = [aX/.../aX] preserves \prec_{raw}^{row} if and only if $a \in \bigcup_{i=1}^{n} \operatorname{Span}\{e_i\}$.

The structure of linear preservers and strong linear preservers of rgwrow majorization is characterized as follows:

Theorem 3.8. Let $T: M_{n,m} \rightarrow M_{n,m}$ be a linear operator. Then T preserves rgw-row majorization if and only if there exist $\mathcal{A} \in M_n(\mathbb{F})$, $b_1, \ldots, b_n \in \bigcup_{i=1}^n \operatorname{Span}\{e_i\}, and invertible matrices A_1, \ldots, A_n \in \mathbf{GR}_m$ such that for every $i \in \mathbb{N}_n$, $b_i = 0$ or $\mathcal{A}_{(i)} = 0$, where $\mathcal{A} = [\mathcal{A}_{(1)} / \dots / \mathcal{A}_{(n)}]$ and

(3.1)
$$TX = m\mathcal{A}\overline{X} + [b_1XA_1/\dots/b_nXA_n].$$

Proof. The fact that the condition (3.1) is sufficient for T to be a linear preserver of \prec_{rgw}^{row} is easy to prove. So, we prove the necessity of the condition. Therefore, assume that T preserves \prec_{rgw}^{row} . For every $i, j \in \mathbb{N}_n$, $T_i^j: \mathbb{F}_m \to \mathbb{F}_m$ preserves \prec_{rgw} . Then, each T_i^j is of the form (i) or (ii) in Proposition 3.1. Let

$$\mathbf{I} = \{k \in \mathbb{N}_n : \exists l \in \mathbb{N}_n \text{ such that } T_k^l \text{ is of the form } (ii) \text{ with } \alpha_k^l \neq 0\}.$$

We show that if $k \in \mathbf{I}$, then $T_k^{\mathcal{I}}$ is of form (*ii*) of Proposition 3.1, with the same invertible matrix $A_k \in \mathbf{GR}_m$, for every $j \in \mathbb{N}_n$. Suppose $k \in \mathbf{I}$, then there exist $l \in \mathbb{N}_n$, $0 \neq \alpha_k^l \in \mathbb{F}$ and invertible matrix $A_k \in \mathbf{GR}_m$

such that $T_k^l x = \alpha_k^l x A_k$. Set $X = e_l x + e_j y$. It is clear that $XR \prec_{rgw}^{row} X$ and hence $TXR \prec_{rgw}^{row} TX$ for all $R \in \mathbf{GR}_m$. This implies that

$$T_k^l x R + T_k^j y R \prec_{rgw} T_k^l x + T_k^j y, \ \forall x, y \in \mathbb{F}_m, \forall R \in \mathbf{GR}_m.$$

So by Proposition 3.2, there exists $\alpha_k^j \in \mathbb{F}$ such that $T_k^j x = \alpha_k^j x A_k$. Set $b_k := (\alpha_k^1, \ldots, \alpha_k^n)$ if $k \in \mathbf{I}$, and $b_k = 0$ if $k \notin \mathbf{I}$.

If $k \notin \mathbf{I}$, then T_k^j is of form (i) of Proposition 3.1, for every $j \in \mathbb{N}_n$ and hence $T_k^j x = m a_k^j \overline{x}$ where $a_k^j \in \mathbb{F}_m$. If $k \in \mathbf{I}$, put $a_k^j = 0$ for every $j \in \mathbb{N}_n$. For $k \in \mathbb{N}_n$ define $\mathcal{A}_{(k)} = [a_k^1 \dots a_k^n]$.

It is clear that for every $i \in \mathbb{N}_n$, $b_i = 0$ or $\mathcal{A}_{(i)} = 0$. Let $\mathcal{A} = [\mathcal{A}_{(1)}/\ldots/\mathcal{A}_{(n)}]$. Then $TX = [\sum_{j=1}^n T_1^j x_j/\ldots/\sum_{j=1}^n T_n^j x_j] = m\mathcal{A}\overline{X} + [b_1XA_1/\ldots/b_nXA_n]$. To complete the proof we must apply Lemma 3.7 to conclude that $b_i \in \text{Span}\{e_i\}$ for every $i \in \mathbb{N}_n$.

