LINEAR PRESERVERS OF G-ROW AND G-COLUMN MAJORIZATION ON $\mathrm{M}_{n, m}$

A. ARMANDNEJAD*, Z. MOHAMMADI AND F. AKBARZADEH

Communicated by Abbas Salemi Parizi

Abstract

Let A and B be $n \times m$ matrices. The matrix B is said to be g-row majorized (respectively g-column majorized) by A, denoted by $B \prec_{g}^{\text {row }} A$ (respectively $B \prec_{g}^{\text {column }} A$), if every row (respectively column) of B, is g-majorized by the corresponding row (respectively column) of A. In this paper all kinds of g-majorization are studied on $\mathbf{M}_{n, m}$, and the possible structure of their linear preservers will be found. Also all linear operators $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$ preserving (or strongly preserving) g-row or g-column majorization will be characterized.

1. Introduction

An $n \times n$ matrix R (not necessarily nonnegative) is called g-row stochastic if $R e=e$, where $e=(1,1, \ldots, 1)^{t}$. A matrix D is called g-doubly stochastic if both D and D^{t} are g-row stochastic matrices. The collection of all $n \times n$ g-row stochastic matrices, and $n \times n$ g-doubly stochastic matrices are denoted by $\mathbf{G R}{ }_{n}$ and $\mathbf{G D}_{n}$ respectively. Throughout the paper, $\mathbf{M}_{n, m}$ is the set of all $n \times m$ matrices with entries in $\mathbb{F}(\mathbb{R}$ or \mathbb{C}), and $\mathbf{M}_{n}:=\mathbf{M}_{n, n}$. The set of all $n \times 1$ column vectors is denoted by \mathbb{F}^{n}, and the set of all $1 \times n$ row vectors is denoted by \mathbb{F}_{n}. The symbol \mathbb{N}_{k} is used for the set $\{1, \ldots, k\}$. The symbol e_{i} is the row (or

[^0]column) vector with 1 as $i^{\text {th }}$ component and 0 elsewhere. The summation of all components of a vector x in \mathbb{F}^{n} or \mathbb{F}_{n} is denoted by $\operatorname{tr}(\mathrm{x})$. The symbol $\left[x_{1} / x_{2} / \ldots / x_{n}\right]$ (resp. $\left[x_{1}\left|x_{2}\right| \ldots \mid x_{m}\right]$) is used for the $n \times m$ matrix whose rows (resp. columns) are $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{F}_{m}$ (resp. $\left.x_{1}, x_{2}, \ldots, x_{m} \in \mathbb{F}^{n}\right)$. For a matrix $X=\left[x_{i j}\right] \in \mathbf{M}_{n, m}$, its average (column) vector $\bar{X}=\left[\overline{x_{1}} / \ldots / \overline{x_{n}}\right] \in \mathbb{F}^{n}$ is defined by the components $\overline{x_{i}}=m^{-1}\left(x_{i 1}+x_{i 2}+\cdots+x_{i m}\right)$, for $i \in \mathbb{N}_{n}$. The letter \mathbf{J} stands for the (rank-1) square matrix all of whose entries are 1.

For $A, B \in \mathbf{M}_{n, m}$, it is said that A is lgs-majorized (resp. rgsmajorized) by B and denoted by $A \prec_{l g s} B$ (resp. $A \prec_{\text {rgs }} B$) if there exists an $n \times n$ (resp. $m \times m$) g-doubly stochastic matrix D such that $A=D B($ resp. $A=B D)$, see $[4,6]$.

Let $A, B \in \mathbf{M}_{n, m}$. The matrix A is said to be lgw-majorized (resp. rgw-majorized) by B and denoted by $\prec_{l g w}\left(\right.$ resp. $\left.\prec_{r g w}\right)$ if there exists an $n \times n$ (resp. $m \times m$) g-row stochastic matrix R such that $A=R B$ (resp. $A=B R$), for more details see $[2,5]$.

Let \prec be a relation on $\mathbf{M}_{n, m}$. A linear operator $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$ is said to be a linear preserver (resp. strong linear preserver) of \prec, if $X \prec Y$ implies $T X \prec T Y$ (resp. $X \prec Y$ if and only if $T X \prec T Y$).

The linear preservers and strong linear preservers of lgs-majorization are characterized in [6] as follows:

Proposition 1.1. [6, Theorem 3.3] Let $T: \boldsymbol{M}_{n, m} \rightarrow \boldsymbol{M}_{n, m}$ be a linear operator that preserves lgs-majorization. Then one of the following statements holds:
(i) There exist $A_{1}, A_{2}, \ldots, A_{m} \in \boldsymbol{M}_{n, m}$ such that
$T X=\sum_{j=1}^{m} \operatorname{tr}\left(x_{j}\right) A_{j}$, where $X=\left[x_{1}|\ldots| x_{m}\right]$;
(ii) There exist $S \in \boldsymbol{M}_{m}, a_{1}, \ldots, a_{m} \in \mathbb{F}^{m}$ and invertible matrices $B_{1}, B_{2}, \ldots, B_{m} \in \boldsymbol{G} \boldsymbol{D}_{n}$, such that $T X=\left[B_{1} X a_{1}|\ldots| B_{m} X a_{m}\right]+$ $J X S$.
Proposition 1.2. [6, Theorem 3.7] Let $T: \boldsymbol{M}_{n, m} \rightarrow \boldsymbol{M}_{n, m}$ be a linear operator. Then T strongly preserves $\prec_{l g s}$ if and only if $T X=A X R+$ $\boldsymbol{J} X S$, for some $R, S \in \boldsymbol{M}_{m}$ and invertible matrix $A \in \boldsymbol{G} \boldsymbol{D}_{n}$ such that $R(R+n S)$ is invertible.

In $[2,5]$, the authors proved that a linear operator $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$ strongly preserves lgw-majorization (resp. rgw-majorization) if and only if $T X=A X M$ (resp. $T X=M X A$), for some invertible matrices $M \in \mathbf{M}_{m}$ (resp. $M \in \mathbf{M}_{n}$) and $A \in \mathbf{G R}_{n}\left(\right.$ resp. $\left.A \in \mathbf{G R}_{m}\right)$.

In the present paper, we find the possible structure of linear operators that preserve lgw, rgw or rgs-majorization. Also, all linear preservers and strong linear preservers of g -row and g-column majorization will be characterized. To see some kinds of majorization and their linear preservers we refer the readers to [1], [3] and [7]-[11].

2. LGS-COLUMN (RGS-ROW) MAJORIZATION ON $\mathbf{M}_{n, m}$

In this section we characterize all linear operators on $\mathbf{M}_{n, m}$ that preserve or strongly preserve lgs-column (rgs-row) majorization.
Definition 2.1. Let $A, B \in \mathbf{M}_{n, m}$. It is said that B is lgs-column (resp. rgs-row) majorized by A, written as $B \prec_{\text {lgs }}^{\text {column }} A$ (resp. $B \prec_{\text {rgs }}^{\text {row }} A$), if every column (resp. row) of B is lgs- (resp. rgs-) majorized by the corresponding column (resp. row) of A.

We use the following statements to prove the main result of this section.
Proposition 2.2. [6, Theorem 2.4] Let $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ be a linear operator. Then T preserves gs-majorization if and only if one of the following statements holds:
(a) $T x=\operatorname{tr}(x) a$, for some $a \in \mathbb{F}^{n}$;
(b) $T x=\alpha D x+\beta \boldsymbol{J} x$, for some $\alpha, \beta \in \mathbb{F}$ and invertible matrix $D \in$ $G D_{n}$.
Proposition 2.3. [6, Lemma 3.1] Let $A \in \boldsymbol{G D}_{n}$ be invertible. Then the following conditions are equivalent:
(a) $A=\alpha \boldsymbol{I}+\beta \boldsymbol{J}$, for some $\alpha, \beta \in \mathbb{F}$;
(b) $(D x+A D y) \prec_{g s}(x+A y)$, for all $D \in \boldsymbol{G} \boldsymbol{D}_{n}$ and for all $x, y \in \mathbb{F}^{n}$. Proposition 2.4. [6, Lemma 3.2] Let $T_{1}, T_{2}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ satisfy $T_{1}(x)=$ $\alpha A x+\beta \boldsymbol{J} x$ and $T_{2}(x)=\operatorname{tr}(x) a$, for some $\alpha, \beta \in \mathbb{F}, \alpha \neq 0$, invertible matrix $A \in \boldsymbol{G} \boldsymbol{D}_{n}$ and $a \in\left(\mathbb{F}^{n} \backslash \operatorname{Span}\{e\}\right)$. Then there exists a g-doubly stochastic matrix D and a vector $x \in \mathbb{F}^{n}$ such that $T_{1}(D x)+T_{2}(D x) \prec_{g s}$ $T_{1}(x)+T_{2}(x)$.

