
Bulletin of the Iranian Mathematical Society Vol. 39 No. 6 (2013), pp 1065-1078.

DETERMINANTS AND PERMANENTS OF

HESSENBERG MATRICES AND GENERALIZED LUCAS

POLYNOMIALS

K. KAYGISIZ∗ AND A. ŞAHİN

Communicated by Amir Daneshgar

Abstract. In this paper, we give some determinantal and perma-
nental representations of generalized Lucas polynomials, which are
a general form of generalized bivariate Lucas p-polynomials, ordi-
nary Lucas and Perrin sequences etc., by using various Hessenberg
matrices. In addition, we show that determinant and permanent of
these Hessenberg matrices can be obtained by using combinations.
Then we show, the conditions under which the determinants of the
Hessenberg matrix become its permanents.

1. Introduction

Fibonacci numbers fn, Lucas numbers ln and Perrin numbers rn are
defined by

fn = fn−1 + fn−2 for n > 2 and f1 = f2 = 1,

ln = ln−1 + ln−2 for n > 1 and l0 = 2, l1 = 1,

rn = rn−2 + rn−3 for n > 3 and r0 = 3, r1 = 0, r2 = 2,

respectively.
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Generalizations of these sequences have been studied by a number
of researchers. For instance; Miles [16] defined generalized order-k Fi-
bonacci numbers, Er [2] defined k sequences of generalized order-k Fi-
bonacci numbers and Kaygısız and Bozkurt [4] defined k-generalized
order-k Perrin numbers.

MacHenry [12] defined generalized Fibonacci polynomials Fk,n(t) and
Lucas polynomials Gk,n(t) as follows;

Fk,n(t) = 0, n < 0, Gk,n(t) = 0, n < 0,
Fk,0(t) = 1, Gk,0(t) = k,

Fk,n(t) =
k∑

j=1
tjFk,n−j(t), Gk,1(t) = t1,

Gk,n(t) = Gk−1,n(t), 1 ≤ n < k,

Gk,n(t) =
k∑

j=1
tjGk,n−j(t), n ≥ k

where ti (1 ≤ i ≤ k) are constant coefficients of the core polynomial

P (x; t1, t2, . . . , tk) = xk − t1x
k−1 − · · · − tk.

In [13, 14], authors obtained some properties of this polynomials. In
addition, in [15], authors obtained (n, k ∈ N, n ≥ 1)

(1.1) Gk,n(t) =
∑
a⊢n

n

|a|

(
|a|

a1,...,ak

)
ta11 . . . takk

where ai are nonnegative integers for all i (1 ≤ i ≤ k), with initial
conditions given by

Gk,0(t) = k, Gk,−1(t) = 0, · · · , Gk,−k+1(t) = 0.

Throughout this paper, the notations a ⊢ n and |a| are used instead

of
k∑

j=1
jaj = n and

k∑
j=1

aj , respectively.

Kaygısız and Şahin [5] defined generalized Perrin polynomials Rk,n(t)
by using generalized Lucas polynomials.

The generalized bivariate Lucas p-polynomials [20] are defined by

Lp,n(x, y) = xLp,n−1(x, y) + yLp,n−p−1(x, y)

for n > p, with boundary conditions Lp,0(x, y) = (p+1), Lp,n(x, y) = xn,
n = 1, 2, ..., p.
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Table 1. Cognate polynomial sequences 1.

k t1 ti(2 ≤ i ≤ (k − 1)) tk Gk,n(t)

k 0 ti tk Rk,n(t)
k x 0 y Lp,n(x, y)
3 0 1 1 rn

Table 2. [20]Cognate polynomial sequences 2.

x y p Lp,n(x,y)

x y 1 bivariate Lucas polynomials Ln(x, y)
x 1 p Lucas p-polynomials Lp,n(x)
x 1 1 Lucas polynomials ln(x)
1 1 p Lucas p-numbers Lp(n)
1 1 1 Lucas numbers Ln

2x y p bivariate Pell-Lucas p-polynomials Lp,n(2x, y)
2x y 1 bivariate Pell-Lucas polynomials Ln(2x, y)
2x 1 p Pell-Lucas p-polynomials Qp,n(x)
2x 1 1 Pell-Lucas polynomials Qn(x)
2 1 1 Pell-Lucas numbers Qn

2x −1 1 Chebysev polynomials of the first kind Tn(x)
x 2y p bivariate Jacobsthal-Lucas p-polynomials Lp,n(x, 2y)
x 2y 1 bivariate Jacobsthal-Lucas polynomials Ln(x, 2y)
1 2y 1 Jacobsthal-Lucas polynomials jn(y)
1 2 1 Jacobsthal-Lucas numbers jn

Tables 1 and 2 show that Gk,n(t) are general form of many sequences
and polynomials. Therefore, any result obtained from the polynomials
Gk,n(t) is valid for all sequences and polynomials mentioned in these
tables.