Theorem 3.9. A linear operator $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ is a strong linear preserver of rgw-row majorization if and only if there exist invertible matrices $A_1, \ldots, A_n \in \mathbf{GR}_m$ and $b_1, \ldots, b_n \in \bigcup_{i=1}^n \mathrm{Span}\{e_i\}$ such that $B := [b_1/\ldots/b_n]$ is invertible and

$$TX = [b_1 X A_1 / \dots / b_n X A_n].$$

Proof. Assume that there exists a $k \in (\mathbb{N}_n \setminus \mathbf{I})$. Without loss of generality let $1 \in (\mathbb{N}_n \setminus \mathbf{I})$, so $b_1 = 0$. Set $V := \operatorname{Span}\{b_2, \ldots, b_n\}$, then $\dim V \leq n-1$. It follows that $\dim V^{\perp} \geq 1$ and there exists $0 \neq s \in V^{\perp}$. Set $X := [s \mid -s \mid 0 \mid \ldots \mid 0]$. Therefore X is nonzero and for every $i \in \mathbb{N}_n, b_i X = 0$ so TX = 0, which is a contradiction. Then $I = \mathbb{N}_n$ and $TX = [b_1 X A_1 / \ldots / b_n X A_n]$.

Now, we show that *B* is invertible. If *B* is not invertible, set V := Span $\{b_1, \ldots, b_n\}$. So dim $V \leq n-1$. Therefore dim $V^{\perp} \geq 1$ and there exists $0 \neq s \in V^{\perp}$. Set $X := [s \mid -s \mid 0 \mid \ldots \mid 0]$. Then *X* is nonzero and TX = 0, which is a contradiction.

In the remainder of this section we characterize linear operators that preserve or strongly preserve lgw or lgw-column majorization. We begin with a theorem of [5].

Theorem 3.10. [5, Theorem 2.4] A linear operator $T : \mathbb{F}^n \to \mathbb{F}^n$ preserves lgw-majorization if and only if one of the following assertions holds:

(i) There exists $R \in M_n$ such that $\operatorname{Ker}(R) = \operatorname{Span}\{e\}, e \notin \operatorname{Im}(R)$, and Tx = Rx for every $x \in \mathbb{F}^n$;

(ii) There exist an invertible matrix $R \in \mathbf{GR}_n$ and $\alpha \in \mathbb{F}$ such that $Tx = \alpha Rx$ for every $x \in \mathbb{F}^n$.

Corollary 3.11. A linear operator $T : \mathbb{F}^n \to \mathbb{F}^n$ preserves

lgw-majorization if and only if one of the following assertions holds: (i) there exists an invertible matrix $D \in \mathbf{GR}_n$, such that

$$Tx = \left(D - \frac{1}{n} \ \mathbf{J}\right) x \text{ for every } x \in \mathbb{F}^n;$$

(ii) There exist an invertible matrix $R \in \mathbf{GR}_n$ and $\alpha \in \mathbb{F}$ such that $Tx = \alpha Rx$ for every $x \in \mathbb{F}^n$.

Proof. Let $R \in \mathbf{M}_n$. We show that $\operatorname{Ker}(R) = \operatorname{Span}\{e\}$ and $e \notin \operatorname{Im}(R)$

if and only if $R = (D - \frac{1}{n}\mathbf{J})$ for some invertible matrix $D \in \mathbf{GR}_n$. First, Let $R = (D - \frac{1}{n}\mathbf{J})$ for some invertible matrix $D \in \mathbf{GR}_n$. It is clear that $\operatorname{Span}\{e\} \subset \operatorname{Ker}(R)$. If $x \in \operatorname{Ker}(R)$, then $Dx = \frac{1}{n}\operatorname{tr}(x)e$ and $x \in \text{Span}\{e\}$. Therefore $\text{Ker}(R) = \text{Span}\{e\}$. Assume that $e \in$ Im(R), then $(D - \frac{1}{n}\mathbf{J})x = e$ for some $x \in \mathbb{R}^n$. It implies that Dx = $\left(\frac{1}{n}\operatorname{tr}(\mathbf{x})+1\right)e$ and hence $x \in \operatorname{Span}\{e\}$, which is a contradiction. So $e \notin \operatorname{Im}(R).$

Conversely. Let $\operatorname{Ker}(R) = \operatorname{Span}\{e\}$ and $e \notin \operatorname{Im}(R)$. Put $D := R + \frac{1}{n}\mathbf{J}$. Since $Re = 0, D \in \mathbf{GR}_n$. It is enough to show that D is invertible. If Dx = 0 then $Rx = \left(-\frac{1}{n}\operatorname{tr}(\mathbf{x})\right)e$. If $\operatorname{tr}(\mathbf{x}) \neq 0$, then $e \in \operatorname{Im}(R)$ which is a contradiction, so $\operatorname{tr}(\mathbf{x}) = 0$ and Rx = 0. Therefore $x \in \operatorname{Span}\{e\}$, which implies that x = 0.

