ANNIHILATOR-SMALL SUBMODULES

T. AMOUZEGAR-KALATI AND D. KESKIN-TÜTÜNCÜ*

Communicated by Bernhard Keller

Abstract

Let M_{R} be a module with $S=\operatorname{End}\left(M_{R}\right)$. We call a submodule K of M_{R} annihilator-small if $K+T=M, T$ a submodule of M_{R}, implies that $\ell_{S}(T)=0$, where ℓ_{S} indicates the left annihilator of T over S. The sum $A_{R}(M)$ of all such submodules of M_{R} contains the Jacobson radical $\operatorname{Rad}(M)$ and the left singular submodule $Z_{S}(M)$. If M_{R} is cyclic, then $A_{R}(M)$ is the unique largest annihilator-small submodule of M_{R}. We study $A_{R}(M)$ and $K_{S}(M)$ in this paper. Conditions when $A_{R}(M)$ is annihilator-small and $K_{S}(M)=J(S)=\operatorname{Tot}(M, M)$ are given.

1. Introduction

Throughout this paper all rings are associative with identity and modules are unitary right modules. Let M_{R} be any module. The endomorphism ring $\operatorname{End}(M)$ of the right R-module M will be denoted by S. We abbreviate the Jacobson radical as $\operatorname{Rad}(M)$ for any right R-module M. The notations $N \subseteq{ }^{\text {ess }} M$ and $N \subseteq{ }^{\text {max }} M$ mean respectively that a submodule N of M is essential and maximal in the module M_{R}. The left annihilator of any submodule X of M is denoted by $\ell_{S}(X)$ while the right annihilator of any endomorphism f of M, namely the kernel of f, is denoted by $r_{M}(f)$.

[^0]In [3], Nicholson and Zhou defined annihilator-small right (left) ideals. In this work, inspired by this nice work we introduce annihilator-small submodules of any right R-module M. Let M_{R} be a module and $K \subseteq$ M_{R} a submodule of M_{R}. We say that K is an annihilator-small submodule of M_{R} if $K+X=M, X$ a submodule of M_{R}, implies that $\ell_{S}(X)=0$. Clearly every small submodule is annihilator-small. In Proposition 2.2, we prove that the converse is true if M_{R} is a coretractable module. Let M_{R} be a semi-projective module and $k \in S$. Then we prove the following which generalizes [3, Lemma 4]:

The submodule $k(M)$ is annihilator-small in M_{R} if and only if $b k(M) \varsubsetneqq$ $b(M)$ for all $0 \neq b \in S$ if and only if $\ell_{S}\left(1_{S}-k s\right)=0$ for all $s \in S$ if and only if $\ell_{S}\left(1_{S}-s k\right)=0$ for all $s \in S$ if and only if $\ell_{S}(k-k s k)=\ell_{S}(k)$ for all $s \in S$ (see Lemma 2.7).

In this note our aim is to generalize the other results of [3] from the ring case to the module case in light of Lemma 2.7. For example, we examine when the equalities $J(S)=K_{S}(M)=\operatorname{Tot}(M, M)$ are satisfied. As we mentioned in the abstract we study $A_{R}(M)$ which is the sum of all annihilator-small submodules of M_{R}. Relevant with it we prove Proposition 3.5 as a generalization of [3, Theorem 11].

2. Annihilator-small submodules

Definition 2.1. We say that a submodule K of a module M_{R} is annihila-tor-small (a-small) if $K+X=M, X$ a submodule of M_{R}, implies that $\ell_{S}(X)=0$ where $S=\operatorname{End}(M)$. In this case, we write $K<_{a} M$.

It is clear that every small submodule is a-small, but the converse is not true in general (consider the submodule $n \mathbb{Z}$ of the \mathbb{Z}-module \mathbb{Z}).

An R-module M_{R} is called coretractable if, for any proper submodule K of M, there exists a nonzero homomorphism $f: M \rightarrow M$ with $f(K)=$ 0 , that is, $\operatorname{Hom}(M / K, M) \neq 0$.

Proposition 2.2. Let M_{R} be a coretractable module. If $K \ll_{a} M$, then $K \ll M$.

Proof. Let $K+X=M$ for any submodule X of M. By hypothesis, $\ell_{S}(X)=0$. But M_{R} is coretractable, thus $X=M$, and so $K \ll M$.
Lemma 2.3. Let M_{R} be a module. If $N \subseteq K \ll{ }_{a} M$, where N is a submodule of M, then $N \ll_{a} M$.

Proof. Clear.