On the other hand, many researchers studied determinantal and per-
manental representations of k sequences of generalized order-k Fibonacci
and Lucas numbers. For example, Minc [17] defined an n × n (0,1)-
matrix F (n, k) and showed that the permanents of F (n, k) is equal to
the generalized order-k Fibonacci numbers.

In [10, 11], authors defined two (0,1)-matrices and showed that the
permanents of these matrices are the generalized Fibonacci and Lucas
numbers. Öcal et al. [18] gave some determinantal and permanental
representations of k-generalized Fibonacci and Lucas numbers and ob-
tained Binet’s formulas for these sequences. Kılıç and Stakhov [8] gave
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permanent representation of Fibonacci and Lucas p-numbers. Kılıç and
Taşcı [9] studied permanents and determinants of Hessenberg matrices.
Yılmaz and Bozkurt [22] derived some relationships between Pell and
Perrin sequences, as well as permanents and determinants of a type of
Hessenberg matrices. Kaygısız and Şahin [7] gave some determinantal
and permanental representations of Fibonacci type numbers. Kaygısız
and Şahin [6] gave some determinantal and permanental representations
of generalized bivariate Lucas p-polynomials. In [3, 19, 21], authors gave
some relations between determinants and permanents.

The main purpose of this paper is to give some determinantal and
permanental representations of generalized Lucas polynomials by using
various Hessenberg matrices. Then we provide some conditions under
which the determinants of the Hessenberg matrix become its perma-
nents.

2. The determinantal representations

An n × n matrix +An = (aij) is called lower Hessenberg matrix if
aij = 0 when j − i > 1 i.e.,

(2.1) +An =



a11 a12 0 · · · 0
a21 a22 a23 · · · 0
a31 a32 a33 · · · 0
...

...
...

...
an−1,1 an−1,2 an−1,3 · · · an−1,n

an,1 an,2 an,3 · · · an,n


Lemma 2.1. [1] Let +An be the n× n lower Hessenberg matrix for all
n ≥ 1 and define det(+A0) = 1. Then, det(+A1) = a11 and for n ≥ 2
(2.2)

det(+An) = an,n det(+An−1) +

n−1∑
r=1

[(−1)n−ran,r(

n−1∏
j=r

aj,j+1) det(+Ar−1)].

Now, we define two Hessenberg matrices +Ck,m and −Ck,m whose
determinants give the generalized Lucas polynomials.

Theorem 2.2. Let k ≥ 2 and n ≥ 1 be integers, and let Gk,n(t) be the
generalized Lucas polynomials and +Ck,n = (crs) an n × n Hessenberg
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matrix, given by

crs =


i|r−s|. tr−s+1

t
(r−s)
2

, if s ̸= 1 and − 1 ≤ r − s < k,

i|r−s|. tr−s+1

t
(r−s)
2

.(r − s+ 1), if s = 1 and − 1 ≤ r − s < k,

0, otherwise

i.e.,

+Ck,n =



t1 it2 0 0 · · · 0
2i t1 it2 0 · · · 0

3i2 t3
t22

i t1 it2 · · · 0

...
...

...
...

...

kik−1 tk
tk−1
2

ik−2 tk−1

tk−2
2

ik−3 tk−2

tk−3
2

ik−4 tk−3

tk−4
2

· · · 0

0 ik−1 tk
tk−1
2

ik−2 tk−1

tk−2
2

ik−3 tk−2

tk−3
2

· · · 0

...
...

...
...

. . . it2
0 0 0 · · · i t1


where t0 = 1 and i =

√
−1. Then,

det(+Ck,n) = Gk,n(t).(2.3)

Proof. To prove (2.3), we use the mathematical induction on m. The
result is true for m = 1 by hypothesis.