Lemma 2.5. Let $a \in \mathbb{F}^{m}$. The linear operator $T: \boldsymbol{M}_{n, m} \rightarrow \boldsymbol{M}_{n, m}$ defined by $T X=[X a|\ldots| X a]$, preserves lgs-column majorization if and only if $a \in \cup_{i=1}^{m} \operatorname{Span}\left\{e_{i}\right\}$.

Proof. If $a \in \cup_{i=1}^{m} \operatorname{Span}\left\{e_{i}\right\}$, it is easy to show that T preserves $\prec_{l g s}^{\text {column }}$. Conversely, let T preserve $\prec_{\text {lgs }}^{\text {column }}$. Assume that $a=\left(a_{1}, \ldots, a_{m}\right)^{t} \notin$ $\cup_{i=1}^{m} \operatorname{Span}\left\{e_{i}\right\}$. Then there exist distinct $i, j \in \mathbb{N}_{m}$ such that $a_{i}, a_{j} \neq 0$.

Without loss of generality assume that $a_{1}, a_{2} \neq 0$. Put

$$
X:=\left(\begin{array}{cc}
-a_{2} & -a_{1} \\
a_{2} & a_{1}
\end{array}\right) \oplus 0, Y:=\left(\begin{array}{cc}
a_{2} & -a_{1} \\
-a_{2} & a_{1}
\end{array}\right) \oplus 0 \in \mathbf{M}_{n, m} .
$$

It is clear that $X \prec_{l g s}^{\text {column }} Y$, so $X a \prec_{l g s} Y a$. But $Y a=0$ and $X a \neq 0$, which is a contradiction.

For every $i, j \in \mathbb{N}_{m}$, consider the embedding $E^{j}: \mathbb{F}^{m} \rightarrow \mathbf{M}_{n, m}$ by $E^{j}(x)=x e_{j}$ and projection $E_{i}: \mathbf{M}_{n, m} \rightarrow \mathbb{F}^{n}$ by $E_{i}(A)=A e_{i}$. It is easy to show that for every linear operator $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$,

$$
T X=\left[\sum_{j=1}^{m} T_{1}^{j} x_{j}|\ldots| \sum_{j=1}^{m} T_{m}^{j} x_{j}\right],
$$

where $T_{i}^{j}=E_{i} \circ T \circ E^{j}$ and $X=\left[x_{1}|\ldots| x_{m}\right]$. If T preserves $\prec_{l g s}^{\text {column }}$, it is clear that $T_{i}^{j}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ preserves $\prec_{\text {lgs }}$.
Now, we state the main theorem of this section.
Theorem 2.6. Let $T: \boldsymbol{M}_{n, m} \rightarrow \boldsymbol{M}_{n, m}$ be a linear operator. Then T preserves lgs-column majorization if and only if there exist $A_{1}, \ldots, A_{m} \in$ $\boldsymbol{M}_{n, m}, b_{1}, \ldots, b_{m} \in \cup_{i=1}^{m} \operatorname{Span}\left\{e_{i}\right\}$, invertible matrices $B_{1}, \ldots, B_{m} \in$ $\boldsymbol{G} \boldsymbol{D}_{n}$, and $S \in \boldsymbol{M}_{m}$ such that for every $i \in \mathbb{N}_{m}, b_{i}=0$ or $A_{1} e_{i}=$ $\cdots=A_{m} e_{i}=0$ and for all $X=\left[x_{1}|\ldots| x_{m}\right] \in M_{n, m}$,

$$
\begin{equation*}
T X=\sum_{j=1}^{m} \operatorname{tr}\left(x_{j}\right) A_{j}+\left[B_{1} X b_{1}|\ldots| B_{m} X b_{m}\right]+J X S \tag{2.1}
\end{equation*}
$$

Proof. First, assume that the condition (2.1) holds. Suppose $X=\left[x_{1} \mid\right.$ $\left.\ldots \mid x_{m}\right], Y=\left[y_{1}|\ldots| y_{m}\right] \in \mathbf{M}_{n, m}$ and $X \prec_{l g s}^{\text {column }} Y$. Since for every $i \in \mathbb{N}_{m}, b_{i}=0$ or $A_{1} e_{i}=\cdots=A_{m} e_{i}=0$, it is easy to see that $T X e_{i} \prec_{l g s} T Y e_{i}$ and hence $T X \prec_{l g s}^{\text {column }} T Y$. Conversely, assume that T preserves $\prec_{\text {lgs }}^{\text {column }}$. For every $i, j \in \mathbb{N}_{m}, T_{i}^{j}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ preserves $\prec_{\text {lgs }}$. Then, each T_{i}^{j} is of the form (a) or (b) in Proposition 2.2. Let

$$
\mathbf{I}=\left\{k \in \mathbb{N}_{m}: \exists l \in \mathbb{N}_{m} \text { such that } T_{k}^{l} \text { is of the form (b) with } \alpha_{k}^{l} \neq 0\right\} .
$$

For every $k \in \mathbf{I}$ there exists $l \in \mathbb{N}_{m}$ such that $T_{k}^{l} x=\alpha_{k}^{l} B_{k} x+\beta_{k}^{l} \mathbf{J} x$ for some invertible matrix $B_{k} \in \mathbf{G D}_{n}$ and $\alpha_{k}^{l} \neq 0, \beta_{k}^{l} \in \mathbb{F}$.

We show that if $k \in \mathbf{I}$, then T_{k}^{j} is of form (b) with same invertible matrix $B_{k} \in \mathbf{G D}_{n}$, for every $j \in \mathbb{N}_{m}$.

Suppose $k \in \mathbf{I}$, then there exist $l \in \mathbb{N}_{n}, \alpha_{k}^{l} \neq 0, \beta_{k}^{l} \in \mathbb{F}$, invertible matrix $B_{k} \in \mathbf{G D}_{n}$ such that $T_{k}^{l} x=\alpha_{k}^{l} B_{k} x+\beta_{k}^{l} \mathbf{J} x$. For every $x, y \in$ \mathbb{F}^{n} define $X=x e_{j}+y e_{l} \in \mathbf{M}_{n, m}$. It is clear that $D X \prec_{\text {lgs }}^{\text {column }} X$, and hence $T D X \prec_{l g s}^{\text {column }} T X$, for all $D \in \mathbf{G D}_{n}$. This implies that $T_{k}^{j} D x+T_{k}^{l} D y \prec_{l g s} T_{k}^{j} x+T_{k}^{l} y$. Then by Propositions 2.3 and 2.4, there exist $\alpha_{k}^{j}, \beta_{k}^{j} \in \mathbb{F}$ such that $T_{k}^{j} x=\alpha_{k}^{j} B_{k} x+\beta_{k}^{j} \mathbf{J} x$. For $k \in \mathbf{I}$, set $b_{k}:=$ $\left(\alpha_{k}^{1}, \ldots, \alpha_{k}^{m}\right)^{t}, s_{k}:=\left(\beta_{k}^{1}, \ldots, \beta_{k}^{m}\right)^{t} \in \mathbb{F}^{m}$ and for $k \in\left(\mathbb{N}_{m} \backslash \mathbf{I}\right)$ set $b_{k}=$ $s_{k}:=0 \in \mathbb{F}^{m}$. Define $S:=\left[s_{1}|\ldots| s_{m}\right] \in \mathbf{M}_{m}$.

