LINEAR PRESERVERS OF G-ROW AND G-COLUMN MAJORIZATION ON \(M_{n,m} \)

A. ARMANDNEJAD*, Z. MOHAMMADI AND F. AKBARZADEH

Communicated by Abbas Salemi Parizi

Abstract. Let \(A \) and \(B \) be \(n \times m \) matrices. The matrix \(B \) is said to be g-row majorized (respectively g-column majorized) by \(A \), denoted by \(B \precrow g A \) (respectively \(B \preccol g A \)), if every row (respectively column) of \(B \), is g-majorized by the corresponding row (respectively column) of \(A \). In this paper all kinds of g-majorization are studied on \(M_{n,m} \), and the possible structure of their linear preservers will be found. Also all linear operators \(T : M_{n,m} \to M_{n,m} \) preserving (or strongly preserving) g-row or g-column majorization will be characterized.

1. Introduction

An \(n \times n \) matrix \(R \) (not necessarily nonnegative) is called g-row stochastic if \(Re = e \), where \(e = (1, 1, \ldots, 1)^t \). A matrix \(D \) is called g-doubly stochastic if both \(D \) and \(D^t \) are g-row stochastic matrices. The collection of all \(n \times n \) g-row stochastic matrices, and \(n \times n \) g-doubly stochastic matrices are denoted by \(GR_n \) and \(GD_n \) respectively. Throughout the paper, \(M_{n,m} \) is the set of all \(n \times m \) matrices with entries in \(\mathbb{F} \) (\(\mathbb{R} \) or \(\mathbb{C} \)), and \(M_n := M_{n,n} \). The set of all \(n \times 1 \) column vectors is denoted by \(\mathbb{F}^n \), and the set of all \(1 \times n \) row vectors is denoted by \(\mathbb{F}_n \). The symbol \(\mathbb{N}_k \) is used for the set \(\{1, \ldots, k\} \). The symbol \(e_i \) is the row (or
column) vector with 1 as i^{th} component and 0 elsewhere. The summation of all components of a vector x in \mathbb{F}^n or \mathbb{F}_n is denoted by $\text{tr}(x)$. The symbol $[x_1/x_2/\ldots/x_n]$ (resp. $[x_1 \mid x_2 \mid \ldots \mid x_m]$) is used for the $n \times m$ matrix whose rows (resp. columns) are $x_1, x_2, \ldots, x_n \in \mathbb{F}_m$ (resp. $x_1, x_2, \ldots, x_m \in \mathbb{F}^n$). For a matrix $X = [x_{ij}] \in \mathbb{M}_{n,m}$, its average (column) vector $\bar{X} = [x_1/\ldots/x_n] \in \mathbb{F}^n$ is defined by the components $\bar{x}_i = m^{-1}(x_{i1} + x_{i2} + \cdots + x_{im})$, for $i \in \mathbb{N}_n$. The letter J stands for the $(\text{rank}-1)$ square matrix all of whose entries are 1.

For $A, B \in \mathbb{M}_{n,m}$, it is said that A is lgs-majorized (resp. rgs-majorized) by B and denoted by $A \prec_{\text{lgs}} B$ (resp. $A \prec_{\text{rgs}} B$) if there exists an $n \times n$ (resp. $m \times m$) g-doubly stochastic matrix D such that $A = DB$ (resp. $A = BD$), see [4, 6].

Let $A, B \in \mathbb{M}_{n,m}$. The matrix A is said to be lgw-majorized (resp. rgw-majorized) by B and denoted by $A \prec_{\text{lgw}} B$ (resp. $A \prec_{\text{rgw}} B$) if there exists an $n \times n$ (resp. $m \times m$) g-row stochastic matrix R such that $A = RB$ (resp. $A = BR$), for more details see [2, 5].

Let \prec be a relation on $\mathbb{M}_{n,m}$. A linear operator $T : \mathbb{M}_{n,m} \to \mathbb{M}_{n,m}$ is said to be a linear preserver (resp. strong linear preserver) of \prec if $X \prec Y$ implies $TX \prec TY$ (resp. $X \prec Y$ if and only if $TX \prec TY$).

The linear preservers and strong linear preservers of lgs-majorization are characterized in [6] as follows:

Proposition 1.1. [6, Theorem 3.3] Let $T : \mathbb{M}_{n,m} \to \mathbb{M}_{n,m}$ be a linear operator that preserves lgs-majorization. Then one of the following statements holds:

(i) There exist $A_1, A_2, \ldots, A_m \in \mathbb{M}_{n,m}$ such that $TX = \sum_{j=1}^m \text{tr}(x_j)A_j$, where $X = [x_1 \ldots x_m]$;

(ii) There exist $S \in \mathbb{M}_m$, $a_1, \ldots, a_m \in \mathbb{F}_m$ and invertible matrices $B_1, B_2, \ldots, B_m \in \mathbb{GD}_n$, such that $TX = [B_1 X a_1 \mid \ldots \mid B_m X a_m] + JXS$.

Proposition 1.2. [6, Theorem 3.7] Let $T : \mathbb{M}_{n,m} \to \mathbb{M}_{n,m}$ be a linear operator. Then T strongly preserves \prec_{lgs} if and only if $TX = AXR + JXS$, for some $R, S \in \mathbb{M}_m$ and invertible matrix $A \in \mathbb{GD}_n$ such that $R(R + nS)$ is invertible.

In [2, 5], the authors proved that a linear operator $T : \mathbb{M}_{n,m} \to \mathbb{M}_{n,m}$ strongly preserves lgw-majorization (resp. rgw-majorization) if and only if $TX = AXM$ (resp. $TX = MXA$), for some invertible matrices $M \in \mathbb{M}_m$ (resp. $M \in \mathbb{M}_n$) and $A \in \mathbb{GR}_n$ (resp. $A \in \mathbb{GR}_m$).
In the present paper, we find the possible structure of linear operators that preserve lgw, rgw or rgs-majorization. Also, all linear preservers and strong linear preservers of g-row and g-column majorization will be characterized. To see some kinds of majorization and their linear preservers we refer the readers to [1], [3] and [7]-[11].

2. LGS-COLUMN (RGS-ROW) MAJORIZATION ON $\textbf{M}_{n,m}$

In this section we characterize all linear operators on $\textbf{M}_{n,m}$ that preserve or strongly preserve lgs-column (rgs-row) majorization.

Definition 2.1. Let $A, B \in \textbf{M}_{n,m}$. It is said that B is lgs-column (resp. rgs-row) majorized by A, written as $B \prec_{\text{column}} \text{lgs} A$ (resp. $B \prec_{\text{row}} \text{rgs} A$), if every column (resp. row) of B is lgs- (resp. rgs-) majorized by the corresponding column (resp. row) of A.