Assume that it is true for all positive integers less than or equal to
m, namely, det(+Ck,m) = Gk,m(t). Then, by using Lemma 2.1, we have

det(+Ck,m+1) = cm+1,m+1 det(+Ck,m)

+
m∑
r=1

[
(−1)m+1−rcm+1,r

m∏
j=r

cj,j+1 det(+Ck,r−1)

]

= t1 det(+Ck,m) +
m−k+1∑
r=1

(−1)m+1−rcm+1,r

m∏
j=r

cj,j+1 det(+Ck,r−1)


+

m∑
r=m−k+2

(−1)m+1−rcm+1,r

m∏
j=r

cj,j+1 det(+Ck,r−1)
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= t1 det(+Ck,m)

+

m∑
r=m−k+2

(−1)m+1−rcm+1,r

m∏
j=r

cj,j+1 det(+Ck,r−1)


= t1 det(+Ck,m)

+

m∑
r=m−k+2

(−1)m+1−r.im+1−r tm−r+2

t
(m−r+1)
2

m∏
j=r

it2 det(+Ck,r−1)


= t1 det(+Ck,m)

+
m∑

r=m−k+2

[
(−i)m+1−r tm−r+2

t
(m−r+1)
2

.im+1−r.t
(m−r+1)
2 det(+Ck,r−1)

]

= t1 det(+Ck,m) +
m∑

r=m−k+2

tm−r+2 det(+Ck,r−1)

= t1 det(+Ck,m) + t2 det(+Ck,m−1) + · · ·+ tk det(+Ck,m−(k−1)).

From the hypothesis and definition of generalized Lucas polynomials we
obtain

det(+Ck,m+1) = t1Gk,m(t) + · · ·+ tkGk,m−(k−1)(t) = Gk,m+1(t).

Therefore, (2.3) holds for all positive integers. □

Example 2.3. We obtain 6-th generalized Lucas polynomial for k = 5,
by using (2.3).

det(+C5,6) = det



t1 it2 0 0 0 0
2i t1 it2 0 0 0

3−t3
t22

i t1 it2 0 0

4−it4
t32

−t3
t22

i t1 it2 0

5 t5
t42

−it4
t32

−t3
t22

i t1 it2

0 t5
t42

−it4
t32

−t3
t22

i t1


= t61 + 6t41t2 + 9t21t

2
2 + 2t32 + 6t31t3 + 3t23 + 12t1t2t3

+6t21t4 + 6t2t4 + 6t1t5

= G5,6(t).

Theorem 2.4. Let k ≥ 2 and n ≥ 1 be integers, Gk,n the generalized
Lucas polynomial and −Ck,n = (bij) an n× n lower Hessenberg matrix,
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given by

bij =


−t2, if j = i+ 1,
ti−j+1

t
(i−j)
2

, if j ̸= 1 and 0 ≤ i− j < k,

ti−j+1

t
(i−j)
2

.(i− j + 1), if j = 1 and 0 ≤ i− j < k,

0, otherwise

i.e.,

−Ck,n =



t1 −t2 0 0 · · · 0
2 t1 −t2 0 · · · 0
3 t3
t22

1 t1 −t2 · · · 0

...
...

...
...

...

k tk
tk−1
2

tk−1

tk−2
2

tk−2

tk−3
2

. . . · · · 0

0 tk
tk−1
2

tk−1

tk−2
2

tk−2

tk−3
2

· · · 0

...
...

...
...

. . . −t2
0 0 0 · · · · · · t1


where t0 = 1. Then,

det(−Ck,n) = Gk,n(t).(2.4)

Proof. The proof is similar to the proof of Theorem 2.2, by using Lemma
2.1. □
Example 2.5. We obtain 5-th generalized Lucas polynomial for k = 4,
by using (2.4).

det(−C4,5) = det


t1 −t2 0 0 0
2 t1 −t2 0 0
3 t3
t22

1 t1 −t2 0

4 t4
t32

t3
t22

1 t1 −t2

0 t4
t32

t3
t22

1 t1


= t51 + 5t31t2 + 5t1t

2
2 + 5t21t3 + 5t2t3 + 5t1t4

= G4,5(t).

Corollary 2.6. If we rewrite equalities (2.3) and (2.4) for ti = 1 and
k = 2, then we obtain

det(+Ck,n) = det(−Ck,n) = ln

where ln are the ordinary Lucas numbers.
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Corollary 2.7. If we rewrite equalities (2.3) and (2.4) for t1 = 0, then
we obtain

det(+Ck,n) = det(−Ck,n) = Rk,n(t)

where Rk,n(t) are the generalized Perrin polynomials.