If $k \notin \mathbf{I}$, then T_{k}^{j} is of form (a) for every $j \in \mathbb{N}_{m}$ and hence $T_{k}^{j} x=$ $(\operatorname{tr} x) a_{k}^{j}$, for some $a_{k}^{j} \in \mathbb{F}^{n}$. For $k \in \mathbf{I}$, put $a_{k}^{j}=0$ and define $A_{j}:=\left[a_{1}^{j} \mid\right.$ $\left.\ldots \mid a_{m}^{j}\right] \in \mathbf{M}_{n, m}$.

It is clear that for every $i \in \mathbb{N}_{m}, b_{i}=0$ or $A_{1} e_{i}=\cdots=A_{m} e_{i}=0$ and by a straightforward calculation one may show that for any $X=\left[x_{1} \mid\right.$ $\left.\ldots \mid x_{m}\right] \in \mathbf{M}_{n, m}$,

$$
T X=\sum_{j=1}^{m} \operatorname{tr}\left(x_{j}\right) A_{j}+\left[B_{1} X b_{1}|\ldots| B_{m} X b_{m}\right]+\mathbf{J} X S
$$

If $b_{j} \notin \cup_{i=1}^{m} \operatorname{Span}\left\{e_{i}\right\}$ for some $j \in \mathbb{N}_{m}$, then Lemma 3.7 implies that T is not a linear preserver of $\prec_{l g s}^{\text {column }}$ which is a contradiction. Therefore $b_{1}, \ldots, b_{m} \in \cup_{i=1}^{m} \operatorname{Span}\left\{e_{i}\right\}$, as desired.

The structure of strong linear preservers of lgs-column majorization is characterized as follows:

Theorem 2.7. Let $T: \boldsymbol{M}_{n, m} \rightarrow \boldsymbol{M}_{n, m}$ be a linear operator. Then T strongly preserves lgs-column majorization if and only if there exist invertible matrices $B_{1}, \ldots, B_{m} \in \boldsymbol{G} \boldsymbol{D}_{n}, S \in \boldsymbol{M}_{m}$ and, $b_{1}, \ldots, b_{m} \in$ $\cup_{i=1}^{m} \operatorname{Span}\left\{e_{i}\right\}$ such that $D(D+n S)$ is invertible and

$$
\begin{equation*}
T X=\left[B_{1} X b_{1}|\ldots| B_{m} X b_{m}\right]+\boldsymbol{J} X S \tag{2.2}
\end{equation*}
$$

where $D=\left[b_{1}|\ldots| b_{m}\right]$.
Proof. The fact that the condition (2.2) is sufficient for T to be a strong linear preserver of $\prec_{l g s}^{\text {column }}$ is easy to prove. So, we prove the necessity of the conditions. Assume that T is a strong linear preserver of $\prec_{l g s}^{\text {column }}$. It can be easily seen that T is invertible. By Theorem 2.6, there exist $A_{1}, \ldots, A_{m} \in \mathbf{M}_{n, m}, b_{1}, \ldots, b_{m} \in \cup_{i=1}^{m} \operatorname{Span}\left\{e_{i}\right\}, S \in \mathbf{M}_{m}$, and invertible matrices $B_{1}, \ldots, B_{m} \in \mathbf{G D}_{n}$ such that for all $X=\left[x_{1}|\ldots| x_{m}\right] \in$ $\mathbf{M}_{n, m}, T X=\sum_{j=1}^{n} \operatorname{tr}\left(x_{j}\right) A_{j}+\left[B_{1} X b_{1}|\ldots| B_{m} X b_{m}\right]+\mathbf{J} X S$ and for
every $i \in \mathbb{N}_{m}, b_{i}=0$ or $A_{1} e_{i}=\cdots=A_{m} e_{i}=0$. We show that for every $j \in \mathbb{N}_{m}, A_{j}=0$. Assume that there exists $j \in \mathbb{N}_{m}$, such that $A_{j} \neq 0$. Without loss of generality suppose that $A_{j} e_{1} \neq 0$, then $b_{1}=0$. Set $V:=\operatorname{Span}\left\{b_{2}, \ldots, b_{m}\right\}$, so $\operatorname{dim} V \leqslant m-1$. It follows that there exists $0 \neq s \in V^{\perp}$. Set $X:=\left[s^{t} /-s^{t} / 0 / \ldots / 0\right] \in \mathbf{M}_{n, m}$. Then X is nonzero and $T X=0$, which is a contradiction. Therefore $A_{j}=0$, for every $j \in \mathbb{N}_{m}$.

Now, we prove (by contradiction) that D is invertible. Indeed, assume that D is not invertible. Choose a nonzero $s \in\left(\operatorname{Span}\left\{b_{1}, \ldots, b_{m}\right\}\right)^{\perp}$ and put $X:=\left[s^{t} /-s^{t} / 0 / \ldots / 0\right] \in \mathbf{M}_{n, m}$. Then X is nonzero and $T X=0$, which is a contradiction. Therefore D is invertible.

Finally, we show that $D+n S$ is invertible. Assume, by contradiction, that $D+n S$ is not invertible. Choose a nonzero $x \in \mathbb{F}_{m}$ such that $(D+n S) x=0$ and put $X:=[x / \ldots / x] \in \mathbf{M}_{n, m}$. Then X is nonzero and

$$
T X=\left[B_{1} X b_{1}|\ldots| B_{m} X b_{m}\right]+\mathbf{J} X S=X(D+n S)=0,
$$

which is a contradiction. Therefore $D+n S$ is invertible and the proof is complete.

Let $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$ be a linear operator. Define $\tau: \mathbf{M}_{m, n} \rightarrow \mathbf{M}_{m, n}$ by $\tau X=\left(T X^{t}\right)^{t}$. It is easy to see that T is a (strong) linear preserver of $\prec_{\text {rgs }}^{\text {row }}$ if and only if τ is a (strong) linear preserver of $\prec_{\text {lgs }}^{\text {column }}$. Combining this fact and previous theorems, we have the following corollaries:

Corollary 2.8. Let $T: \mathbb{F}_{n} \rightarrow \mathbb{F}_{n}$ be a linear operator. Then T preserves rgs-majorization if and only if one of the following statements holds:
(a) $T x=\operatorname{tr}(x) a$, for some $a \in \mathbb{F}_{n}$;
(b) $T x=\alpha x D+\beta x \boldsymbol{J}$, for some $\alpha, \beta \in \mathbb{F}$ and invertible matrix $D \in$ $\boldsymbol{G} \boldsymbol{D}_{n}$.

Corollary 2.9. Let $T: \boldsymbol{M}_{n, m} \rightarrow \boldsymbol{M}_{n, m}$ be a linear operator. Then T preserves rgs-row majorization if and only if there exist $A_{1}, \ldots, A_{n} \in$ $\boldsymbol{M}_{n, m}, b_{1}, \ldots, b_{n} \in \cup_{i=1}^{n} \operatorname{Span}\left\{e_{i}\right\}$, invertible matrices $B_{1}, \ldots, B_{n} \in \boldsymbol{G} \boldsymbol{D}_{m}$, and $S \in M_{n}$ such that for every $i \in \mathbb{N}_{n}, b_{i}=0$ or $e_{i} A_{1}=\cdots=e_{i} A_{n}=0$ and for all $X=\left[x_{1} / \ldots / x_{n}\right] \in \boldsymbol{M}_{n, m}$,

$$
T X=\sum_{j=1}^{n} \operatorname{tr}\left(x_{j}\right) A_{j}+\left[b_{1} X B_{1} / \ldots / b_{n} X B_{n}\right]+S X J .
$$

Corollary 2.10. Let $T: \boldsymbol{M}_{n, m} \rightarrow \boldsymbol{M}_{n, m}$ be a linear operator. Then T strongly preserves rgs-row majorization if and only if there exist
$B_{1}, \ldots, B_{n} \in \boldsymbol{G} \boldsymbol{D}_{m}, S \in \boldsymbol{M}_{n}$ and $b_{1}, \ldots, b_{n} \in \cup_{i=1}^{n} \operatorname{Span}\left\{e_{i}\right\}$ such that $D(D+m S)$ is invertible and

$$
T X=\left[b_{1} X B_{1} / \ldots / b_{n} X B_{n}\right]+S X \boldsymbol{J}
$$

where $D=\left[b_{1} / \ldots / b_{n}\right]$.