Let M_{R} be any module. We set $Z_{S}(M)=\left\{m \in M \mid \ell_{S}(m)=\right.$ $\left.\ell_{S}(m R) \subseteq^{e s s}{ }_{S} S\right\}$.

Proposition 2.4. If K is an a-small submodule of a finitely generated module M_{R}, then so is $K+\operatorname{Rad}(M)+Z_{S}(M)$.

Proof. Let $\left(K+\operatorname{Rad}(M)+Z_{S}(M)\right)+X=M$ where X is a submodule of M_{R}. Since $\operatorname{Rad}(M) \ll M, K+Z_{S}(M)+X=M$. Assume that $M_{R}=\sum_{i=1}^{n} a_{i} R$. Now, $k_{i}+z_{i}+x_{i}=a_{i}$ where $k_{i} \in K, z_{i} \in Z_{S}(M), x_{i} \in$ X. Hence $K+\sum_{i=1}^{n} z_{i} R+X=M$. Thus $0=\ell_{S}\left(\sum_{i=1}^{n} z_{i} R+X\right)=$ $\left(\cap_{i=1}^{n} \ell_{S}\left(z_{i} R\right)\right) \cap \ell_{S}(X)$ since $K \ll_{a} M$. As $\ell_{S}\left(z_{i}\right) \subseteq^{e s s}{ }_{S} S$, we have $\ell_{S}(X)=0$.

Lemma 2.5. If T is a submodule of M_{R} and $\ell_{S}(T) \subseteq^{\text {ess }}{ }_{S} S$, then $r_{M} \ell_{S}(T) \ll{ }_{a} M_{R}$. In particular, $T \ll{ }_{a} M_{R}$.

Proof. Let $r_{M} \ell_{S}(T)+X=M$. Then $0=\ell_{S}(M)=\ell_{S} r_{M} \ell_{S}(T) \cap \ell_{S}(X)=$ $\ell_{S}(T) \cap \ell_{S}(X)$, so $\ell_{S}(X)=0$ since $\ell_{S}(T) \subseteq^{e s s}{ }_{S} S$. The last observation is by Lemma 2.3 since $T \subseteq r_{M} \ell_{S}(T)$ always holds.

Note that the converse of Lemma 2.5 is true if $r_{M}\left[\ell_{S}(T) \cap S b\right]=$ $r_{M} \ell_{S}(T)+r_{M}(b)$ holds for all submodules T of M_{R} and all $b \in S$. To see this, let $\ell_{S}(T) \cap S b=0$ for an element b of S. Then $r_{M} \ell_{S}(T)+r_{M}(b)=$ M, so $\ell_{S} r_{M}(b)=0$ since $r_{M} \ell_{S}(T) \ll_{a} M_{R}$. Hence $b=0$ because $S b \subseteq \ell_{S} r_{M}(b)$, proving that $\ell_{S}(T) \subseteq^{e s s}{ }_{S} S$.

Following Wisbauer [5, p. 261], an R-module M_{R} is called semiinjective if for any $f \in S$,

$$
S f=\ell_{S}(\operatorname{ker}(f))=\ell_{S}\left(r_{M}(f)\right)
$$

(equivalently, for any monomorphism $f: N \rightarrow M$, where N is a factor module of M_{R}, and for any homomorphism $g: N \rightarrow M$, there exists $h: M \rightarrow M$ such that $h f=g$).

Proposition 2.6. Let M_{R} be a coretractable semi-injective module and T a submodule of M_{R}. Then $\ell_{S}(T) \subseteq^{e s s}{ }_{S} S$ if $T \ll{ }_{a} M$.

Proof. This follows by Proposition 2.2 and [1, Proposition 4.5].
Recall that a module M_{R} is called semi-projective if for any epimor$\operatorname{phism} f: M \rightarrow N$, where N is a submodule of M_{R}, and for any homomorphism $g: M \rightarrow N$, there exists $h: M \rightarrow M$ such that $f h=g$.

Lemma 2.7. Consider the following conditions for a right R-module M and $k \in S$:
(1) $k(M) \ll_{a} M_{R}$.
(2) $b k(M) \varsubsetneqq b(M)$ for all $0 \neq b \in S$.
(3) $\ell_{S}\left(1_{S}-k s\right)=0$ for all $s \in S$.
(4) $\ell_{S}\left(1_{S}-s k\right)=0$ for all $s \in S$.
(5) $\ell_{S}(k-k s k)=\ell_{S}(k)$ for all $s \in S$.