Corollary 2.8. If we rewrite the right hand side of equalities (2.3) and
(2.4) for t1 = x, tk = y, ti = 0 (2 ≤ i ≤ k− 1) and k = (p+ 1), then we
obtain

det(+Ck,n) = det(−Ck,n) = Lp,n(x, y)

where Lp,n(x, y) are the generalized bivariate Lucas p-polynomials.

Corollary 2.9. If we rewrite equalities (2.3) and (2.4) for t1 = 0 and
ti = 1 (2 ≤ i ≤ k) and k = 3, then we obtain

det(+Ck,n) = det(−Ck,n) = rn

where rn are the ordinary Perrin numbers.

Now we show that determinants of Hessenberg matrices −Ck,n and

+Ck,n can be obtained by using combinations.

Corollary 2.10.

det(+Ck,n) = det(−Ck,n) =
∑
a⊢n

n

|a|

(
|a|

a1,...,ak

)
ta11 . . . takk

Proof. It is obvious from Theorem 2.2, Theorem 2.4 and (1.1). □

3. The permanent representations

Let A = (ai,j) be an n × n square matrix over a ring R. Then, it is
well known that, the permanent of A is defined by

per(A) =
∑
σ∈Sn

n∏
i=1

ai,σ(i)

where Sn denotes the symmetric group on n letters.

Lemma 3.1. [18] Let An be an n × n lower Hessenberg matrix for all
n ≥ 1 and define per(A0) = 1. Then, per(A1) = a11 and for n ≥ 2

(3.1) per(An) = an,nper(An−1) +

n−1∑
r=1

(an,r

n−1∏
j=r

aj,j+1per(Ar−1)).
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We define two Hessenberg matrices −Hk,n and +Hk,n whose perma-
nents give the generalized Lucas polynomials.

Theorem 3.2. Let k ≥ 2 and n ≥ 1 be integers, Gk,n(t) the generalized
Lucas polynomials and −Hk,n = (hrs) an n×n lower Hessenberg matrix,
given by

hrs =


i(r−s). tr−s+1

t
(r−s)
2

, if s ̸= 1 and− 1 ≤ r − s < k,

i(r−s). tr−s+1

t
(r−s)
2

.(r − s+ 1), if s = 1 and − 1 ≤ r − s < k,

0, otherwise

i.e.,

−Hk,n =



t1 −it2 0 0 · · · 0
2i t1 −it2 0 · · · 0

3i2 t3
t22

i t1 −it2 · · · 0

...
...

...
...

...

kik−1 tk
tk−1
2

ik−2 tk−1

tk−2
2

ik−3 tk−2

tk−3
2

ik−4 tk−3

tk−4
2

· · · 0

0 ik−1 tk
tk−1
2

ik−2 tk−1

tk−2
2

ik−3 tk−2

tk−3
2

· · · 0

...
...

...
...

. . .

0 0 0 · · · · · · t1


where t0 = 1 and i =

√
−1. Then,

per(−Hk,n) = Gk,n(t).(3.2)

Proof. The proof is similar to the proof of Theorem 2.2, by using Lemma
3.1. □

Example 3.3. We obtain the 3-rd generalized Lucas polynomial for k =
4, by using (3.2)

per(−H4,3) = per

 t1 −it2 0
2i t1 −it2

3−t3
t2

i t1


= t31 + 3t1t2 + 3t3.

Theorem 3.4. Let k ≥ 2 and n ≥ 1 be integers, Gk,n(t) the generalized
Lucas polynomials and +Hk,n = (pij) an n× n lower Hessenberg matrix
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given by

pij =


ti−j+1

t
(i−j)
2

, if j ̸= 1 and − 1 ≤ i− j < k,

ti−j+1

t
(i−j)
2

.(i− j + 1), if j = 1 and 0 ≤ i− j < k,

0, otherwise

i.e.,

+Hk,n =



t1 t2 0 0 · · · 0
2 t1 t2 0 · · · 0
3 t3
t22

1 t1 t2 · · · 0

...
...

...
...

...

k tk
tk−1
2

tk−1

tk−2
2

tk−2

tk−3
2

tk−3

tk−4
2

· · · 0

0 tk
tk−1
2

tk−1

tk−2
2

tk−2

tk−3
2

· · · 0

...
...