3. Rgw and lGw-majorization on $\mathbf{M}_{n, m}$

In this section, we begin to study the structure of linear preservers of rgw and lgw-majorization on $\mathbf{M}_{n, m}$, and then the linear operators $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$ preserving or strongly preserving rgw-row (lgwcolumn) majorization will be characterized.
In the following theorems we state some results from [2].
Proposition 3.1. [2, Theorem 2.3] Let $T: \mathbb{F}_{m} \rightarrow \mathbb{F}_{m}$ be a linear operator. Then, T preserves $\prec_{\text {rgw }}$ if and only if one of the following statements holds:
(i) $T x=\alpha x B$, for some $\alpha \in \mathbb{F}$ and some invertible $B \in \boldsymbol{G R}_{n}$;
(ii) $T x=\alpha x B$, for some $\alpha \in \mathbb{F}$ and some $B \in \boldsymbol{G R}_{n}$ such that $\{x: x B=0\}=\{x: \operatorname{tr}(x)=0\}$.
Proposition 3.2. [2, Lemma 2.6] Let $A \in \boldsymbol{M}_{n}$ and α be a nonzero scalar in \mathbb{F}. Then $A=\gamma \boldsymbol{I}$ for some $\gamma \in \mathbb{F}$ if and only if we have

$$
\alpha x R A+y R \prec_{r g w} \alpha x A+y, \forall x, y \in \mathbb{F}_{m}, \forall R \in \boldsymbol{G} \boldsymbol{R}_{m} .
$$

Lemma 3.3. Let $A \in \boldsymbol{G R}_{m}$ be invertible and $0 \neq \alpha \in \mathbb{F}$. Define $T_{1}: \mathbb{F}_{m} \rightarrow \mathbb{F}_{m}$ by $T_{1} x=\alpha x A$ and suppose $T_{2}: \mathbb{F}_{m} \rightarrow \mathbb{F}_{m}$ is a linear preserver of $\prec_{\text {rgw }}$ such that

$$
T_{1} x R+T_{2} y R \prec_{r g w} T_{1} x+T_{2} y
$$

for all $x, y \in \mathbb{F}_{m}$ and $R \in \boldsymbol{G R}_{m}$. Then there exists $\lambda \in \mathbb{F}$ such that $T_{2} x=\lambda x A$.

Proof. Since T_{2} preserves $\prec_{r g w}, T_{2}$ is of form (i) or (ii) in Proposition 3.1. Assume that T_{2} is of form (ii), then $T_{2} x=\operatorname{tr}(x) a$ for some nonzero $a \in \mathbb{F}_{m}$. Let $x=-\frac{1}{\alpha} a A^{-1}$, and set $y:=e_{1}$. Then we have

$$
\alpha x R A+\operatorname{tr}(y R) a \prec_{r g w} \alpha x A+\operatorname{tr}(y) a,
$$

for all $R \in \mathbf{G R}_{m}$. It follows that
$\alpha\left(-\frac{1}{\alpha} a A^{-1}\right) R A+\operatorname{tr}\left(e_{1} R\right) a \prec_{\text {rgw }} \alpha\left(-\frac{1}{\alpha} a A^{-1}\right) A+\operatorname{tr}\left(e_{1}\right) a=-a+a=0$. So $-a A^{-1} R A+a=0$, for all $R \in \mathbf{G R}_{m}$. Thus $a R=a$, for all $R \in \mathbf{G R}_{m}$, and hence $a=0$, a contradiction. Therefore, $T_{2} x=\beta x A_{2}$, for some
$\beta \in \mathbb{F}$ and invertible matrix $A_{2} \in \mathbf{G R}_{m}$. Now, by Proposition 3.2, $T_{2} x=\lambda x A$, for some $\lambda \in \mathbb{F}$.

For every $i, j \in \mathbb{N}_{n}$ consider the embedding $E^{j}: \mathbb{F}_{m} \rightarrow \mathbf{M}_{n, m}$ and the projection $E_{i}: \mathbf{M}_{n, m} \rightarrow \mathbb{F}_{m}$, where $E^{j}(x)=e_{j} x$ and $E_{i}(A)=e_{i} A$. It is easy to prove that for every linear operator $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$, $T X=T\left[x_{1} / \cdots / x_{n}\right]=\left[\sum_{j=1}^{n} T_{1}^{j} x_{j} / \cdots / \sum_{j=1}^{n} T_{n}^{j} x_{j}\right]$, where x_{i} is the $i^{\text {th }}$ row of X and $T_{i}^{j}=E_{i} \circ T \circ E^{j}$. If $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$ preserves rgwmajorization, then its easy to see that $T_{i}^{j}: \mathbb{F}_{m} \rightarrow \mathbb{F}_{m}$ preserves rgwmajorization.

Now, we find the possible structure of linear operators preserving $\prec_{r g w}$ on $\mathbf{M}_{n, m}$.

Theorem 3.4. If a linear operator $T: \boldsymbol{M}_{n, m} \rightarrow \boldsymbol{M}_{n, m}$ preserves rgwmajorization, then there exist $\mathcal{A} \in \boldsymbol{M}_{n}\left(\mathbb{F}_{m}\right), b_{1}, \ldots, b_{n} \in \mathbb{F}_{n}$, and invertible matrices $A_{1}, \ldots, A_{n} \in \boldsymbol{G R}_{m}$, such that

$$
T X=m \mathcal{A} \bar{X}+\left[b_{1} X A_{1} / \ldots / b_{n} X A_{n}\right], \forall X \in M_{n, m}
$$

Proof. For every $p \in \mathbb{N}_{n}$, one of the following cases holds:
Case 1: there exists $q \in \mathbb{N}_{n}$ such that $T_{p}^{q} x=\alpha x A_{p}$ for some $0 \neq \alpha \in \mathbb{F}$ and invertible $A_{p} \in \mathbf{G R}_{m}$. We show that for all $j \in \mathbb{N}_{n}, T_{p}^{j} x=\lambda_{p}^{j} x A_{p}$, for some $\lambda_{p}^{j} \in \mathbb{F}$. For $x, y \in \mathbb{F}_{m}$ put $X=e_{p} x+e_{j} y$. It is clear that $X R \prec_{r g w} X$, for all $R \in \mathbf{G R}_{m}$, therefore $T X R \prec_{r g w} T X$, for all $R \in$ $\mathbf{G R}_{m}$ and hence,

$$
T_{p}^{q} x R+T_{p}^{j} y R \prec_{r g w} T_{p}^{q} x+T_{p}^{j} y, \forall x, y \in \mathbb{F}_{m}, \forall R \in \mathbf{G R}_{m}
$$

Use Lemma 3.3 to conclude that $T_{p}^{j} x=\lambda_{p}^{j} x A_{p}$, for some $\lambda_{p}^{j} \in \mathbb{F}$. Put

$$
b_{p}:=\left(\lambda_{p}^{1}, \ldots, \lambda_{p}^{n}\right) \in \mathbb{F}_{n}
$$

and $\mathcal{A}_{(p)}=0 \in \mathbb{F}_{n}\left(\mathbb{F}_{m}\right)$.
Case 2: For every $q \in \mathbb{N}_{n}, T_{p}^{q}$ is of form (ii) in Proposition 3.1. Then $T_{p}^{q} x=\operatorname{tr}(x) a_{p}^{q}$ for some $a_{p}^{q} \in \mathbb{F}_{m}$. Put $\mathcal{A}_{(p)}=\left[a_{p}^{1} \ldots a_{p}^{n}\right] \in \mathbb{F}_{n}\left(\mathbb{F}_{m}\right)$ and $b_{p}=0 \in \mathbb{F}_{m}$. Now, Let $\mathcal{A}=\left[\mathcal{A}_{(1)} / \ldots / \mathcal{A}_{(n)}\right]$. Then

$$
\begin{aligned}
T X & =T\left[x_{1} / \ldots / x_{n}\right] \\
& =\left[\sum_{j=1}^{n} T_{1}^{j} x_{j} / \ldots / \sum_{j=1}^{n} T_{n}^{j} x_{j}\right] \\
& =\left[b_{1} X A_{1} / \ldots / b_{n} X A_{n}\right]+m \mathcal{A} \bar{X}
\end{aligned}
$$

where $\mathcal{A} \in \mathbf{M}_{n}\left(\mathbb{F}_{m}\right), b_{1}, \ldots, b_{n} \in \mathbb{F}_{n}$, and $A_{1}, \ldots, A_{n} \in \mathbf{G R}_{m}$ are invertible matrices.