We use the following statements to prove the main result of this section.

Proposition 2.2. [6, Theorem 2.4] Let $T : F^n \rightarrow F^n$ be a linear operator. Then T preserves gs-majorization if and only if one of the following statements holds:

(a) $Tx = \text{tr}(x)a$, for some $a \in F^n$;
(b) $Tx = \alpha Dx + \beta Jx$, for some $\alpha, \beta \in F$ and invertible matrix $D \in GD_n$.

Proposition 2.3. [6, Lemma 3.1] Let $A \in GD_n$ be invertible. Then the following conditions are equivalent:

(a) $A = \alpha I + \beta J$, for some $\alpha, \beta \in F$;
(b) $(Dx + ADy) \prec_{\text{gs}} (x + Ay)$, for all $D \in GD_n$ and for all $x, y \in F^n$.

Proposition 2.4. [6, Lemma 3.2] Let $T_1, T_2 : F^n \rightarrow F^n$ satisfy $T_1(x) = \alpha Ax + \beta Jx$ and $T_2(x) = \text{tr}(x)a$, for some $\alpha, \beta \in F$, $\alpha \neq 0$, invertible matrix $A \in GD_n$ and $a \in (F^n \setminus \text{Span}\{e\})$. Then there exists a g-doubly stochastic matrix D and a vector $x \in F^n$ such that $T_1(Dx) + T_2(Dx) \prec_{\text{gs}} T_1(x) + T_2(x)$.

Lemma 2.5. Let $a \in F^m$. The linear operator $T : \textbf{M}_{n,m} \rightarrow \textbf{M}_{n,m}$ defined by $TX = [Xa | \ldots | Xa]$, preserves lgs-column majorization if and only if $a \in \bigcup_{i=1}^m \text{Span}\{e_i\}$.

Proof. If $a \in \bigcup_{i=1}^m \text{Span}\{e_i\}$, it is easy to show that T preserves $\prec_{\text{column}} \text{lgs}$. Conversely, let T preserve $\prec_{\text{column}} \text{lgs}$. Assume that $a = (a_1, \ldots, a_m)^t \notin \bigcup_{i=1}^m \text{Span}\{e_i\}$. Then there exist distinct $i, j \in \mathbb{N}_m$ such that $a_i, a_j \neq 0$.
Without loss of generality assume that $a_1, a_2 \neq 0$. Put
\[X := \begin{pmatrix} -a_2 & -a_1 \\ a_2 & a_1 \end{pmatrix} \oplus 0, \ Y := \begin{pmatrix} a_2 & -a_1 \\ -a_2 & a_1 \end{pmatrix} \oplus 0 \in M_{n,m}. \]

It is clear that $X \prec_{\text{column}} Y$, so $Xa \prec_{\text{lgS}} Ya$. But $Ya = 0$ and $Xa \neq 0$, which is a contradiction. □

For every $i, j \in \mathbb{N}_m$, consider the embedding $E^j : \mathbb{F}^m \rightarrow M_{n,m}$ by $E^j(x) = xe_j$ and projection $E_i : M_{n,m} \rightarrow \mathbb{F}^n$ by $E_i(A) = Ae_i$. It is easy to show that for every linear operator $T : M_{n,m} \rightarrow M_{n,m}$,
\[TX = \left[\sum_{j=1}^m T^j_i x_j \right] \cdots \left[\sum_{j=1}^m T^j_m x_j \right], \]

where $T^j_i = E_i \circ T \circ E^j$ and $X = [x_1 | \ldots | x_m]$. If T preserves \prec_{column}, it is clear that $T^j_i : \mathbb{F}^m \rightarrow \mathbb{F}^m$ preserves \prec_{lgS}.

Now, we state the main theorem of this section.

Theorem 2.6. Let $T : M_{n,m} \rightarrow M_{n,m}$ be a linear operator. Then T preserves lgs-column majorization if and only if there exist $A_1, \ldots, A_m \in M_{n,m}, b_1, \ldots, b_m \in \cup_{i=1}^m \text{Span}\{e_i\}$, invertible matrices $B_1, \ldots, B_m \in GD_n$, and $S \in M_m$ such that for every $i \in \mathbb{N}_m$, $b_i = 0$ or $A_1 e_i = \cdots = A_m e_i = 0$ and for all $X = [x_1 | \ldots | x_m] \in M_{n,m}$,
\begin{equation}
(2.1) \quad TX = \sum_{j=1}^m \text{tr}(x_j) A_j + [B_1 X b_1 | \ldots | B_m X b_m] + JXS.
\end{equation}

Proof. First, assume that the condition (2.1) holds. Suppose $X = [x_1 | \ldots | x_m], Y = [y_1 | \ldots | y_m] \in M_{n,m}$ and $X \prec_{\text{column}} Y$. Since for every $i \in \mathbb{N}_m$, $b_i = 0$ or $A_1 e_i = \cdots = A_m e_i = 0$, it is easy to see that $TXe_i \prec_{\text{lgS}} TYe_i$ and hence $TX \prec_{\text{column}} TY$. Conversely, assume that T preserves \prec_{column}. For every $i, j \in \mathbb{N}_m$, $T^j_i : \mathbb{F}^m \rightarrow \mathbb{F}^n$ preserves \prec_{lgS}.

Then, each T^j_i is of the form (a) or (b) in Proposition 2.2. Let
\[I = \{ k \in \mathbb{N}_m : \exists l \in \mathbb{N}_m \text{ such that } T^j_k \text{ is of the form (b) with } \alpha^l_k \neq 0 \}. \]

For every $k \in I$ there exists $l \in \mathbb{N}_m$ such that $T^j_k x = \alpha^l_k B_k x + \beta^l_k Jx$ for some invertible matrix $B_k \in GD_n$ and $\alpha^l_k \neq 0, \beta^l_k \in \mathbb{F}$.

We show that if $k \in I$, then T^j_k is of form (b) with same invertible matrix $B_k \in GD_n$, for every $j \in \mathbb{N}_m$.