Then $(1) \Rightarrow(2) \Rightarrow(3) \Rightarrow(4) \Rightarrow(5)$. If M_{R} is semi-projective, then $(5) \Rightarrow(1)$.

Proof. (1) $\Rightarrow(2)$ Assume that $b \in S$ and $b k(M)=b(M)$. Let $m \in M$. Then $b(m)=b k\left(m^{\prime}\right)$ for some $m^{\prime} \in M$. Hence $m-k\left(m^{\prime}\right) \in r_{M}(b)$. Therefore $m \in r_{M}(b)+k(M)$. Namely, $M=r_{M}(b)+k(M)$. Since $k(M) \ll{ }_{a} M_{R}, \ell_{S} r_{M}(b)=0$. As $S b \subseteq \ell_{S} r_{M}(b), b=0$.
$(2) \Rightarrow(3)$ Let $s \in S$ and $b \in \ell_{S}\left(1_{S}-k s\right)$. Then $b=b k s$ implies that $b(M)=b k s(M) \subseteq b k(M)$. Вy $(2), b=0$.
$(3) \Rightarrow(4)$ Let $s \in S$ and $b \in \ell_{S}\left(1_{S}-s k\right)$. Then $b\left(1_{S}-s k\right)=0$ implies that $b s\left(1_{S}-k s\right)=b(s-s k s)=b\left(1_{S}-s k\right) s=0$. Hence $b s=0$ by (3), and so $b=b s k=0$.
$(4) \Rightarrow(5)$ Let $s \in S$ and $b \in \ell_{S}(k-k s k)$. By (4), $b k=0$. Hence $b \in \ell_{S}(k)$. The other inclusion always holds.
$(5) \Rightarrow(1)$ Assume that M_{R} is semi-projective. Let $M=k(M)+X$ for a submodule X of M_{R}. Let $b \in \ell_{S}(X)$ and $m \in M$. Then there exist $m^{\prime} \in M$ and $x \in X$ such that $m=k\left(m^{\prime}\right)+x$. Now $b(m)=b k\left(m^{\prime}\right)$, and so $b(M)=b k(M)$. Since M_{R} is semi-projective, there exists a homomorphism $s \in S$ such that $b k s=b$. Note that $b(k-k s k)=0$. Hence $b \in \ell_{S}(k-k s k)=\ell_{S}(k)$. Therefore $b k=0$, and hence $b=0$.

Note that condition 2 in Lemma 2.7 implies that if $k(M) \ll{ }_{a} M_{R}$ and $k \in S$ is not nilpotent, then $k(M) \supsetneqq k^{2}(M) \supsetneqq k^{3}(M) \supsetneqq \cdots$ is strictly decreasing.

Corollary 2.8. (See [3, Lemma 4]) If R is a ring, then the following are equivalent for $k \in R$:
(1) $k R<_{a} R_{R}$, namely if $R=k R+X, X$ a right ideal of R, then $\ell_{R}(X)=0$
(2) $b R \supsetneqq b k R$ for all $0 \neq b \in R$.
(3) $\ell_{R}(1-k r)=0$ for all $r \in R$.
(4) $\ell_{R}(1-r k)=0$ for all $r \in R$.
(5) $\ell_{R}(k-k r k)=\ell_{R}(k)$ for all $r \in R$.

Let us define $K_{S}(M)=\left\{s \in S \mid s(M) \lll a M_{R}\right\}$ for any module M_{R}.

Corollary 2.9. Let M_{R} be a module and $k \in K_{S}(M)$. Then $k S \subseteq$ $K_{S}(M)$. If M_{R} is semi-projective, then $S k \subseteq K_{S}(M)$.

Proof. By Lemma 2.3, $k S \subseteq K_{S}(M)$. Now assume that M_{R} is semiprojective. Let $s \in S$. We show that $s k(M)<_{a} M_{R}$. Let $g \in S$. Then $\ell_{S}\left(1_{S}-g s k\right)=0$ since $k(M)<_{a} M_{R}$, by Lemma 2.7(4). Again by Lemma 2.7(4), $s k(M) \ll_{a} M_{R}$. Hence $S k \subseteq K_{S}(M)$.

Corollary 2.10. We have $K_{S}(M) \subseteq r_{S}\left(\operatorname{Soc}\left(S_{S}\right)\right)$. Moreover, $J(S) \subseteq$ $K_{S}(M)$ provided that M_{R} is semi-projective.