Corollary 3.5. Let $\left\{b_{1}, \ldots, b_{n}\right\} \subset \mathbb{F}_{n}$ and $\operatorname{dim}\left(\operatorname{Span}\left\{\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}\right\}\right) \geq 2$. Assume that $A_{1}, \ldots, A_{n} \in \boldsymbol{G R}_{m}$ are invertible and define $T: \boldsymbol{M}_{n, m} \rightarrow$ $\boldsymbol{M}_{n, m}$ by $T X=\left[b_{1} X A_{1} / \ldots / b_{n} X A_{n}\right]$. If T preserves $\prec_{r g w}$, then there exist $B \in \boldsymbol{M}_{m}$ and invertible $A \in \boldsymbol{G} \boldsymbol{R}_{m}$ such that $T X=B X A$.

Proof. Without loss of generality we can assume that $\left\{b_{1}, b_{2}\right\}$ is a linearly independent set. Let $X \in \mathbf{M}_{n, m}, R \in \mathbf{G R}_{m}$ be arbitrary. Then $X R \prec_{\text {rgw }} X$, and hence $T X R \prec_{\text {rgw }} T X$. It follows that
$\left[b_{1} X R A_{1} / \ldots / b_{n} X R A_{n}\right] \prec_{r g w}\left[b_{1} X A_{1} / \ldots / b_{n} X A_{n}\right]$
$\Rightarrow b_{1} X R A_{1}+b_{2} X R A_{2} \prec_{\text {rgw }} b_{1} X A_{1}+b_{2} X A_{2}$
$\Rightarrow b_{1} X R+b_{2} X R\left(A_{2} A_{1}^{-1}\right) \prec_{\text {rgw }} b_{1} X+b_{2} X\left(A_{2} A_{1}^{-1}\right)$.
Since $\left\{b_{1}, b_{2}\right\}$ is linearly independent, for every $x, y \in \mathbb{F}^{n}$, there exists $B_{x, y} \in \mathbf{M}_{n, m}$ such that $b_{1} B_{x, y}=x$ and $b_{2} B_{x, y}=y$. Put $X=B_{x, y}$ in the above relation. Thus,

$$
x R+y R\left(A_{2} A_{1}^{-1}\right) \prec_{r g w} x+y\left(A_{2} A_{1}^{-1}\right), \forall R \in \mathbf{G R}_{m}, \forall x, y \in \mathbb{F}_{m} .
$$

Then by Proposition 3.2, $\left(A_{2} A_{1}^{-1}\right)=\alpha \mathbf{I}$ and hence $A_{2}=\alpha A_{1}$, for some $0 \neq \alpha \in \mathbb{F}$. For every $i \geq 3$, if $b_{i}=0$ we can choose $A_{i}=A_{1}$; if $b_{i} \neq 0$ then $\left\{b_{1}, b_{i}\right\}$ or $\left\{b_{2}, b_{i}\right\}$ is linearly independent. By the same argument as above, we conclude that $A_{i}=\gamma_{i} A_{1}$, for some $0 \neq \gamma_{i} \in \mathbb{F}$, or $A_{i}=\lambda_{i} A_{2}$, for some $0 \neq \lambda_{i} \in \mathbb{F}$.
Define $A=A_{1}$. Then for every $i \geq 2, A_{i}=\alpha_{i} A$, for some $\alpha_{i} \in \mathbb{F}$ and we get

$$
T X=\left[b_{1} X A /\left(r_{2} b_{2}\right) X A / \ldots /\left(r_{n} b_{n}\right) X A\right]=B X A
$$

where $B=\left[b_{1} \mid r_{2} b_{2} / \ldots / r_{n} b_{n}\right]$, for some $r_{2}, \ldots, r_{m} \in \mathbb{F}$.
If $A \in \mathbf{G R}_{m}$ is invertible and $B \in \mathbf{M}_{n}$, it is easy to see that $X \mapsto$ $B X A$ is a linear preserver of $\prec_{r g w}$. But the following example shows that there exist linear preservers of $\prec_{r g w}$ which are not of this form.

Example 3.6. Let $T: \boldsymbol{M}_{2} \rightarrow \boldsymbol{M}_{2}$ be such that
$T X=\left(\begin{array}{cc}x_{11} & x_{12} \\ -x_{11}-x_{12} & x_{11}+x_{22}\end{array}\right)$ where $X=\left[x_{i j}\right]$.
We show that T preserves $\prec_{\text {rgw }}$ but T is not of the form $X \mapsto M X A$. Let $X=\left(\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right)$ and $Y=\left(\begin{array}{ll}y_{11} & y_{12} \\ y_{21} & y_{22}\end{array}\right)$, and suppose that $X \prec_{\text {rgw }} Y$. If $y_{11}+y_{12}=0$, so $x_{11}+x_{12}=0$, and $T X \prec_{r g w} T Y$. Let $y_{11}+y_{12} \neq 0$. Without loss of generality assume that $y_{11}+y_{12}=1$. Since $X \prec_{\text {rgw }} Y$, there exists $R \in \boldsymbol{G} \boldsymbol{R}_{2}$, such that $X=Y R$. Let $R=\left(\begin{array}{cc}a & 1-a \\ b & 1-b\end{array}\right)$ and $y=(\lambda, 1-\lambda)$. Put $S:=\left(\begin{array}{cc}\alpha & 1-\alpha \\ \alpha-1 & 2-\alpha\end{array}\right)$, where $\alpha=\lambda(a-b)+b-\lambda+1$. Therefore $S \in \boldsymbol{G} \boldsymbol{R}_{2}$ and $T Y S=T X$. So $T X \prec_{r g w} T Y$. By a straightforward calculation one may show that T is not of the form $X \mapsto B X A$.

The proof of the following lemma is similar to the proof of Lemma 2.5.

Lemma 3.7. Let $a \in \mathbb{F}_{n}$. The linear operator $T: \boldsymbol{M}_{n, m} \rightarrow \boldsymbol{M}_{n, m}$ defined by $T X=[a X / \ldots / a X]$ preserves $\prec_{r g w}^{r o w}$ if and only if $a \in \cup_{i=1}^{n} \operatorname{Span}\left\{e_{i}\right\}$.

The structure of linear preservers and strong linear preservers of rgwrow majorization is characterized as follows:

Theorem 3.8. Let $T: \boldsymbol{M}_{n, m} \rightarrow \boldsymbol{M}_{n, m}$ be a linear operator. Then T preserves rgw-row majorization if and only if there exist $\mathcal{A} \in M_{n}(\mathbb{F})$, $b_{1}, \ldots, b_{n} \in \cup_{i=1}^{n} \operatorname{Span}\left\{e_{i}\right\}$, and invertible matrices $A_{1}, \ldots, A_{n} \in \boldsymbol{G R}_{m}$ such that for every $i \in \mathbb{N}_{n}, b_{i}=0$ or $\mathcal{A}_{(i)}=0$, where $\mathcal{A}=\left[\mathcal{A}_{(1)} / \ldots / \mathcal{A}_{(n)}\right]$ and

$$
\begin{equation*}
T X=m \mathcal{A} \bar{X}+\left[b_{1} X A_{1} / \ldots / b_{n} X A_{n}\right] \tag{3.1}
\end{equation*}
$$

Proof. The fact that the condition (3.1) is sufficient for T to be a linear preserver of $\prec_{\text {rgw }}^{r o w}$ is easy to prove. So, we prove the necessity of the condition. Therefore, assume that T preserves $\prec_{r g w}^{r o w}$. For every $i, j \in \mathbb{N}_{n}$, $T_{i}^{j}: \mathbb{F}_{m} \rightarrow \mathbb{F}_{m}$ preserves $\prec_{\text {rgw }}$. Then, each T_{i}^{j} is of the form (i) or (ii) in Proposition 3.1. Let

$$
\mathbf{I}=\left\{k \in \mathbb{N}_{n}: \exists l \in \mathbb{N}_{n} \text { such that } T_{k}^{l} \text { is of the form (ii) with } \alpha_{k}^{l} \neq 0\right\}
$$