Suppose $k \in \mathbf{I}$, then there exist $l \in \mathbb{N}_n$, $\alpha^l_k \neq 0, \beta^l_k \in \mathbb{F}$, invertible matrix $B_k \in \mathbf{GD}_n$ such that $T^j_k x = \alpha^l_k B_k x + \beta^l_k J x$. For every $x, y \in \mathbb{F}^m$ define $X = x e_j + y e_l \in M_{n,m}$. It is clear that $D X \prec_{\text{lgs_column}} X$, and hence $D T X \prec_{\text{lgs_column}} T X$, for all $D \in \mathbf{GD}_n$. This implies that $T^j_k D x + T^j_k D y \prec_{\text{lgs}} T^j_k x + T^j_k y$. Then by Propositions 2.3 and 2.4, there exist $\alpha^j_k, \beta^j_k \in \mathbb{F}$ such that $T^j_k x = \alpha^j_k B_k x + \beta^j_k J x$. For $k \in \mathbf{I}$, set $b_k := (\alpha^1_k, \ldots, \alpha^m_k)^t$, $s_k := (\beta^1_k, \ldots, \beta^m_k)^t \in \mathbb{F}^m$ and for $k \in (\mathbb{N}_m \setminus \mathbf{I})$ set $b_k = s_k := 0 \in \mathbb{F}^m$. Define $S := [s_1 \mid \ldots, s_m] \in M_{m,m}$.

If $k \notin \mathbf{I}$, then T^j_k is of form (a) for every $j \in \mathbb{N}_m$ and hence $T^j_k x = (\text{tr} x) a^j_k$, for some $a^j_k \in \mathbb{F}^n$. For $k \in \mathbf{I}$, put $a^j_k = 0$ and define $A_j := [a^1_k \mid \ldots \mid a^m_k] \in M_{n,m}$. It is clear that for every $i \in \mathbb{N}_m, b_i = 0$ or $A_1 e_i = \cdots = A_m e_i = 0$ and by a straightforward calculation one may show that for any $X = [x_1 \mid \ldots \mid x_m] \in M_{n,m},$

$$TX = \sum_{j=1}^m \text{tr}(x_j) A_j + [B_1 X b_1 \mid \ldots \mid B_m X b_m] + J X S.$$

If $b_j \notin \bigcup_{i=1}^m \text{Span}\{e_i\}$ for some $j \in \mathbb{N}_m$, then Lemma 3.7 implies that T is not a linear preserver of $\prec_{\text{lgs_column}}$ which is a contradiction. Therefore $b_1, \ldots, b_m \in \bigcup_{i=1}^m \text{Span}\{e_i\}$, as desired. \hfill \Box

The structure of strong linear preservers of lgs-column majorization is characterized as follows:

Theorem 2.7. Let $T : M_{n,m} \rightarrow M_{n,m}$ be a linear operator. Then T strongly preserves lgs-column majorization if and only if there exist invertible matrices $B_1, \ldots, B_m \in \mathbf{GD}_n$, $S \in M_m$ and, $b_1, \ldots, b_m \in \bigcup_{i=1}^m \text{Span}\{e_i\}$ such that $D (D + n S)$ is invertible and

$$TX = [B_1 X b_1 \mid \ldots \mid B_m X b_m] + J X S,$$

where $D = [b_1 \mid \ldots \mid b_m]$.

Proof. The fact that the condition (2.2) is sufficient for T to be a strong linear preserver of $\prec_{\text{lgs_column}}$ is easy to prove. So, we prove the necessity of the conditions. Assume that T is a strong linear preserver of $\prec_{\text{lgs_column}}$. It can be easily seen that T is invertible. By Theorem 2.6, there exist $A_1, \ldots, A_m \in M_{n,m}, b_1, \ldots, b_m \in \bigcup_{i=1}^m \text{Span}\{e_i\}$, $S \in M_m$, and invertible matrices $B_1, \ldots, B_m \in \mathbf{GD}_n$ such that for all $X = [x_1 \mid \ldots \mid x_m] \in M_{n,m},$

$$TX = \sum_{j=1}^m \text{tr}(x_j) A_j + [B_1 X b_1 \mid \ldots \mid B_m X b_m] + J X S$$ and for
every $i \in \mathbb{N}_m$, $b_i = 0$ or $A_1 e_i = \cdots = A_m e_i = 0$. We show that for every $j \in \mathbb{N}_m$, $A_j = 0$. Assume that there exists $j \in \mathbb{N}_m$, such that $A_j \neq 0$. Without loss of generality suppose that $A_je_1 \neq 0$, then $b_1 = 0$. Set $V := \text{Span}\{b_2, \ldots, b_m\}$, so $\dim V \leq m - 1$. It follows that there exists $0 \neq s \in V\perp$. Set $X := [s^t/-s^t/0/\ldots/0] \in \mathbb{M}_{n,m}$. Then X is nonzero and $TX = 0$, which is a contradiction. Therefore $A_j = 0$, for every $j \in \mathbb{N}_m$.

Now, we prove (by contradiction) that D is invertible. Indeed, assume that D is not invertible. Choose a nonzero $s \in (\text{Span}\{b_1, \ldots, b_m\})^\perp$ and put $X := [s^t/-s^t/0/\ldots/0] \in \mathbb{M}_{n,m}$. Then X is nonzero and $TX = 0$, which is a contradiction. Therefore D is invertible.

Finally, we show that $D + nS$ is invertible. Assume, by contradiction, that $D + nS$ is not invertible. Choose a nonzero $x \in \mathbb{F}_m$ such that $(D + nS)x = 0$ and put $X := [x/\ldots/x] \in \mathbb{M}_{n,m}$. Then X is nonzero and

$$TX = [B_1XB_1 \mid \ldots \mid B_mXB_m] + JSX = X(D + nS) = 0,$$

which is a contradiction. Therefore $D + nS$ is invertible and the proof is complete. □

Let $T : \mathbb{M}_{n,m} \to \mathbb{M}_{n,m}$ be a linear operator. Define $\tau : \mathbb{M}_{m,n} \to \mathbb{M}_{m,n}$ by $\tau X = (TX^t)^t$. It is easy to see that T is a (strong) linear preserver of \prec_{row} if and only if τ is a (strong) linear preserver of \prec_{column}. Combining this fact and previous theorems, we have the following corollaries:

Corollary 2.8. Let $T : \mathbb{F}_n \to \mathbb{F}_n$ be a linear operator. Then T preserves rgs-majorization if and only if one of the following statements holds:

(a) $Tx = \text{tr}(x)a$, for some $a \in \mathbb{F}_n$;

(b) $Tx = \alpha XD + \beta xJ$, for some $\alpha, \beta \in \mathbb{F}$ and invertible matrix $D \in GD_n$.