Lemma 3.12. Let $A \in GR_n$ be invertible. Then the following conditions are equivalent:

(a) $A = \alpha \ \mathbf{I} + \beta \mathbf{J}$, for some $\alpha, \beta \in \mathbb{R}$;

(b) $Dx + ADy \prec_{lqw} x + Ay$, for all $D \in GD_n$ and for all $x, y \in \mathbb{R}^n$.

Proof. $(a \Rightarrow b)$ If $A = \alpha \mathbf{I} + \beta \mathbf{J}$, it is easy to show that $Dx + ADy \prec_{law}$ x + Ay, for all $D \in \mathbf{GD}_n$ and for all $x, y \in \mathbb{F}^n$.

 $(b \Rightarrow a)$ The matrix A is invertible, so condition (b) can be written as follows:

$$Dx + ADA^{-1}y \prec_{lqw} x + y, \ \forall D \in \mathbf{GD}_n, \ \forall x, y \in \mathbb{F}^n.$$

Put $x = e - e_i$ and $y = e_i$ in the above relation. Thus, $[e - (D - D)] = e_i$ $ADA^{-1}e_i] \prec_{lqw} e$, for every $i \in \mathbb{N}_n$. So $(D - ADA^{-1})e_i = 0$, for every

 $i \in \mathbb{N}_n$, and DA = AD, for every $D \in \mathbf{GD}_n$. Therefore, $A = \alpha \mathbf{I} + \beta \mathbf{J}$, for some $\alpha, \beta \in \mathbb{F}$.

Theorem 3.13. Let $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ be a linear operator that preserves lgw-majorization. Then, there exist invertible matrices $A_1, \ldots, A_m \in \mathbf{GR}_n, b_1, \ldots, b_m \in \mathbb{F}^m$ and $S \in \mathbf{M}_m$ such that

$$TX = [A_1Xb_1 \mid \ldots \mid A_mXb_m] + JXS.$$

Proof. Suppose that T preserves lgw-majorization. It is easy to prove that $T_i^j : \mathbb{F}^n \to \mathbb{F}^n$ preserves lgw-majorization. Then by Corollary 3.11, for every $i, j \in \mathbb{N}_m, T_i^j x = (\alpha_i^j A_i^j - \frac{1}{n} \gamma_i^j \mathbf{J}) x$, for some invertible matrices $A_i^j \in \mathbf{GR}_n, \alpha_i^j \in \mathbb{F}$ and $\gamma_i^j \in \{0, 1\}$. Then

$$TX = T[x_1|\dots|x_m]$$

=
$$\left[\sum_{j=1}^m T_1^j x_j |\dots| \sum_{j=1}^m T_m^j x_j\right]$$

=
$$\left[\sum_{j=1}^m (\alpha_1^j A_1^j - \frac{1}{n} \gamma_1^j J) x_j |\dots| \sum_{j=1}^m (\alpha_m^j A_m^j - \frac{1}{n} \gamma_m^j \mathbf{J}) x_j\right].$$

For every $x, y \in \mathbb{F}^n$, define $X = E^j(x) + E^q(y) \in \mathbf{M}_{n,m}$. If $\alpha_i^q = 0$ for every $i \in \mathbb{N}_m$, then put $A_i^q = I$. Now, suppose that there exists some $p \in \mathbb{N}_m$ such that $\alpha_p^q \neq 0$. Then for every $D \in \mathbf{GD}_n$, $DX \prec_{lgw} X$, and hence $[\alpha_1^q A_1^q Dx + \alpha_1^j A_1^j Dy] \dots |\alpha_m^q A_m^q Dx + \alpha_m^j A_m^j Dy] \prec_{lgw}$ $[\alpha_1^q A_1^q x + \alpha_1^j A_1^j y] \dots |\alpha_m^q A_m^q x + \alpha_m^j A_m^j y]$ $\Rightarrow \alpha_p^q A_p^q Dx + \alpha_p^j A_p^j Dy \prec_{lgw} \alpha_p^q A_p^q x + \alpha_p^j A_p^j y$ $\Rightarrow Dx + (A_p^q)^{-1} A_p^j D(\frac{\alpha_p^j}{\alpha_p^q} y) \prec_{lgw} x + (A_p^q)^{-1} A_p^j (\frac{\alpha_p^j}{\alpha_p^q} y).$