We show that if $k \in \mathbf{I}$, then T_{k}^{j} is of form (ii) of Proposition 3.1, with the same invertible matrix $A_{k} \in \mathbf{G R}_{m}$, for every $j \in \mathbb{N}_{n}$. Suppose $k \in \mathbf{I}$, then there exist $l \in \mathbb{N}_{n}, 0 \neq \alpha_{k}^{l} \in \mathbb{F}$ and invertible matrix $A_{k} \in \mathbf{G R}_{m}$
such that $T_{k}^{l} x=\alpha_{k}^{l} x A_{k}$. Set $X=e_{l} x+e_{j} y$. It is clear that $X R \prec_{r g w}^{\text {row }} X$ and hence $T X R \prec_{r g w}^{\text {row }} T X$ for all $R \in \mathbf{G R}_{m}$. This implies that

$$
T_{k}^{l} x R+T_{k}^{j} y R \prec_{r g w} T_{k}^{l} x+T_{k}^{j} y, \forall x, y \in \mathbb{F}_{m}, \forall R \in \mathbf{G R}_{m} .
$$

So by Proposition 3.2, there exists $\alpha_{k}^{j} \in \mathbb{F}$ such that $T_{k}^{j} x=\alpha_{k}^{j} x A_{k}$. Set $b_{k}:=\left(\alpha_{k}^{1}, \ldots, \alpha_{k}^{n}\right)$ if $k \in \mathbf{I}$, and $b_{k}=0$ if $k \notin \mathbf{I}$.
If $k \notin \mathbf{I}$, then T_{k}^{j} is of form (i) of Proposition 3.1, for every $j \in \mathbb{N}_{n}$ and hence $T_{k}^{j} x=m a_{k}^{j} \bar{x}$ where $a_{k}^{j} \in \mathbb{F}_{m}$. If $k \in \mathbf{I}$, put $a_{k}^{j}=0$ for every $j \in \mathbb{N}_{n}$. For $k \in \mathbb{N}_{n}$ define $\mathcal{A}_{(k)}=\left[a_{k}^{1} \ldots a_{k}^{n}\right]$.
It is clear that for every $i \in \mathbb{N}_{n}, b_{i}=0$ or $\mathcal{A}_{(i)}=0$. Let $\mathcal{A}=$ $\left[\mathcal{A}_{(1)} / \ldots / \mathcal{A}_{(n)}\right]$. Then $T X=\left[\sum_{j=1}^{n} T_{1}^{j} x_{j} / \ldots / \sum_{j=1}^{n} T_{n}^{j} x_{j}\right]=m \mathcal{A} \bar{X}+$ $\left[b_{1} X A_{1} / \ldots / b_{n} X A_{n}\right]$. To complete the proof we must apply Lemma 3.7 to conclude that $b_{i} \in \operatorname{Span}\left\{e_{i}\right\}$ for every $i \in \mathbb{N}_{n}$.

Theorem 3.9. A linear operator $T: \boldsymbol{M}_{n, m} \rightarrow \boldsymbol{M}_{n, m}$ is a strong linear preserver of rgw-row majorization if and only if there exist invertible matrices $A_{1}, \ldots, A_{n} \in \boldsymbol{G} \boldsymbol{R}_{m}$ and $b_{1}, \ldots, b_{n} \in \cup_{i=1}^{n} \operatorname{Span}\left\{e_{i}\right\}$ such that $B:=\left[b_{1} / \ldots / b_{n}\right]$ is invertible and

$$
T X=\left[b_{1} X A_{1} / \ldots / b_{n} X A_{n}\right] .
$$

Proof. Assume that there exists a $k \in\left(\mathbb{N}_{n} \backslash \mathbf{I}\right)$. Without loss of generality let $1 \in\left(\mathbb{N}_{n} \backslash \mathbf{I}\right)$, so $b_{1}=0$. Set $V:=\operatorname{Span}\left\{b_{2}, \ldots, b_{n}\right\}$, then $\operatorname{dim} V \leqslant$ $n-1$. It follows that $\operatorname{dim} V^{\perp} \geq 1$ and there exists $0 \neq s \in V^{\perp}$. Set $X:=[s|-s| 0|\ldots| 0]$. Therefore X is nonzero and for every $i \in \mathbb{N}_{n}, b_{i} X=0$ so $T X=0$, which is a contradiction. Then $I=\mathbb{N}_{n}$ and $T X=\left[b_{1} X A_{1} / \ldots / b_{n} X A_{n}\right]$.
Now, we show that B is invertible. If B is not invertible, set $V:=$ $\operatorname{Span}\left\{b_{1}, \ldots, b_{n}\right\}$. So $\operatorname{dim} V \leqslant n-1$. Therefore $\operatorname{dim} V^{\perp} \geq 1$ and there exists $0 \neq s \in V^{\perp}$. Set $X:=[s|-s| 0|\ldots| 0]$. Then X is nonzero and $T X=0$, which is a contradiction.

In the remainder of this section we characterize linear operators that preserve or strongly preserve lgw or lgw-column majorization. We begin with a theorem of [5].
Theorem 3.10. [5, Theorem 2.4] A linear operator $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ preserves lgw-majorization if and only if one of the following assertions holds:
(i) There exists $R \in \boldsymbol{M}_{n}$ such that $\operatorname{Ker}(R)=\operatorname{Span}\{e\}$, $e \notin \operatorname{Im}(R)$, and $T x=R x$ for every $x \in \mathbb{F}^{n}$;
(ii) There exist an invertible matrix $R \in \boldsymbol{G R}_{n}$ and $\alpha \in \mathbb{F}$ such that $T x=\alpha R x$ for every $x \in \mathbb{F}^{n}$.

Corollary 3.11. A linear operator $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ preserves
lgw-majorization if and only if one of the following assertions holds:
(i) there exists an invertible matrix $D \in \boldsymbol{G}_{n}$, such that
$T x=\left(D-\frac{1}{n} J\right) x$ for every $x \in \mathbb{F}^{n}$;
(ii) There exist an invertible matrix $R \in \boldsymbol{G R}_{n}$ and $\alpha \in \mathbb{F}$ such that $T x=\alpha R x$ for every $x \in \mathbb{F}^{n}$.

Proof. Let $R \in \mathbf{M}_{n}$. We show that $\operatorname{Ker}(R)=\operatorname{Span}\{e\}$ and $e \notin \operatorname{Im}(R)$ if and only if $R=\left(D-\frac{1}{n} \mathbf{J}\right)$ for some invertible matrix $D \in \mathbf{G R}_{n}$.

First, Let $R=\left(D-\frac{1}{n} \mathbf{J}\right)$ for some invertible matrix $D \in \mathbf{G R}_{n}$. It is clear that $\operatorname{Span}\{e\} \subset \operatorname{Ker}(R)$. If $x \in \operatorname{Ker}(R)$, then $D x=\frac{1}{n} \operatorname{tr}(\mathrm{x}) e$ and $x \in \operatorname{Span}\{e\}$. Therefore $\operatorname{Ker}(R)=\operatorname{Span}\{e\}$. Assume that $e \in$ $\operatorname{Im}(R)$, then $\left(D-\frac{1}{n} \mathbf{J}\right) x=e$ for some $x \in \mathbb{R}^{n}$. It implies that $D x=$ $\left(\frac{1}{n} \operatorname{tr}(\mathrm{x})+1\right) e$ and hence $x \in \operatorname{Span}\{e\}$, which is a contradiction. So $e \notin \operatorname{Im}(R)$.

Conversely. Let $\operatorname{Ker}(R)=\operatorname{Span}\{e\}$ and $e \notin \operatorname{Im}(R)$. Put $D:=R+\frac{1}{n} \mathbf{J}$. Since $R e=0, D \in \mathbf{G R}_{n}$. It is enough to show that D is invertible. If $D x=0$ then $R x=\left(-\frac{1}{n} \operatorname{tr}(\mathrm{x})\right) e$. If $\operatorname{tr}(\mathrm{x}) \neq 0$, then $e \in \operatorname{Im}(R)$ which is a contradiction, so $\operatorname{tr}(\mathrm{x})=0$ and $R x=0$. Therefore $x \in \operatorname{Span}\{e\}$, which implies that $x=0$.