Proof. Let $s \in K_{S}(M)$. We need to show that $\operatorname{Soc}\left(S_{S}\right) s=0$. Let $0 \neq t \in \operatorname{Soc}\left(S_{S}\right)$. Then $t \in S_{1} \oplus S_{2} \oplus \cdots \oplus S_{n}$, where S_{1}, \cdots, S_{n} are the simple right ideals of S. Assume $t s \neq 0$ and $t=t_{1}+t_{2}+\cdots+t_{n}$ where $t_{i} \in S_{i}$. Then $t_{i} s \neq 0$ for some $i \in\{1, \cdots, n\}$. Since S_{i} is simple, $t_{i} s S=S_{i}$. Now, $t_{i}=t_{i} s \alpha$ for some $\alpha \in S$. Then $t_{i}\left(1_{S}-s \alpha\right)=0$, namely $t_{i} \in \ell_{S}\left(1_{S}-s \alpha\right)$. Since $s(M)<_{a} M, \ell_{S}\left(1_{S}-s \alpha\right)=0$ by Lemma 2.7, hence $t_{i}=0$, a contradiction. Thus $t s=0$. So we proved that $\operatorname{Soc}\left(S_{S}\right) K_{S}(M)=0$, hence $K_{S}(M) \subseteq r_{S}\left(\operatorname{Soc}\left(S_{S}\right)\right)$.

Now let $k \in J(S)$. We show that $k \in K_{S}(M)$. Let $s \in S$. Take $\alpha \in \ell_{S}\left(1_{S}-k s\right)$. Then $\alpha\left(1_{S}-k s\right)=0$. Since $1_{S}-k s$ is invertible, $\alpha=0$. Thus $\ell_{S}\left(1_{S}-k s\right)=0$ for all $s \in S$. By Lemma 2.7, $k \in K_{S}(M)$.

Corollary 2.11. Let M_{R} be a quasi-projective module. Then $K_{S}(M)=$ $J(S)=\nabla(M)$, where $\nabla(M)=\{\phi \in S \mid \operatorname{Im} \phi \ll M\}$.
Proof. Let $f \in K_{S}(M)$. We show that $f S \ll S_{S}$. Let $I+f S=S$ for a right ideal $I \subseteq S$. Then $1=f s+g$ for some $s \in S, g \in I$ and $M=f s(M)+g(M) \subseteq f(M)+g(M)$. Then the composition $M \xrightarrow{f} M \xrightarrow{\rho} M / g(M)$ is an epimorphism and there exists $\lambda \in S$ with $\rho=\rho f \lambda$. This means that $\rho(1-f \lambda)=0$. Since $f(M) \ll_{a} M$, by Lemma 2.7, $\ell_{S}(1-f \lambda)=0$. Thus $\rho=0$, namely $g(M)=M$. As M_{R} is quasi-projective, there exists $h \in S$ with $1=g h$ which means $I=S$. Now we have the equalities by using Corollary 2.10 and [2, 4.25].

Corollary 2.12. Let M_{R} be a module and $f \in S$. If $f(M) \ll_{a} M_{R}$, then $f S<_{a} S_{S}$. The converse is true if M_{R} is semi-projective.

Proof. First, assume that $f(M)<_{a} M$. Let $S=f S+I$ where I is a right ideal of S. Then $1_{S}=f s+x, s \in S, x \in I$. Hence $M=$ $f s(M)+x(M)=f(M)+x(M)$. Since $f(M) \ll_{a} M, \ell_{S}(x(M))=0$. Thus $\ell_{S}(I M)=0$, and so $\ell_{S}(I)=0$. Therefore $f S<_{a} S_{S}$. Conversely,
let $f S<_{a} S_{S}$. By Corollary $2.8, \ell_{S}(f-f s f)=\ell_{S}(f)$ for all $s \in S$. By Lemma 2.7, $f(M) \ll_{a} M_{R}$.
Corollary 2.13. Let M_{R} be any module. If $f^{2}=f \in K_{S}(M)$, then $f=0$.
Proof. Observe that by Lemma 2.7 (4) $f(M) \ll_{a} M_{R}$ implies $\ell_{S}\left(1_{S}-\right.$ $f)=0$. Since $f \in \ell_{S}\left(1_{S}-f\right), f=0$.
Corollary 2.14. Let M_{R} be any module. The following are equivalent for a maximal left ideal I of $S=\operatorname{End}(M)$:
(1) $r_{M}(I) \ll_{a} M_{R}$.
(2) $I \subseteq^{\text {ess }}{ }_{S} S$.