Corollary 2.9. Let $T : \mathbb{M}_{n,m} \to \mathbb{M}_{n,m}$ be a linear operator. Then T preserves rgs-row majorization if and only if there exist $A_1, \ldots, A_n \in \mathbb{M}_{n,m}$, $b_1, \ldots, b_n \in \cup_{i=1}^n \text{Span}\{e_i\}$, invertible matrices $B_1, \ldots, B_n \in GD_m$, and $S \in \mathbb{M}_n$ such that for every $i \in \mathbb{N}_n$, $b_i = 0$ or $e_i A_1 = \cdots = e_i A_n = 0$ and for all $X = [x_1/\ldots/x_n] \in \mathbb{M}_{n,m}$,

$$TX = \sum_{j=1}^n \text{tr}(x_j)A_j + [b_1XB_1 / \ldots / b_nXB_n] + SXJ.$$

Corollary 2.10. Let $T : \mathbb{M}_{n,m} \to \mathbb{M}_{n,m}$ be a linear operator. Then T strongly preserves rgs-row majorization if and only if there exist
B_1, \ldots, B_n \in GD_m, S \in M_n and b_1, \ldots, b_n \in \cup_{i=1}^n \text{Span}\{e_i\} such that D(D + mS) is invertible and
\[TX = [b_1 XB_1 / \ldots / b_n XB_n] + SXJ, \]
where D = [b_1 / \ldots / b_n].

3. RGW AND LGW-MAJORIZATION ON M_{n,m}

In this section, we begin to study the structure of linear preservers of rgw and lgw-majorization on M_{n,m}, and then the linear operators T : M_{n,m} → M_{n,m} preserving or strongly preserving rgw-row (lgw-column) majorization will be characterized.

In the following theorems we state some results from [2].

Proposition 3.1. [2, Theorem 2.3] Let T : \mathbb{F}_m → \mathbb{F}_m be a linear operator. Then, T preserves \textless_{rgw} if and only if one of the following statements holds:

(i) Tx = \alpha xB, for some \alpha \in \mathbb{F} and some invertible B \in GR_n;
(ii) Tx = \alpha xB, for some \alpha \in \mathbb{F} and some B \in GR_n such that \{x : xB = 0\} = \{x : \text{tr}(x) = 0\}.

Proposition 3.2. [2, Lemma 2.6] Let A \in M_n and \alpha be a nonzero scalar in \mathbb{F}. Then A = \gamma I for some \gamma \in \mathbb{F} if and only if we have
\[axRA + yR <_{rgw} ax + y, \forall x, y \in \mathbb{F}_m, \forall R \in GR_m. \]

Lemma 3.3. Let A \in GR_m be invertible and 0 \neq \alpha \in \mathbb{F}. Define T_1 : \mathbb{F}_m → \mathbb{F}_m by T_1x = \alpha xA and suppose T_2 : \mathbb{F}_m → \mathbb{F}_m is a linear preserver of \textless_{rgw} such that
\[T_1 xR + T_2 yR <_{rgw} T_1 x + T_2 y, \]
for all x, y \in \mathbb{F}_m and R \in GR_m. Then there exists \lambda \in \mathbb{F} such that T_2x = \lambda xA.

Proof. Since T_2 preserves \textless_{rgw}, T_2 is of form (i) or (ii) in Proposition 3.1. Assume that T_2 is of form (ii), then T_2x = \text{tr}(x)a for some nonzero a \in \mathbb{F}_m. Let \[x = -\frac{1}{\alpha} a A^{-1}, \] and set y := e_1. Then we have
\[axRA + \text{tr}(yR)a <_{rgw} axA + \text{tr}(y)a, \]
for all R \in GR_m. It follows that
\[\alpha(-\frac{1}{\alpha} a A^{-1}) RA + \text{tr}(e_1 R)a <_{rgw} \alpha(-\frac{1}{\alpha} a A^{-1}) A + \text{tr}(e_1)a = -a + a = 0. \]
So \[-a A^{-1} RA + a = 0, \] for all R \in GR_m. Thus aR = a, for all R \in GR_m, and hence a = 0, a contradiction. Therefore, T_2x = \beta xA_2, for some
$\beta \in \mathbb{F}$ and invertible matrix $A_2 \in \text{GR}_m$. Now, by Proposition 3.2, $T_2x = \lambda xA$, for some $\lambda \in \mathbb{F}$. □

For every $i,j \in \mathbb{N}_n$ consider the embedding $E^j : \mathbb{F}_m \to \mathbb{M}_{n,m}$ and the projection $E_i : \mathbb{M}_{n,m} \to \mathbb{F}_m$, where $E^j(x) = e_jx$ and $E_i(A) = e_iA$. It is easy to prove that for every linear operator $T : \mathbb{M}_{n,m} \to \mathbb{M}_{n,m}$,

$$TX = T[x_1/\cdots/x_n] = \left[\sum_{j=1}^n T^j_1x_j/\cdots/\sum_{j=1}^n T^j_nx_j\right],$$

where x_i is the ith row of X and $T^j_i = E_i \circ T \circ E^j$. If $T : \mathbb{M}_{n,m} \to \mathbb{M}_{n,m}$ preserves rgw-majorization, then it's easy to see that $T^j_i : \mathbb{F}_m \to \mathbb{F}_m$ preserves rgw-majorization.

Now, we find the possible structure of linear operators preserving \prec_{rgw} on $\mathbb{M}_{n,m}$.

Theorem 3.4. If a linear operator $T : \mathbb{M}_{n,m} \to \mathbb{M}_{n,m}$ preserves rgw-majorization, then there exist $A \in \mathbb{M}_n(\mathbb{F}_m)$, $b_1, \ldots, b_n \in \mathbb{F}_n$, and invertible matrices $A_1, \ldots, A_n \in \text{GR}_m$, such that

$$TX = mA\overline{X} + \left[b_1XA_1/\cdots/b_nXA_n\right], \forall X \in \mathbb{M}_{n,m}.$$

Proof. For every $p \in \mathbb{N}_n$, one of the following cases holds:

Case 1: there exists $q \in \mathbb{N}_n$ such that $T^q_p x = \alpha x A_p$ for some $0 \neq \alpha \in \mathbb{F}$ and invertible $A_p \in \text{GR}_m$. We show that for all $j \in \mathbb{N}_n$, $T^j_p x = \lambda^j_p x A_p$, for some $\lambda^j_p \in \mathbb{F}$. For $x, y \in \mathbb{F}_m$ put $X = e_p x + e_j y$. It is clear that $XR \prec_{rgw} X$, for all $R \in \text{GR}_m$, therefore $TXR \prec_{rgw} TX$, for all $R \in \text{GR}_m$ and hence,

$$T^q_p x R + T^j_p y R \prec_{rgw} T^q_p x R + T^j_p y R, \forall x,y \in \mathbb{F}_m, \forall R \in \text{GR}_m.$$

Use Lemma 3.3 to conclude that $T^j_p x = \lambda^j_p x A_p$, for some $\lambda^j_p \in \mathbb{F}$. Put

$$b_p := (\lambda^1_p, \ldots, \lambda^n_p) \in \mathbb{F}_n$$

and $A_{(p)} = 0 \in \mathbb{F}_n(\mathbb{F}_m)$.