So by Lemma 3.12, $(A_p^q)^{-1}A_p^j = \lambda_p^j \mathbf{I} + \beta_p^j \mathbf{J}$. Set $A_p := A_p^q$, then $A_p^j = \lambda_p^j A_p + \beta_p^j \mathbf{J}$. Therefore for some $\mu_i^j \in \mathbb{F}$ we have

$$TX = \left[A_1 \sum_{j=1}^m \mu_1^j x_j \right| \dots \left| A_p \sum_{j=1}^m \mu_p^j x_j \right| \dots \left| A_m \sum_{j=1}^m \mu_m^j x_j \right] + \mathbf{J}XS,$$

where

$$S = \begin{pmatrix} -\frac{1}{n}\gamma_1^1 + \beta_1^1 \dots & -\frac{1}{n}\gamma_m^1 + \beta_m^1 \\ \vdots & \vdots \\ -\frac{1}{n}\gamma_1^m + \beta_1^m \dots & -\frac{1}{n}\gamma_m^m + \beta_m^m \end{pmatrix}.$$

Now, For every $i \in \mathbb{N}_m$, define

$$b_i = \begin{pmatrix} \mu_i^1 \\ \mu_i^2 \\ \vdots \\ \mu_i^m \end{pmatrix}.$$

Then,

$$TX = [A_1Xb_1 \mid \ldots \mid A_mXb_m] + \mathbf{J}XS.$$

Corollary 3.14. Let T satisfy the condition of Theorem 3.13 and let $\operatorname{rank}[b_1 | \ldots | b_m] \geq 2$. Then TX = AXR + JXS, for some $R, S \in M_m$, and invertible matrix $A \in GR_n$.

Proof. Without loss of generality we can assume that $\{b_1, b_2\}$ is a linearly independent set. Let $X \in \mathbf{M}_{n,m}$, $D \in \mathbf{GD}_n$ be arbitrary. Then $DX \prec_{lqw} X$ and hence, $TDX \prec_{lqw} TX$. It follows that

- $[A_1DXb_1 \mid \ldots \mid A_mDXb_m] \prec_{lgw} [A_1Xb_1 \mid \ldots \mid A_mXb_m]$
- $\Rightarrow A_1 D X b_1 + A_2 D X b_2 \prec_{lgw} A_1 X b_1 + A_2 X b_2$

 $\Rightarrow DXb_1 + (A_1^{-1}A_2)DXb_2 \prec_{lqw} Xb_1 + (A_1^{-1}A_2)Xb_2.$

Since $\{b_1, b_2\}$ is linearly independent, for every $x, y \in \mathbb{R}^n$, there exists $B_{x,y} \in \mathbf{M}_{n,m}$ such that $B_{x,y}b_1 = x$ and $B_{x,y}b_2 = y$. Put $X := B_{x,y}$ in the above relation. Thus,

$$DB_{x,y}b_1 + (A_1^{-1}A_2)DB_{x,y}b_2 \prec_{lgw} B_{x,y}b_1 + (A_1^{-1}A_2)B_{x,y}b_2 \Rightarrow Dx + (A_1^{-1}A_2)Dy \prec_{lgw} x + (A_1^{-1}A_2)y, \forall D \in \mathbf{GD}_n.$$

Then by Lemma 3.12, $A_1^{-1}A_2 = \alpha \mathbf{I} + \beta \mathbf{J}$ and hence $A_2 = \alpha A_1 + \beta \mathbf{J}$, for some $\alpha, \beta \in \mathbb{F}$, $\alpha \neq 0$. For every $i \geq 3$, if $b_i = 0$ we can choose $A_i = A_1$. If $b_i \neq 0$ then $\{b_1, b_i\}$ or $\{b_2, b_i\}$ is linearly independent. Then by the same argument as above, $A_i = \gamma_i A_1 + \delta_i \mathbf{J}$, for some $\gamma_i, \delta_i \in \mathbb{F}$, $\gamma_i \neq 0$, or $A_i = \lambda_i A_2 + \mu_i \mathbf{J}$, for some $\lambda_i, \mu_i \in \mathbb{F}, \lambda_i \neq 0$.

Define $A := A_1$. Then for every $i \ge 2$, $A_i = \alpha_i A_2 + \beta_i \mathbf{J}$, for some $\alpha_i, \beta_i \in \mathbb{F}$ and hence

$$TX = [AXb_1 \mid AX(r_2b_2) \mid \dots \mid AX(r_mb_m)] + \mathbf{J}XS = AXR + \mathbf{J}XS,$$

where, $R = [b_1 | r_2 b_2 | \dots | r_m b_m]$, for some $r_2, \dots, r_m \in \mathbb{F}$ and S is as in Theorem 3.13.