Proof. (1) \Rightarrow (2) Let $r_{M}(I) \ll_{a} M_{R}$. Assume that I is not essential in ${ }_{S} S$. Then there exists a nonzero left ideal J of S such that $I \cap J=0$. Since I is a maximal left ideal of S, then I is a direct summand of ${ }_{S} S$. So, there exists an idempotent $e \in S$ such that $I=S e$. Hence $r_{M}(I)=(1-e)(M) \ll_{a} M$. Then $1-e \in K_{S}(M)$. By Corollary 2.13, $e=1$, a contradiction.
$(2) \Rightarrow(1)$ Let $I \subseteq^{e s s}{ }_{S} S$. Let $M=r_{M}(I)+X$ for a submodule X of M_{R}. Then $\ell_{S}(M)=0=\ell_{S} r_{M}(I) \cap \ell_{S}(X)$ implies that $I \cap \ell_{S}(X)=0$. Since I is essential in ${ }_{S} S, \ell_{S}(X)=0$.

Let f be an element in S. Then f is said to be partially invertible if, $f S$ (equivalently, $S f$) contains a nonzero idempotent.

For an R-module M_{R}, the total of M_{R} is defined as

$$
\operatorname{Tot}(S)=\operatorname{Tot}(M, M)=\{f \in S \mid f \text { is not partially invertible }\}
$$

The total may not be closed under addition. In fact, if 0 and 1 are the only idempotents in S, then total of M_{R} is the set of non-isomorphisms.
Proposition 2.15. If M_{R} is a module, then $K_{S}(M) \subseteq \operatorname{Tot}(M, M)$.
Proof. If $f \in K_{S}(M)$ but $f \notin \operatorname{Tot}(M, M)$, then f is partially invertible. So, there exists $0 \neq e^{2}=e \in f S$. By Corollary 2.9, $e \in K_{S}(M)$, which contradicts Corollary 2.13.

If I is a subset of a ring R, then R is said to be I-semipotent if every right (equivalently, left) ideal not contained in I contains a nonzero idempotent, equivalently if every element $a \notin I$ has a partial inverse. A ring R is called semipotent if R is $J(R)$-semipotent.
Lemma 2.16. Let I be a subset of $S=\operatorname{End}\left(M_{R}\right)$. Then the following are equivalent:
(1) S is I-semipotent.
(2) $\operatorname{Tot}(M, M) \subseteq I$.

Proof. See [3, Lemma 20].
Let U be a submodule of an R-module M_{R}. The module M_{R} is called U-semipotent if, for every submodule A of M such that $A \nsubseteq U$, there exists a nonzero idempotent $e: M \rightarrow M$ such that $e(M) \subseteq A$ and $e(M) \nsubseteq U$. Clearly R is a semipotent ring if and only if R_{R} is $J(R)$ semipotent (see [4, Definition 2.5]).
Lemma 2.17. Let U be a submodule of a semi-projective module M_{R}. If M is U-semipotent, then $\operatorname{Tot}(M, M) M \subseteq U$.

Proof. Let $a \in \operatorname{Tot}(M, M)$. If $a(M) \nsubseteq U$, then by hypothesis, there exists a nonzero idempotent $e: M \rightarrow M$ such that $e(M) \subseteq a(M)$ and $e(M) \nsubseteq U$. Since M_{R} is semi-projective, there exists $f: M \rightarrow M$ such that af $=e$, it is a contradiction. Therefore $a(M) \subseteq U$, hence $\operatorname{Tot}(M, M) M \subseteq U$.

Proposition 2.18. Let $S=\operatorname{End}\left(M_{R}\right)$ for any module M_{R}. Then S is semipotent if and only if $J(S)=\operatorname{Tot}(M, M)$.
Proof. See [3, Theorem 21].
Proposition 2.19. Let $S=\operatorname{End}\left(M_{R}\right)$ for any semi-projective module M_{R}. Then $J(S)=K_{S}(M)=\operatorname{Tot}(M, M)$ if S is semipotent.
Proof. By Corollary $2.10, J(S) \subseteq K_{S}(M)$. Let $s \in K_{S}(M)$. If $s \notin$ $J(S)$, then since S is $J(S)$-semipotent, $K_{S}(M)$ have a nonzero idempotent, which is a contradiction (see Corollary 2.13). Thus $J(S)=$ $K_{S}(M)$. By Proposition 2.15, $K_{S}(M) \subseteq \operatorname{Tot}(M, M)$. On the other hand, S is $K_{S}(M)$-semipotent since $J(S)=K_{S}(M)$. So by Lemma 2.16, $\operatorname{Tot}(M, M) \subseteq K_{S}(M)$ (also see Proposition 2.18).