...
. . .

0 0 0 · · · · · · t1


where t0 = 1. Then,

per(+Hk,n) = Gk,n(t).(3.3)

Proof. The proof is similar to the proof of Theorem 2.2, by using Lemma
3.1. □
Corollary 3.5. If we rewrite equalities (3.2) and (3.3) for ti = 1 (1 ≤
i ≤ k) and k = 2, then we obtain

per(−Hk,n) = per(+Hk,n) = ln

where ln are the ordinary Lucas numbers.

Corollary 3.6. If we rewrite equalities (3.2) and (3.3) for t1 = 0 and
ti = 1 (2 ≤ i ≤ k), then we obtain

per(−Hk,n) = per(+Hk,n) = Rk,n(t)

where Rk,n(t) are the generalized Perrin polynomials.

Corollary 3.7. If we rewrite the right hand side of equalities (3.2) and
(3.3) for t1 = x, tk = y, ti = 0 (2 ≤ i ≤ k − 1) and k = (p + 1), then
we obtain

per(−Hk,n) = per(+Hk,n) = Lp,n(x, y)

where Lp,n(x, y) are the generalized bivariate Lucas p-polynomials.
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Corollary 3.8. If we rewrite equalities (3.2) and (3.3) for t1 = 0, ti = 1
(2 ≤ i ≤ k) and k = 3, then we obtain

per(−Hk,n) = per(+Hk,n) = rn

where rn are the ordinary Perrin numbers.

Now we show that permanent of Hessenberg matrices −Hk,n and

+Hk,n can be obtained by using combinations.

Corollary 3.9.

per(−Hk,n) = per(+Hk,n) =
∑
a⊢n

n

|a|

(
|a|

a1,...,ak

)
ta11 . . . takk

Proof. It is obvious from Theorem 3.2, Theorem 3.4 and (1.1). □

4. Determinant and permanent of a Hessenberg matrix

Gibson [3] gave an identity between permanent and determinant of
a semitriangular matrix. We give a different proof of this identity for
Hessenberg matrices.

Theorem 4.1. Let +An be the Hessenberg matrix in (2.1) and

−An = (bij) an n× n Hessenberg matrix, given by

bij =

 0, if j − i > 1,
−aij , if j − i = 1,
aij , otherwise

i.e.,

−An =



a11 −a12 0 · · · 0
a21 a22 −a23 · · · 0
a31 a32 a33 · · · 0
...

...
...

...
an−1,1 an−1,2 an−1,3 · · · −an−1,n

an,1 an,2 an,3 · · · an,n


.

Then,

det(−An) = per(+An) and det(+An) = per(−An).(4.1)
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Proof. To prove (4.1), we use the mathematical induction on m. The
result is true for m = 1 by hypothesis.

Assume that it is true for all positive integers less than or equal to m,
namely det(−Am) =per(+Am). Then, by using (2.2) and (3.1), we have

det(−Am+1) = am+1,m+1 det(−Am)

+
m∑
r=1

[(−1)m+1−ram+1,r

m∏
j=r

bj,j+1 det(−Ar−1)]

= am+1,m+1per(+Am)

+

m∑
r=1

[(−1)m+1−ram+1,r

m∏
j=r

(−aj,j+1)per(+Ar−1)]

= am+1,m+1per(+Am)

+

m∑
r=1

[(−1)m+1−ram+1,r(−1)m+1−r
m∏
j=r

aj,j+1per(+Ar−1)]

= am+1,m+1per(+Am) +
m∑
r=1

[am+1,r

m+1∏
j=r

aj,j+1per(+Ar−1)]

= per(+Am+1).

Therefore, the result is true for all positive integers. □

Conclusion

Generalized Lucas polynomials are a general form of several polynomials
and number sequences. Therefore any result obtained from these poly-
nomials is applicable to the others. In addition, the relation between
determinant and permanent of a Hessenberg matrix make it possible to
transfer any result between them.
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[8] E. Kılıç and A. P. Stakhov, On the Fibonacci and Lucas p-numbers, their sums,
families of bipartite graphs and permanents of certain matrices, Chaos Solitons
Fractals 40 (2009), no. 5, 2210–2221.
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A. Şahin
Department of Mathematics, Faculty of Education, Gaziosmanpaşa University, 60250
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