Case 2: For every $q \in \mathbb{N}_n$, T^q_p is of form (ii) in Proposition 3.1. Then $T^q_p x = \text{tr}(x) a^q_p$ for some $a^q_p \in \mathbb{F}_m$. Put $A_{(p)} = [a^1_p \ldots a^n_p] \in \mathbb{F}_n(\mathbb{F}_m)$ and $b_p = 0 \in \mathbb{F}_m$. Now, Let $A = [A_{(1)}/\ldots/A_{(n)}]$. Then
Proof. Without loss of generality we can assume that \(XR \prec \) early independent set. Let \(X \) exist. Assume that \(A \in \text{Corollary 3.5.} \) Let \(\square \) where \(A \in \mathbb{M}_n(\mathbb{F}_n) \), \(b_1, \ldots, b_n \in \mathbb{F}_n \), and \(A_1, \ldots, A_n \in \text{Gr}_m \) are invertible matrices.

\[
TX = T[x_1/ \ldots/x_n] = \left[\sum_{j=1}^{n} T^j x_j / \ldots / \sum_{j=1}^{n} T^j x_j \right] = [b_1XA_1/ \ldots/b_nXA_n] + mA X,
\]

where \(A \in \mathbb{M}_n(\mathbb{F}_m) \), \(b_1, \ldots, b_n \in \mathbb{F}_n \), and \(A_1, \ldots, A_n \in \text{Gr}_m \) are invertible matrices. \(\square \)

Corollary 3.5. Let \(\{b_1, \ldots, b_n\} \subset \mathbb{F}_n \) and \(\dim(\text{Span}\{b_1, \ldots, b_n\}) \geq 2 \). Assume that \(A_1, \ldots, A_n \in \text{Gr}_m \) are invertible and define \(T : \mathbb{M}_{n,m} \to \mathbb{M}_n(\mathbb{F}_n) \) by \(TX = [b_1XA_1/ \ldots/b_nXA_n] \). If \(T \) preserves \(\prec_{rgw} \), then there exist \(B \in \mathbb{M}_n(\mathbb{F}_n) \) and invertible \(A \in \text{Gr}_m \) such that \(TX = BXA \).

Proof. Without loss of generality we can assume that \(\{b_1, b_2\} \) is a linearly independent set. Let \(X \in \mathbb{M}_{n,m} \), \(R \in \text{Gr}_m \) be arbitrary. Then \(XR \prec_{rgw} X \), and hence \(TXR \prec_{rgw} TX \). It follows that

\[
[b_1XRA_1/ \ldots/b_nXRA_n] \prec_{rgw} [b_1XA_1/ \ldots/b_nXA_n]
\]

\[
\Rightarrow b_1XRA_1 + b_2XRA_2 \prec_{rgw} b_1XA_1 + b_2XA_2
\]

\[
\Rightarrow b_1XR + b_2XR(A_2^{-1}) \prec_{rgw} b_1X + b_2X(A_2^{-1}).
\]

Since \(\{b_1, b_2\} \) is linearly independent, for every \(x, y \in \mathbb{F}^n \), there exists \(B_{x,y} \in \mathbb{M}_{n,m} \) such that \(b_1B_{x,y} = x \) and \(b_2B_{x,y} = y \). Put \(X = B_{x,y} \) in the above relation. Thus,

\[
xR + yR(A_2^{-1}) \prec_{rgw} x + y(A_2^{-1}), \forall R \in \text{Gr}_m, \forall x, y \in \mathbb{F}_n.
\]

Then by Proposition 3.2, \((A_2^{-1}) = \alpha I \) and hence \(A_2 = \alpha A_1 \), for some \(0 \neq \alpha \in \mathbb{F} \). For every \(i \geq 3 \), if \(b_i = 0 \) we can choose \(A_i = A_1 \); if \(b_i \neq 0 \) then \(\{b_1, b_i\} \) or \(\{b_2, b_i\} \) is linearly independent. By the same argument as above, we conclude that \(A_i = \gamma_iA_1 \), for some \(0 \neq \gamma_i \in \mathbb{F} \), or \(A_i = \lambda_iA_2 \), for some \(0 \neq \lambda_i \in \mathbb{F} \). Define \(A = A_1 \). Then for every \(i \geq 2 \), \(A_i = \alpha_i A \), for some \(\alpha_i \in \mathbb{F} \) and we get

\[
TX = [b_1XA/(r_2b_2)XA/(r_nb_nXA)] = BXA,
\]

where \(B = [b_1 | r_2b_2/ \ldots/r_nb_n] \), for some \(r_2, \ldots, r_m \in \mathbb{F} \). \(\square \)

If \(A \in \text{Gr}_m \) is invertible and \(B \in \mathbb{M}_n \), it is easy to see that \(X \mapsto BXA \) is a linear preserver of \(\prec_{rgw} \). But the following example shows that there exist linear preservers of \(\prec_{rgw} \) which are not of this form.
Example 3.6. Let \(T : M_2 \rightarrow M_2 \) be such that
\[
TX = \begin{pmatrix}
x_{11} & x_{12} \\
x_{11} - x_{12} & x_{11} + x_{22}
\end{pmatrix}
\]
where \(X = [x_{ij}] \).

We show that \(T \) preserves \(\prec_{rgw} \), but \(T \) is not of the form \(X \mapsto MXA \).

Let \(X = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \) and \(Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix} \), and suppose that
\(X \prec_{rgw} Y \). If \(y_{11} + y_{12} = 0 \), so \(x_{11} + x_{12} = 0 \), and \(TX \prec_{rgw} TY \).

Let \(y_{11} + y_{12} \neq 0 \). Without loss of generality assume that \(y_{11} + y_{12} = 1 \).

Since \(X \prec_{rgw} Y \), there exists \(R \in GR_2 \), such that \(X = YR \).

Let \(R = \begin{pmatrix} a & 1 - a \\ b & 1 - b \end{pmatrix} \) and \(y = (\lambda, 1 - \lambda) \).

Put \(S := \begin{pmatrix} \alpha & 1 - \alpha \\ \alpha - 1 & 2 - \alpha \end{pmatrix} \),
where \(\alpha = \lambda(a - b) + b - \lambda + 1 \).

Therefore \(S \in GR_2 \) and \(TYS = TX \).

So \(TX \prec_{rgw} TY \). By a straightforward calculation one may show that \(T \) is not of the form \(X \mapsto BXA \).