Lemma 3.15. Let $b_1, \ldots, b_m \in \mathbb{F}^m$. The linear operator $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ defined by $TX = [Xb_1| \ldots | Xb_m]$ preserves \prec_{lgw}^{column} if and only if $b_j \in \bigcup_{i=1}^n \text{Span}\{e_i\}$, for every $j \in \mathbb{N}_m$.

The following theorems give the structure of linear and strong linear preserver of \prec_{lgw}^{column} on $\mathbf{M}_{n,m}$. Since the proofs are similar to the proofs of Theorems 2.6 and 2.7, we leave the proofs to the readers.

Theorem 3.16. Let $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ be a linear operator. Then T preserves \prec_{lgw}^{column} if and only if there exist invertible matrices $A_1, \ldots, A_m \in \mathbf{GR}_n, b_1, \ldots, b_m \in \bigcup_{i=1}^m \text{Span}\{e_i\}$ and $D \in \mathbf{M}_m$ such that for every $i \in \mathbb{N}_n, b_i = 0$ or $A_1e_i = \ldots = A_me_i = 0$ and for all $X = [x_1 \mid \ldots \mid x_n] \in \mathbf{M}_{n,m}, TX = [A_1Xb_1 \mid \ldots \mid A_mXb_m] + \mathbf{J}XD.$

Theorem 3.17. Let $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ be a linear operator. Then T strongly preserves lgw-column majorization if and only if there exist invertible matrices $A_1, \ldots, A_m \in \mathbf{GR}_n$ and $b_1, \ldots, b_m \in \bigcup_{i=1}^m \operatorname{Span}\{e_i\}$ such that $B := [b_1 \mid \ldots \mid b_m]$ is invertible and

$$TX = [A_1Xb_1 \mid \ldots \mid A_nXb_m].$$

Acknowledgements

The authors thank the anonymous referees for the suggestions to improve the paper.

References

- T. Ando, Majorization, doubly stochastic matrices, and comparison of eigenvalues, *Linear Algebra Appl.* **118** (1989) 163–248.
- [2] A. Armandnejad, Right gw-majorization on $\mathbf{M}_{n,m}$, Bull. Iranian Math. Soc. **35** (2009), no. 2, 69–76.
- [3] A. Armandnejad, A. Akbarzadeh and Z. Mohammadi, Row and column majorization on M_{n.m}, Linear Algebra Appl. 437 (2012), no. 3, 1025–1032.
- [4] A. Armandnejad and H. Heydari, Linear preserving gd-majorization functions from $\mathbf{M}_{n,m}$ to $\mathbf{M}_{n,k}$, Bull. Iranian Math. Soc. **37** (2011), no. 1, 215–224.
- [5] A. Armandnejad and A. Salemi, On linear preservers of lgw-majorization on $\mathbf{M}_{n,m}$, Bull. Malays. Math. Sci. Soc. (2) **35** (2012), no. 3, 755–764.
- [6] A. Armandnejad and A. Salemi, The structure of linear preservers of gsmajorization, Bull. Iranian Math. Soc. 32 (2006), no. 2, 31–42.
- [7] L. B. Beasley, S. G. Lee and Y. H. Lee, Resolution of the conjecture on strong preservers of multivariate majorization, *Bull. Korean Math. Soc.* **39** (2002), no. 2, 283–287.

- [8] L. B. Beasley, S. G. Lee and Y. H. Lee, A characterization of strong preservers of matrix majorization, *Linear Algebra Appl.* **367** (2003) 341–346.
- [9] A. M. Hasani and M. Radjabalipuor, The structure of linear operators strongly preserving majorizations of matrices, *Electron. J. Linear Algebra* 15 (2006) 260– 268.
- [10] A. M. Hasani and M. Radjabalipour, On linear preservers of (right) matrix majorization, *Linear Algebra Appl.* 423 (2007), no. 2-3, 255–261.
- [11] C. K. Li and E. Poon, Linear operators preserving directional majorization, *Linear Algebra Appl.* **325** (2001), no. 1-3, 141–146.

Ali Armandnejad

Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O. Box 7713936417, Rafsanjan, Iran Email: armandnejad@mail.vru.ac.ir,

Zahra Mohammadi

Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O. Box 7713936417, Rafsanjan, Iran Email: z.mohammadi@stu.vru.ac.ir

Farzaneh Akbarzadeh

Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O. Box 7713936417, Rafsanjan, Iran Email: f.akbarzadeh@stu.vru.ac.ir