Proposition 2.20. Let $S=\operatorname{End}\left(M_{R}\right)$ for any semi-projective module M_{R} in which $\ell_{S}(a)=0, a \in S$, implies $a S=S$. Then $K_{S}(M)=J(S)$.
Proof. Observe that $J(S) \subseteq K_{S}(M)$ by Corollary 2.10. Let $k \in K_{S}(M)$. Then $k(M)<_{a} M$, so $\ell_{S}\left(1_{S}-k s\right)=0$ for all $s \in S$ by Lemma 2.7. Hence $\left(1_{S}-k s\right) S=S$ by hypothesis. Thus $k \in J(S)$.

A ring R is called right Kasch if each simple right R-module embeds in R; equivalently, if $\ell_{R}(T) \neq 0$ for every (maximal) right ideal T of R. Call R left principally injective if every R-linear map $R a \rightarrow R, a \in R$,
extends to $R \rightarrow R$; equivalently if $a R$ is a right annihilator in R for each $a \in R$. Finally, call R a left C_{2} ring if every left ideal that is isomorphic to a direct summand of ${ }_{R} R$ is itself a direct summand of ${ }_{R} R$.

Example 2.21. In each of the following cases we have $J(S)=K_{S}(M)$ for a semi-projective module M_{R} :
(1) S is semipotent.
(2) S is right Kasch.
(3) S is left principally injective.
(4) S is a left C_{2} ring.

Proof. (1) Follows by Proposition 2.19.
(2) Let $a \in S$ and $\ell_{S}(a)=0$. If $a S \neq S$, then $\ell_{S}(a S) \neq 0$ by (2); that is, $\ell_{S}(a) \neq 0$, a contradiction. Thus by Proposition 2.20, $J(S)=K_{S}(M)$.
(3) Let $a \in S$ and $\ell_{S}(a)=0$. By (3), $a S=r_{S}(X)$. Then $X \subseteq \ell_{S}(a)=$ 0 , so $a S=r_{S}(X)=S$. Thus by Proposition 2.20, $J(S)=K_{S}(M)$.
(4) Let $a \in S$ and $\ell_{S}(a)=0$. Then $S a \cong S$. By (4), $S a$ is a direct summand of S. Then $a=a b a$ for some element b of S. But then $0=$ $\ell_{S}(a)=\ell_{S}(a b)=S\left(1_{S}-a b\right)$. Now $a b=1_{S}$ and $S=(a b) S \oplus\left(1_{S}-a b\right) S$ imply that $S=a S$. By Proposition $2.20, K_{S}(M)=J(S)$.

3. The submodule $A_{R}(M)$

Lemma 3.1. Let $M=m R$, where $m \in M$, be a cyclic R-module. Then the following are equivalent for $k \in M$:
(1) $k R<_{a} M$.
(2) $f(k R) \varsubsetneqq f(M)$ for all $0 \neq f \in S$.
(3) $\ell_{S}(m-k r)=0$ for all $r \in R$.

Proof. (1) \Rightarrow (2) If $f(k R)=f(M)$, then $f(m)=f(k r)$ for some $r \in R$. Thus $f \in \ell_{S}(m-k r)$. But $k R+(m-k r) R=m R=M$. So, by (1), $\ell_{S}(m-k r)=0$. Thus $f=0$.
$(2) \Rightarrow(3)$ If $f \in \ell_{S}(m-k r)$ and $r \in R$, then $f(m)=f(k r) \subseteq f(k R)$. By (2), $f=0$.
(3) \Rightarrow (1) If $k R+X=M$, where X is a submodule of M_{R}, then $m=k r+x, r \in R, x \in X$. If $f \in \ell_{S}(X)$, then $f(m)=f(k r)$. So $f \in \ell_{S}(m-k r)$. Hence $f=0$ by (3).

Let M_{R} be a module. An element $k \in M$ is called a-small if $k R<_{a} M$. For convenience, define

$$
K_{R}(M)=\{k \in M \mid k \text { is a }- \text { small in } M\}=\left\{k \in M \mid k R<_{a} M\right\} .
$$

Note that $K_{R}(M)$ may not be closed under addition: for example, consider -2 and 3 in the \mathbb{Z}-module \mathbb{Z}.

Proposition 3.2. Let $M=m R$ be a cyclic R-module and K any submodule of M_{R}. Then the following are equivalent:
(1) K is a-small in M.
(2) $K \subseteq K_{R}(M)$.
(3) $\ell_{S}(m-k)=0$ for every $k \in K$.