Lemma 3.12. Let $A \in \boldsymbol{G R}_{n}$ be invertible. Then the following conditions are equivalent:
(a) $A=\alpha \boldsymbol{I}+\beta \boldsymbol{J}$, for some $\alpha, \beta \in \mathbb{R}$;
(b) $D x+A D y \prec_{l g w} x+A y$, for all $D \in \boldsymbol{G} \boldsymbol{D}_{n}$ and for all $x, y \in \mathbb{R}^{n}$.

Proof. $(a \Rightarrow b)$ If $A=\alpha \mathbf{I}+\beta \mathbf{J}$, it is easy to show that $D x+A D y \prec_{l g w}$ $x+A y$, for all $D \in \mathbf{G D}_{n}$ and for all $x, y \in \mathbb{F}^{n}$.
$(b \Rightarrow a)$ The matrix A is invertible, so condition (b) can be written as follows:

$$
D x+A D A^{-1} y \prec_{l g w} x+y, \forall D \in \mathbf{G D}_{n}, \forall x, y \in \mathbb{F}^{n} .
$$

Put $x=e-e_{i}$ and $y=e_{i}$ in the above relation. Thus, $[e-(D-$ $\left.\left.A D A^{-1}\right) e_{i}\right] \prec_{l g w} e$, for every $i \in \mathbb{N}_{n}$. So $\left(D-A D A^{-1}\right) e_{i}=0$, for every
$i \in \mathbb{N}_{n}$, and $D A=A D$, for every $D \in \mathbf{G D}_{n}$. Therefore, $A=\alpha \mathbf{I}+\beta \mathbf{J}$, for some $\alpha, \beta \in \mathbb{F}$.

Theorem 3.13. Let $T: \boldsymbol{M}_{n, m} \rightarrow \boldsymbol{M}_{n, m}$ be a linear operator that preserves lgw-majorization. Then, there exist invertible matrices A_{1}, \ldots, A_{m} $\in \boldsymbol{G} \boldsymbol{R}_{n}, b_{1}, \ldots, b_{m} \in \mathbb{F}^{m}$ and $S \in \boldsymbol{M}_{m}$ such that

$$
T X=\left[A_{1} X b_{1}|\ldots| A_{m} X b_{m}\right]+\boldsymbol{J} X S .
$$

Proof. Suppose that T preserves lgw-majorization. It is easy to prove that $T_{i}^{j}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ preserves lgw-majorization. Then by Corollary 3.11, for every $i, j \in \mathbb{N}_{m}, T_{i}^{j} x=\left(\alpha_{i}^{j} A_{i}^{j}-\frac{1}{n} \gamma_{i}^{j} \mathbf{J}\right) x$, for some invertible matrices $A_{i}^{j} \in \mathbf{G R}_{n}, \alpha_{i}^{j} \in \mathbb{F}$ and $\gamma_{i}^{j} \in\{0,1\}$. Then

$$
\begin{aligned}
T X & =T\left[x_{1}|\ldots| x_{m}\right] \\
& =\left[\sum_{j=1}^{m} T_{1}^{j} x_{j}|\ldots| \sum_{j=1}^{m} T_{m}^{j} x_{j}\right] \\
& =\left[\sum_{j=1}^{m}\left(\alpha_{1}^{j} A_{1}^{j}-\frac{1}{n} \gamma_{1}^{j} J\right) x_{j}|\ldots| \sum_{j=1}^{m}\left(\alpha_{m}^{j} A_{m}^{j}-\frac{1}{n} \gamma_{m}^{j} \mathbf{J}\right) x_{j}\right] .
\end{aligned}
$$

For every $x, y \in \mathbb{F}^{n}$, define $X=E^{j}(x)+E^{q}(y) \in \mathbf{M}_{n, m}$. If $\alpha_{i}^{q}=0$ for every $i \in \mathbb{N}_{m}$, then put $A_{i}^{q}=I$. Now, suppose that there exists some $p \in \mathbb{N}_{m}$ such that $\alpha_{p}^{q} \neq 0$. Then for every $D \in \mathbf{G D}_{n}, D X \prec_{l g w} X$, and hence $\left[\alpha_{1}^{q} A_{1}^{q} D x+\alpha_{1}^{j} A_{1}^{j} D y|\ldots| \alpha_{m}^{q} A_{m}^{q} D x+\alpha_{m}^{j} A_{m}^{j} D y\right] \prec_{l g w}$ $\left[\alpha_{1}^{q} A_{1}^{q} x+\alpha_{1}^{j} A_{1}^{j} y|\ldots| \alpha_{m}^{q} A_{m}^{q} x+\alpha_{m}^{j} A_{m}^{j} y\right]$
$\Rightarrow \alpha_{p}^{q} A_{p}^{q} D x+\alpha_{p}^{j} A_{p}^{j} D y \prec_{l g w} \alpha_{p}^{q} A_{p}^{q} x+\alpha_{p}^{j} A_{p}^{j} y$
$\Rightarrow D x+\left(A_{p}^{q}\right)^{-1} A_{p}^{j} D\left(\frac{\alpha_{p}^{j}}{\alpha_{p}^{q}} y\right) \prec_{l g w} x+\left(A_{p}^{q}\right)^{-1} A_{p}^{j}\left(\frac{\alpha_{p}^{j}}{\alpha_{p}^{q}} y\right)$.
So by Lemma 3.12, $\left(A_{p}^{q}\right)^{-1} A_{p}^{j}=\lambda_{p}^{j} \mathbf{I}+\beta_{p}^{j} \mathbf{J}$. Set $A_{p}:=A_{p}^{q}$, then $A_{p}^{j}=\lambda_{p}^{j} A_{p}+\beta_{p}^{j} \mathbf{J}$. Therefore for some $\mu_{i}^{j} \in \mathbb{F}$ we have

$$
T X=\left[A_{1} \sum_{j=1}^{m} \mu_{1}^{j} x_{j}|\ldots| A_{p} \sum_{j=1}^{m} \mu_{p}^{j} x_{j}|\ldots| A_{m} \sum_{j=1}^{m} \mu_{m}^{j} x_{j}\right]+\mathbf{J} X S
$$

where

$$
S=\left(\begin{array}{cc}
-\frac{1}{n} \gamma_{1}^{1}+\beta_{1}^{1} \ldots & -\frac{1}{n} \gamma_{m}^{1}+\beta_{m}^{1} \\
\vdots & \vdots \\
-\frac{1}{n} \gamma_{1}^{m}+\beta_{1}^{m} \ldots & -\frac{1}{n} \gamma_{m}^{m}+\beta_{m}^{m}
\end{array}\right)
$$

Now, For every $i \in \mathbb{N}_{m}$, define

$$
b_{i}=\left(\begin{array}{c}
\mu_{i}^{1} \\
\mu_{i}^{2} \\
\vdots \\
\mu_{i}^{m}
\end{array}\right) .
$$

Then,

$$
T X=\left[A_{1} X b_{1}|\ldots| A_{m} X b_{m}\right]+\mathbf{J} X S
$$

Corollary 3.14. Let T satisfy the condition of Theorem 3.13 and let $\operatorname{rank}\left[\mathrm{b}_{1}|\ldots| \mathrm{b}_{\mathrm{m}}\right] \geq 2$. Then $T X=A X R+\boldsymbol{J X S}$, for some $R, S \in \boldsymbol{M}_{m}$, and invertible matrix $A \in \boldsymbol{G} \boldsymbol{R}_{n}$.
Proof. Without loss of generality we can assume that $\left\{b_{1}, b_{2}\right\}$ is a linearly independent set. Let $X \in \mathbf{M}_{n, m}, D \in \mathbf{G D}_{n}$ be arbitrary. Then $D X \prec_{l g w} X$ and hence, $T D X \prec_{l g w} T X$. It follows that
$\left[A_{1} D X b_{1}|\ldots| A_{m} D X b_{m}\right] \prec_{l g w}\left[A_{1} X b_{1}|\ldots| A_{m} X b_{m}\right]$
$\Rightarrow A_{1} D X b_{1}+A_{2} D X b_{2} \prec_{\text {lgw }} A_{1} X b_{1}+A_{2} X b_{2}$
$\Rightarrow D X b_{1}+\left(A_{1}^{-1} A_{2}\right) D X b_{2} \prec_{l g w} X b_{1}+\left(A_{1}^{-1} A_{2}\right) X b_{2}$.
Since $\left\{b_{1}, b_{2}\right\}$ is linearly independent, for every $x, y \in \mathbb{R}^{n}$, there exists $B_{x, y} \in \mathbf{M}_{n, m}$ such that $B_{x, y} b_{1}=x$ and $B_{x, y} b_{2}=y$. Put $X:=B_{x, y}$ in the above relation. Thus,

$$
\begin{gathered}
D B_{x, y} b_{1}+\left(A_{1}^{-1} A_{2}\right) D B_{x, y} b_{2} \prec_{l g w} B_{x, y} b_{1}+\left(A_{1}^{-1} A_{2}\right) B_{x, y} b_{2} \Rightarrow \\
D x+\left(A_{1}^{-1} A_{2}\right) D y \prec_{l g w} x+\left(A_{1}^{-1} A_{2}\right) y, \forall D \in \mathbf{G D}_{n} .
\end{gathered}
$$