The proof of the following lemma is similar to the proof of Lemma 2.5.

Lemma 3.7. Let \(a \in \mathbb{F}_n \). The linear operator \(T : M_{n,m} \rightarrow M_{n,m} \) defined by \(TX = [aX/\ldots/aX] \) preserves \(\prec_{rgw} \) if and only if \(a \in \cup_{i=1}^{n} \text{Span}\{e_i\} \).

The structure of linear preservers and strong linear preservers of rgw-row majorization is characterized as follows:

Theorem 3.8. Let \(T : M_{n,m} \rightarrow M_{n,m} \) be a linear operator. Then \(T \) preserves rgw-row majorization if and only if there exist \(A \in M_n(\mathbb{F}) \), \(b_1, \ldots, b_n \in \cup_{i=1}^{n} \text{Span}\{e_i\} \), and invertible matrices \(A_1, \ldots, A_n \in GR_m \) such that for every \(i \in \mathbb{N}_n \), \(b_i = 0 \) or \(A_i = 0 \), where \(A = [A_{(1)}/\ldots/A_{(n)}] \) and
\[
(3.1) \quad TX = mAX + [b_1XA_1/\ldots/b_nXA_n].
\]

Proof. The fact that the condition (3.1) is sufficient for \(T \) to be a linear preserver of \(\prec_{rgw} \) is easy to prove. So, we prove the necessity of the condition. Therefore, assume that \(T \) preserves \(\prec_{rgw} \). For every \(i, j \in \mathbb{N}_n \), \(T^j_i : \mathbb{F}_m \rightarrow \mathbb{F}_m \) preserves \(\prec_{rgw} \). Then, each \(T^j_i \) is of the form (i) or (ii) in Proposition 3.1. Let
\[
I = \{k \in \mathbb{N}_n : \exists l \in \mathbb{N}_n \text{ such that } T^j_k \text{ is of the form (ii) with } \alpha_k^j \neq 0\}.
\]

We show that if \(k \in I \), then \(T^j_k \) is of form (ii) of Proposition 3.1, with the same invertible matrix \(A_k \in GR_m \), for every \(j \in \mathbb{N}_n \). Suppose \(k \in I \), then there exist \(l \in \mathbb{N}_n \), \(0 \neq \alpha_k^j \in \mathbb{F} \) and invertible matrix \(A_k \in GR_m \)
It is clear that for every \(j \)

\[
B_j = \begin{bmatrix}
A_1 & \cdots & A_n
\end{bmatrix}
\]

is a preserver of \(\text{rgw-row majorization} \) if and only if there exist invertible \(T_1, \ldots, T_n \) and hence \(\text{rgw-row majorization} \). So by Proposition 3.2, there exists \(\alpha_k \) such that

\[
T_k^j x + T_k^j y R \prec \text{rgw} \quad \forall x, y \in F_n, \forall R \in \text{GR}_m.
\]

So by Proposition 3.2, there exists \(\alpha_k \) such that \(T_k^j x = \alpha_k^j x A_k \). Set \(b_k := (\alpha_k^1, \ldots, \alpha_k^n) \). Then \(b_k = 0 \) if \(k \notin I \).

If \(k \notin I \), then \(T_k^j \) is of form (i) of Proposition 3.1, for every \(j \in N_n \).

\[
T_k^j x = ma_k^j x \quad \forall x \in F_n, \quad \text{if} \quad k \in I, \text{put} \quad a_k^j = 0 \quad \forall j \in N_n.
\]

For \(k \in N_n \) define \(A_k = (a_k^1, \ldots, a_k^n) \).

It is clear that for every \(i \in N_n \), \(b_i = 0 \) or \(A_i = 0 \). Let \(A = [A_1, \ldots, A_n] \).

Then \(TX = [\sum_{j=1}^n T_k^j x_j, \ldots, \sum_{j=1}^n T_n^j x_j] = m A X + [b_1 X A_1, \ldots, b_n X A_n] \).

To complete the proof we must apply Lemma 3.7 to conclude that \(b_i \in \text{Span} \{ e_i \} \) for every \(i \in N_n \).

\[\square\]

Theorem 3.9. A linear operator \(T : M_{n,m} \rightarrow M_{n,m} \) is a strong linear preserver of \(\text{rgw-row majorization} \) if and only if there exist invertible matrices \(A_1, \ldots, A_n \in \text{GR}_m \) and \(b_1, \ldots, b_n \in \cup_{i=1}^n \text{Span} \{ e_i \} \) such that \(B = [b_1, \ldots, b_n] \) is invertible and

\[
TX = [b_1 X A_1, \ldots, b_n X A_n].
\]

Proof. Assume that there exists a \(k \in (N_n \setminus I) \). Without loss of generality let \(1 \in (N_n \setminus I) \), so \(b_1 = 0 \). Set \(V := \text{Span} \{ b_2, \ldots, b_n \} \), then \(\dim V \leq n - 1 \). It follows that \(\dim V^\perp \geq 1 \) and there exists \(0 < s \in V^\perp \).

Set \(X := [s | -s | 0 | \ldots | 0] \). Therefore \(X \) is nonzero and for every \(i \in N_n \), \(b_i X = 0 \) so \(TX = 0 \), which is a contradiction. Then \(I = N_n \) and \(TX = [b_1 X A_1, \ldots, b_n X A_n] \).

Now, we show that \(B \) is invertible. If \(B \) is not invertible, set \(V := \text{Span} \{ b_1, \ldots, b_n \} \). So \(\dim V \leq n - 1 \). Therefore \(\dim V^\perp \geq 1 \) and there exists \(0 < s \in V^\perp \).

Set \(X := [s | -s | 0 | \ldots | 0] \). Then \(X \) is nonzero and \(TX = 0 \), which is a contradiction. \[\square\]

In the remainder of this section we characterize linear operators that preserve or strongly preserve \(\text{lgw} \) or \(\text{lgw-column majorization} \). We begin with a theorem of [5].

Theorem 3.10. [5, Theorem 2.4] A linear operator \(T : F^n \rightarrow F^n \) preserves \(\text{lgw-majorization} \) if and only if one of the following assertions holds:

(i) There exists \(R \in M_n \) such that \(\text{Ker}(R) = \text{Span} \{ e \}, e \notin \text{Im}(R) \), and \(Tx = Rx \) for every \(x \in F^n \);
There exist an invertible matrix \(R \in GR_n \) and \(\alpha \in \mathbb{F} \) such that \(Tx = \alpha Rx \) for every \(x \in \mathbb{F}^n \).