Proof. (1) \Rightarrow (2) By Lemma 2.3.
(2) \Rightarrow (3) Lemma 3.1.
(3) \Rightarrow (1) Let $K+X=M$, where X is a submodule of M_{R}. If $m=k+x, k \in K, x \in X$, then $\ell_{S}(X) \subseteq \ell_{S}(m-k)=0$ by (3). Hence $K \ll{ }_{a} M$.

The sum of a-small submodules need not be a-small: for example, consider $3 \mathbb{Z}+(-2) \mathbb{Z}$ in the \mathbb{Z}-module \mathbb{Z}.

Let M_{R} be a module. We define

$$
A_{R}(M)=\sum\left\{K \leq M_{R} \mid K<_{a} M\right\} .
$$

Clearly, $K_{R}(M) \subseteq A_{R}(M)$ in every right R-module M_{R}, but this may not be equality (consider the \mathbb{Z}-module \mathbb{Z}).

Proposition 3.3. Let M_{R} be a module. Then:
(1) $A_{R}(M)=\left\{x_{1}+x_{2}+\cdots+x_{n} \mid x_{i} \in K_{R}(M)\right.$ for each $\left.i, n \geq 1\right\}$.
(2) $A_{R}(M)=K_{R}(M) R$.
(3) $\operatorname{Rad}(M) \subseteq K_{R}(M)$ and $Z_{S}(M) \subseteq K_{R}(M)$.

Proof. (1) Set $X=\left\{x_{1}+x_{2}+\cdots+x_{n} \mid x_{i} \in K_{R}(M)\right.$ for each i, $\left.n \geq 1\right\}$. If $x \in A_{R}(M)$, then $x \in X_{1}+X_{2}+\cdots+X_{n}$ where $X_{i}<_{a} M_{R}$ for each i. If $x=x_{1}+x_{2}+\cdots+x_{n}, x_{i} \in X_{i}$, then $x_{i} R<_{a} M_{R}$ by Lemma 2.3. Hence $x_{i} \in K_{R}(M)$ for each i. Thus $A_{R}(M) \subseteq X$. It is easy to see that $X \subseteq A_{R}(M)$.
(2) Follows by (1) and the fact that $K_{R}(M) \subseteq A_{R}(M)$.
(3) Let $x \in \operatorname{Rad}(M)$. Then $x R \ll M$ and hence $x R \lll a$. So $x \in K_{R}(M)$. Therefore $\operatorname{Rad}(M) \subseteq K_{R}(M)$. Now let $y \in Z_{S}(M)$. Then $\ell_{S}(y)=\ell_{S}(y R) \subseteq^{e s s}{ }_{S} S$. By Lemma 2.5, $y R<_{a} M$. So $y \in K_{R}(M)$. Therefore $Z_{S}(M) \subseteq K_{R}(M)$.

Proposition 3.4. Let M_{R} be a coretractable module. Then $\operatorname{Rad}(M)=$ $A_{R}(M)=K_{R}(M)$. Moreover, if M_{R} is semi-injective, then $\operatorname{Rad}(M)=$ $A_{R}(M)=K_{R}(M)=r_{M}(S o c(S S))=Z_{S}(M)$.

Proof. By Proposition 2.2, $\operatorname{Rad}(M)=A_{R}(M)=K_{R}(M)$. Now suppose that M_{R} is semi-injective. Then by [1, Corollary 4.7], $\operatorname{Rad}(M)=$ $A_{R}(M)=K_{R}(M)=r_{M}\left(\operatorname{Soc}\left(S_{S} S\right)\right)$. Now, let $x \in K_{R}(M)$. Then $x R<_{a} M$. By Proposition $2.6, \ell_{S}(x R) \subseteq{ }^{\text {ess }}{ }_{S} S$. Thus $x \in Z_{S}(M)$. Hence $Z_{S}(M)=K_{R}(M)$ by Proposition 3.3(3).

Proposition 3.5. Let M_{R} be a module. Consider the following conditions:
(1) If $K \ll_{a} M$ and $L \ll_{a} M$, then $K+L \ll_{a} M$.
(2) $K_{R}(M)$ is closed under addition.
(3) $A_{R}(M)=K_{R}(M)$.
(4) $A_{R}(M) \ll_{a} M$.

Then $(1) \Rightarrow(2) \Rightarrow(3)$ and $(4) \Rightarrow(1)$ hold. If M is cyclic, then $(3) \Rightarrow(4)$ holds.