Then by Lemma 3.12, $A_{1}^{-1} A_{2}=\alpha \mathbf{I}+\beta \mathbf{J}$ and hence $A_{2}=\alpha A_{1}+\beta \mathbf{J}$, for some $\alpha, \beta \in \mathbb{F}, \alpha \neq 0$. For every $i \geq 3$, if $b_{i}=0$ we can choose $A_{i}=A_{1}$. If $b_{i} \neq 0$ then $\left\{b_{1}, b_{i}\right\}$ or $\left\{b_{2}, b_{i}\right\}$ is linearly independent. Then by the same argument as above, $A_{i}=\gamma_{i} A_{1}+\delta_{i} \mathbf{J}$, for some $\gamma_{i}, \delta_{i} \in \mathbb{F}$, $\gamma_{i} \neq 0$, or $A_{i}=\lambda_{i} A_{2}+\mu_{i} \mathbf{J}$, for some $\lambda_{i}, \mu_{i} \in \mathbb{F}, \lambda_{i} \neq 0$.
Define $A:=A_{1}$. Then for every $i \geq 2, A_{i}=\alpha_{i} A_{2}+\beta_{i} \mathbf{J}$, for some $\alpha_{i}, \beta_{i} \in \mathbb{F}$ and hence

$$
T X=\left[A X b_{1}\left|A X\left(r_{2} b_{2}\right)\right| \ldots \mid A X\left(r_{m} b_{m}\right)\right]+\mathbf{J} X S=A X R+\mathbf{J} X S
$$

where, $R=\left[b_{1}\left|r_{2} b_{2}\right| \ldots \mid r_{m} b_{m}\right]$, for some $r_{2}, \ldots, r_{m} \in \mathbb{F}$ and S is as in Theorem 3.13.

Lemma 3.15. Let $b_{1}, \ldots, b_{m} \in \mathbb{F}^{m}$. The linear operator $T: \boldsymbol{M}_{n, m} \rightarrow$ $\boldsymbol{M}_{n, m}$ defined by $T X=\left[X b_{1}|\ldots| X b_{m}\right]$ preserves $\prec_{l g w}^{\text {column }}$ if and only if $b_{j} \in \cup_{i=1}^{n} \operatorname{Span}\left\{e_{i}\right\}$, for every $j \in \mathbb{N}_{m}$.

The following theorems give the structure of linear and strong linear preserver of $\prec_{l g w}^{\text {column }}$ on $\mathbf{M}_{n, m}$. Since the proofs are similar to the proofs of Theorems 2.6 and 2.7, we leave the proofs to the readers.

Theorem 3.16. Let $T: \boldsymbol{M}_{n, m} \rightarrow \boldsymbol{M}_{n, m}$ be a linear operator. Then T preserves $\prec_{\text {lgw }}^{\text {column }}$ if and only if there exist invertible matrices A_{1}, \ldots, A_{m} $\in \boldsymbol{G} \boldsymbol{R}_{n}, b_{1}, \ldots, b_{m} \in \cup_{i=1}^{m} \operatorname{Span}\left\{e_{i}\right\}$ and $D \in \boldsymbol{M}_{m}$ such that for every $i \in \mathbb{N}_{n}, b_{i}=0$ or $A_{1} e_{i}=\ldots=A_{m} e_{i}=0$ and for all $X=\left[x_{1}|\ldots|\right.$ $\left.x_{n}\right] \in M_{n, m}, T X=\left[A_{1} X b_{1}|\ldots| A_{m} X b_{m}\right]+\boldsymbol{J} X D$.
Theorem 3.17. Let $T: \boldsymbol{M}_{n, m} \rightarrow \boldsymbol{M}_{n, m}$ be a linear operator. Then T strongly preserves lgw-column majorization if and only if there exist invertible matrices $A_{1}, \ldots, A_{m} \in \boldsymbol{G} \boldsymbol{R}_{n}$ and $b_{1}, \ldots, b_{m} \in \cup_{i=1}^{m} \operatorname{Span}\left\{e_{i}\right\}$ such that $B:=\left[b_{1}|\ldots| b_{m}\right]$ is invertible and

$$
T X=\left[A_{1} X b_{1}|\ldots| A_{n} X b_{m}\right] .
$$

Acknowledgements

The authors thank the anonymous referees for the suggestions to improve the paper.

References

[1] T. Ando, Majorization, doubly stochastic matrices, and comparison of eigenvalues, Linear Algebra Appl. 118 (1989) 163-248.
[2] A. Armandnejad, Right gw-majorization on $\mathbf{M}_{n, m}$, Bull. Iranian Math. Soc. $\mathbf{3 5}$ (2009), no. 2, 69-76.
[3] A. Armandnejad, A. Akbarzadeh and Z. Mohammadi, Row and column majorization on $\mathbf{M}_{n, m}$, Linear Algebra Appl. 437 (2012), no. 3, 1025-1032.
[4] A. Armandnejad and H. Heydari, Linear preserving gd-majorization functions from $\mathbf{M}_{n, m}$ to $\mathbf{M}_{n, k}$, Bull. Iranian Math. Soc. 37 (2011), no. 1, 215-224.
[5] A. Armandnejad and A. Salemi, On linear preservers of lgw-majorization on $\mathbf{M}_{n, m}$, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 3, 755-764.
[6] A. Armandnejad and A. Salemi, The structure of linear preservers of gsmajorization, Bull. Iranian Math. Soc. 32 (2006), no. 2, 31-42.
[7] L. B. Beasley, S. G. Lee and Y. H. Lee, Resolution of the conjecture on strong preservers of multivariate majorization, Bull. Korean Math. Soc. 39 (2002), no. 2, 283-287.
[8] L. B. Beasley, S. G. Lee and Y. H. Lee, A characterization of strong preservers of matrix majorization, Linear Algebra Appl. 367 (2003) 341-346.
[9] A. M. Hasani and M. Radjabalipuor, The structure of linear operators strongly preserving majorizations of matrices, Electron. J. Linear Algebra 15 (2006) 260268.
[10] A. M. Hasani and M. Radjabalipour, On linear preservers of (right) matrix majorization, Linear Algebra Appl. 423 (2007), no. 2-3, 255-261.
[11] C. K. Li and E. Poon, Linear operators preserving directional majorization, Linear Algebra Appl. 325 (2001), no. 1-3, 141-146.

Ali Armandnejad

Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O. Box 7713936417, Rafsanjan, Iran
Email: armandnejad@mail.vru.ac.ir,

Zahra Mohammadi

Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O. Box 7713936417, Rafsanjan, Iran
Email: z.mohammadi@stu.vru.ac.ir
Farzaneh Akbarzadeh
Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O. Box 7713936417, Rafsanjan, Iran
Email: f.akbarzadeh@stu.vru.ac.ir

[^0]: MSC(2010): Primary: 15A03, 15A04; Secondary: 15A51
 Keywords:g-row majorization; g-column majorization; linear preserver.
 Received: 25 December 2011, Accepted: 23 July 2012.
 *Corresponding author
 (c) 2013 Iranian Mathematical Society.