Corollary 3.11. A linear operator \(T : \mathbb{F}^n \to \mathbb{F}^n \) preserves \(\text{lgw-majorization} \) if and only if one of the following assertions holds:

(i) there exists an invertible matrix \(D \in GR_n \), such that
\[
Tx = \left(D - \frac{1}{n} J\right)x \text{ for every } x \in \mathbb{F}^n;
\]

(ii) There exist an invertible matrix \(R \in GR_n \) and \(\alpha \in \mathbb{F} \) such that
\[
Tx = \alpha Rx \text{ for every } x \in \mathbb{F}^n.
\]

Proof. Let \(R \in M_n \). We show that \(\text{Ker}(R) = \text{Span}\{e\} \) and \(e \notin \text{Im}(R) \) if and only if \(R = (D - \frac{1}{n} J) \) for some invertible matrix \(D \in GR_n \).

First, Let \(R = (D - \frac{1}{n} J) \) for some invertible matrix \(D \in GR_n \). It is clear that \(\text{Span}\{e\} \subset \text{Ker}(R) \). If \(x \in \text{Ker}(R) \), then
\[
Dx = \frac{1}{n} \text{tr}(x)e.
\]
Therefore \(\text{Ker}(R) = \text{Span}\{e\} \). Assume that \(e \in \text{Im}(R) \), then \((D - \frac{1}{n} J)x = e \) for some \(x \in \mathbb{F}^n \). It implies that
\[
Dx = \left(1 - \frac{1}{n} \text{tr}(x)\right)e \text{ and hence } x \in \text{Span}\{e\},
\]
which is a contradiction. So \(e \notin \text{Im}(R) \).

Conversely. Let \(\text{Ker}(R) = \text{Span}\{e\} \) and \(e \notin \text{Im}(R) \). Put \(D := R + \frac{1}{n} J \). Since \(Re = 0, D \in GR_n \). It is enough to show that \(D \) is invertible. If
\[
Dx = 0 \text{ then } Rx = \left(-\frac{1}{n} \text{tr}(x)\right)e.
\]
If \(\text{tr}(x) \neq 0 \), then \(e \in \text{Im}(R) \) which is a contradiction, so \(\text{tr}(x) = 0 \) and \(Rx = 0 \). Therefore \(x \in \text{Span}\{e\} \), which implies that \(x = 0 \). \(\square \)

Lemma 3.12. Let \(A \in GR_n \) be invertible. Then the following conditions are equivalent:

(a) \(A = \alpha I + \beta J \), for some \(\alpha, \beta \in \mathbb{R} \);

(b) \(D x + A D y \triangleleft_{\text{lgw}} x + Ay \), for all \(D \in GD_n \) and for all \(x, y \in \mathbb{F}^n \).

Proof. (a \(\Rightarrow \) b) If \(A = \alpha I + \beta J \), it is easy to show that \(D x + A D y \triangleleft_{\text{lgw}} x + Ay \), for all \(D \in GD_n \) and for all \(x, y \in \mathbb{F}^n \).

(b \(\Rightarrow \) a) The matrix \(A \) is invertible, so condition (b) can be written as follows:
\[
D x + ADA^{-1} y \triangleleft_{\text{lgw}} x + y, \forall D \in GD_n, \forall x, y \in \mathbb{F}^n.
\]

Put \(x = e - e_i \) and \(y = e_i \) in the above relation. Thus, \([e - (D - ADA^{-1})e_i] \triangleleft_{\text{lgw}} e_i \), for every \(i \in \mathbb{N} \). So \((D - ADA^{-1})e_i = 0 \), for every
$i \in \mathbb{N}_n$, and $DA = AD$, for every $D \in \text{GD}_n$. Therefore, $A = \alpha I + \beta J$, for some $\alpha, \beta \in \mathbb{F}$.

\[\begin{array}{l}
\text{Theorem 3.13. Let } T : M_{n,m} \to M_{n,m} \text{ be a linear operator that preserves lgw-majorization. Then, there exist invertible matrices } A_1, \ldots, A_m \in \text{GR}_n, b_1, \ldots, b_m \in \mathbb{F}^m \text{ and } S \in M_m \text{ such that}

TX = [A_1Xb_1 \mid \ldots \mid A_mXb_m] + JXS.
\end{array}\]

Proof. Suppose that T preserves lgw-majorization. It is easy to prove that $T_f^i : \mathbb{F}^n \to \mathbb{F}^m$ preserves lgw-majorization. Then by Corollary 3.11, for every $i, j \in \mathbb{N}_n$, $T_f^i x = (\alpha_i^J A_i^J - \frac{1}{n} \gamma_i^J J)x$, for some invertible matrices $A_i^J \in \text{GR}_n$, $\alpha_i^J \in \mathbb{F}$ and $\gamma_i^J \in \{0, 1\}$. Then

\[TX = T[x_1| \ldots |x_m] = \left[\sum_{j=1}^m T_f^i x_j \mid \ldots \mid \sum_{j=1}^m T_f^i m x_j\right] = \left[\sum_{j=1}^m (\alpha_i^J A_i^J - \frac{1}{n} \gamma_i^J J)x_j \mid \ldots \mid \sum_{j=1}^m (\alpha_i^J A_i^J - \frac{1}{n} \gamma_i^J J)x_j \right].\]

For every $x, y \in \mathbb{F}^m$, define $X = E^j(x) + E^q(y) \in M_{n,m}$. If $\alpha_i^q = 0$ for every $i \in \mathbb{N}_m$, then put $A_i^q = I$. Now, suppose that there exists some $p \in \mathbb{N}_m$ such that $\alpha_i^q \neq 0$. Then for every $D \in \text{GD}_n$, $DX \ll_{tgw} X$, and hence $[\alpha_i^q A_i^q D x + \alpha_i^q A_i^q D y| \ldots |\alpha_i^q A_i^q m x + \alpha_i^q A_i^q m y] \ll_{tgw}$

\[\Rightarrow \alpha_p A_p D x + \alpha_p A_p D y \ll_{tgw} \alpha_i^q A_i^q p x + \alpha_i^q A_i^q p y \Rightarrow Dx + (A_p^q)^{-1} A_p^q D (\alpha_p^q \alpha_q y) \ll_{tgw} x + (A_p^q)^{-1} A_p^q D (\alpha_p^q \alpha_q y).\]