Moreover, if $M=m R$, where $m \in M$, and one of the above conditions holds, then we have:
(a) $A_{R}(M)$ is the unique largest a-small submodule of M.
(b) $A_{R}(M)=\left\{k \in M \mid \ell_{S}(m-k r)=0\right.$ for all $\left.r \in R\right\}$.
(c) $A_{R}(M)=\bigcap\left\{U \subseteq^{\max } M \mid A_{R}(M) \subseteq U\right\}$.

Proof. (1) \Rightarrow (2) Since $(k+l) R \subseteq k R+l R, K_{R}(M)$ is closed under addition by Lemma 2.3.
$(2) \Rightarrow(3)$ It is clear that $K_{R}(M) \subseteq A_{R}(M)$. By (2) and Proposition $3.3(1), A_{R}(M) \subseteq K_{R}(M)$.
(4) \Rightarrow (1) Let $K \ll_{a} M$ and $L<_{a} M$. Then $K \subseteq A_{R}(M)$ and $L \subseteq A_{R}(M)$, so $K+L \subseteq A_{R}(M)$. Thus, by (4) and Lemma 2.3, $K+L \ll{ }_{a} M$.
(3) \Rightarrow (4) Let $M=m R$ for some $m \in M$ and $A_{R}(M)+X=M$ for a submodule X of M_{R}. So $K_{R}(M)+X=M$ by (3). If $m=k+x$ with $k \in K_{R}(M)$ and $x \in X$, then $M=k R+X$ and $k R \lll{ }_{a} M$. Hence $\ell_{S}(X)=0$, so $A_{R}(M)<_{a} M$.

Finally, (a) is clear by (4), and (b) follows from (3) and Lemma 3.1. As to (c): If $a \notin A_{R}(M)$, then $a R$ is not a-small by (3), so $a R+X=M$ for some submodule X of M_{R} with $\ell_{S}(X) \neq 0$. As $A_{R}(M) \ll_{a} M$ by (4), we have $A_{R}(M)+X \neq M$. If $A_{R}(M)+X \subseteq U \subseteq \complement^{\max } M$, then $a \notin U$, this proves (c).

Corollary 3.6. Let M_{R} be a cyclic module. If $K_{R}(M)$ is closed under addition, then $\operatorname{Rad}\left(M / A_{R}(M)\right)=\operatorname{Rad}\left(M / K_{R}(M)\right)=0$.

Proof. This follows by part (c) of Proposition 3.5.
Proposition 3.7. Let M_{R} be a finitely generated module. If $A_{R}(M) \subseteq$ $\operatorname{Rad}(M)+Z_{S}(M)$, then the sum of any two a-small submodules is asmall.

Proof. Let $K \ll_{a} M_{R}$ and $L \ll_{a} M_{R}$. Then $K+L \subseteq A_{R}(M)$. By Proposition 2.4 and Lemma 2.3, $K+L \ll{ }_{a} M_{R}$.

Acknowledgments

This work has been done during the first author's visit to the Department of Mathematics, Hacettepe University in 2011. She wishes to thank the department for kind hospitality. The first author also would like to thank the Ministry of Science of Iran for the support.

References

[1] B. Amini, M. Ershad and H. Sharif, Coretractable modules, J. Aust. Math. Soc. 86 (2009), no. 3, 289-304.
[2] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules, Frontiers in Mathematics, Birkäuser Verlag, Basel, 2006.
[3] W. K. Nicholson and Y. Zhou, Annihilator-small right ideals, Algebra Colloq. 18 (2011), Special no. 1, 785-800.
[4] A. Ç. Özcan and P. Aydog̃du, A generalization of semiregular and semiperfect modules, Algebra Colloq. 15 (2008), no. 4, 667-680.
[5] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Philadelphia, 1991.

Tayyebeh Amouzegar-Kalati

Department of Mathematics, Quchan University of Advanced Technologies Engineering, Quchan, Iran
Email: t.amoozegar@yahoo.com
Derya Keskin-Tütüncü
Department of Mathematics, University of Hacettepe, P.O. Box 06800, Beytepe, Ankara, Turkey
Email: keskin@hacettepe.edu.tr

[^0]: MSC(2010): Primary: 16D10; Secondary: 16D80.
 Keywords: Small submodules, annihilators, annihilator-small submodules. Received: 2 December 2011, Accepted: 25 September 2012.
 *Corresponding author
 (c) 2013 Iranian Mathematical Society.