So by Lemma 3.12, $(A_p^q)^{-1} A_p^q = \lambda_p^J I + \beta_p^J J$. Set $A_p := A_p^q$, then $A_p^q = \lambda_p^J I + \beta_p^J J$. Therefore for some $\mu_i^q \in \mathbb{F}$ we have

\[TX = \left[\begin{array}{l}
A_1 \sum_{j=1}^m \mu_i^q x_j \mid \ldots \mid A_p \sum_{j=1}^m \mu_i^q x_j \mid \ldots \mid A_m \sum_{j=1}^m \mu_i^q x_j
\end{array}\right] + JXS,\]
where
\[S = \begin{pmatrix}
-\frac{1}{n} \gamma_1 + \beta_1 & \cdots & -\frac{1}{n} \gamma_m + \beta_m \\
\vdots & \ddots & \vdots \\
-\frac{1}{n} \gamma_1 + \beta_1 & \cdots & -\frac{1}{n} \gamma_m + \beta_m
\end{pmatrix}. \]

Now, for every \(i \in \mathbb{N}_m \), define
\[b_i = \begin{pmatrix} \mu_1^i \\ \mu_2^i \\ \vdots \\ \mu_m^i \end{pmatrix}. \]

Then,
\[TX = [A_1Xb_1 | \ldots | A_mXb_m] + JXS. \]

Corollary 3.14. Let \(T \) satisfy the condition of Theorem 3.13 and let \(\text{rank}[b_1 | \ldots | b_m] \geq 2 \). Then \(TX = AXR + JXS \), for some \(R, S \in M_n \), and invertible matrix \(A \in GR_n \).

Proof. Without loss of generality we can assume that \(\{b_1, b_2\} \) is a linearly independent set. Let \(X \in M_{n,m} \), \(D \in GD_n \) be arbitrary. Then \(DX <_{lgw} X \) and hence, \(TDX <_{lgw} TX \). It follows that
\[[A_1 DXb_1 | \ldots | A_m DXb_m] <_{lgw} [A_1 Xb_1 | \ldots | A_m Xb_m] \]
\[\Rightarrow A_1 DXb_1 + A_2 DXb_2 <_{lgw} A_1 Xb_1 + A_2 Xb_2 \]
\[\Rightarrow DXb_1 + (A_1^{-1}A_2) DXb_2 <_{lgw} Xb_1 + (A_1^{-1}A_2) Xb_2. \]

Since \(\{b_1, b_2\} \) is linearly independent, for every \(x, y \in \mathbb{R}^n \), there exists \(B_{x,y} \in M_{n,m} \) such that \(B_{x,y}b_1 = x \) and \(B_{x,y}b_2 = y \). Put \(X := B_{x,y} \) in the above relation. Thus,
\[DB_{x,y}b_1 + (A_1^{-1}A_2) DB_{x,y}b_2 <_{lgw} B_{x,y}b_1 + (A_1^{-1}A_2) B_{x,y}b_2 \]
\[\Rightarrow D x + (A_1^{-1}A_2) D y <_{lgw} x + (A_1^{-1}A_2) y, \forall D \in GD_n. \]

Then by Lemma 3.12, \(A_1^{-1}A_2 = \alpha I + \beta J \) and hence \(A_2 = \alpha A_1 + \beta J \), for some \(\alpha, \beta \in \mathbb{F} \), \(\alpha \neq 0 \). For every \(i \geq 3 \), if \(b_i = 0 \) we can choose \(A_i = A_1 \). If \(b_i \neq 0 \) then \(\{b_1, b_2\} \) or \(\{b_2, b_i\} \) is linearly independent. Then by the same argument as above, \(A_i = \gamma_i A_1 + \delta_i J \), for some \(\gamma_i, \delta_i \in \mathbb{F} \), \(\gamma_i \neq 0 \), or \(A_i = \lambda_i A_2 + \mu_i J \), for some \(\lambda_i, \mu_i \in \mathbb{F} \), \(\lambda_i \neq 0 \).

Define \(A := A_1 \). Then for every \(i \geq 2 \), \(A_i = \alpha_i A_2 + \beta_i J \), for some \(\alpha_i, \beta_i \in \mathbb{F} \) and hence
\[TX = [AXb_1 | AX(r_2b_2) | \ldots | AX(r_mb_m)] + JXS = AXR + JXS, \]
where, \(R = [b_1 | r_2 b_2 | \ldots | r_m b_m] \), for some \(r_2, \ldots, r_m \in \mathbb{F} \) and \(S \) is as in Theorem 3.13.

Lemma 3.15. Let \(b_1, \ldots, b_m \in \mathbb{F}^m \). The linear operator \(T : M_{n,m} \to M_{n,m} \) defined by \(TX = [Xb_1 | \ldots | Xb_m] \) preserves \(\prec_{\text{lgw}} \) column majorization if and only if \(b_j \in \bigcup_{i=1}^{n} \text{Span}\{e_i\} \), for every \(j \in \mathbb{N}_m \).

The following theorems give the structure of linear and strong linear preserver of \(\prec_{\text{lgw}} \) column majorization on \(M_{n,m} \). Since the proofs are similar to the proofs of Theorems 2.6 and 2.7, we leave the proofs to the readers.

Theorem 3.16. Let \(T : M_{n,m} \to M_{n,m} \) be a linear operator. Then \(T \) preserves \(\prec_{\text{lgw}} \) column majorization if and only if there exist invertible matrices \(A_1, \ldots, A_m \in \text{GR}_n \), \(b_1, \ldots, b_m \in \bigcup_{i=1}^{m} \text{Span}\{e_i\} \) and \(D \in M_m \) such that for every \(i \in \mathbb{N}_n \), \(b_i = 0 \) or \(A_1 e_i = \ldots = A_m e_i = 0 \) and for all \(X = [x_1 | \ldots | x_n] \in M_{n,m} \), \(TX = [A_1 X b_1 | \ldots | A_m X b_m] + JXD \).

Theorem 3.17. Let \(T : M_{n,m} \to M_{n,m} \) be a linear operator. Then \(T \) strongly preserves \(\text{lgw-column} \) majorization if and only if there exist invertible matrices \(A_1, \ldots, A_m \in \text{GR}_n \) and \(b_1, \ldots, b_m \in \bigcup_{i=1}^{m} \text{Span}\{e_i\} \) such that \(B := [b_1 | \ldots | b_m] \) is invertible and

\[
TX = [A_1 X b_1 | \ldots | A_m X b_m].
\]

Acknowledgements

The authors thank the anonymous referees for the suggestions to improve the paper.

References

Ali Armandnejad
Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O. Box 7713936417, Rafsanjan, Iran
Email: armandnejad@mail.vru.ac.ir,

Zahra Mohammadi
Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O. Box 7713936417, Rafsanjan, Iran
Email: z.mohammadi@stu.vru.ac.ir

Farzaneh Akbarzadeh
Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O. Box 7713936417, Rafsanjan, Iran
Email: f.akbarzadeh@stu.vru.ac.ir