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SOME CLASSES OF STRONGLY CLEAN RINGS

H. CHEN

Communicated by Fariborz Azarpanah

Abstract. A ring R is a strongly clean ring if every element in R is
the sum of an idempotent and a unit that commute. We construct
some classes of strongly clean rings which have stable range one. It
is shown that such cleanness of 2×2 matrices over commutative local
rings is completely determined in terms of solvability of quadratic
equations.

1. Introduction

Throughout, all rings are associative rings with identity. A ring R is
strongly clean provided that for any x ∈ R there exists an idempotent
e ∈ R such that x− e ∈ U(R) and ex = xe. Many authors investigated
strong cleanness of 2×2 matrices over local rings [1–5,7] and [10]. Recall
that a ring R has stable range one provided that aR + bR = R implies
that there exists y ∈ R such that a + by ∈ U(R). A long standing
question asks whether strongly clean rings have stable range one. So to
check that strongly clean rings have stable range one, some subclasses of
such rings are introduced. A ring R is strongly rad clean in case for any
x ∈ R, there is an idempotent e ∈ R such that x−e ∈ U(R), ex = xe and
ex ∈ J(R), where J(R) is the Jacobson radical of R. A ring R is strongly
π-rad clean in case for any x ∈ R, there exist an idempotent e ∈ R and
an n ∈ N such that x − e ∈ U(R), ex = xe and (ex)n ∈ J(R). For a
fixed natural number n, we say that x ∈ R is strongly Jn-clean provided
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that there exists an idempotent e ∈ R such that x− e ∈ U(R), ex = xe
and (ex)n ∈ J(R). A ring R is strongly Jn-clean in case each element
in R is strongly Jn-clean. Clearly, a ring R is strongly rad clean if and
only if R is strongly J1-clean. For elementary properties of these rings,
we refer the reader to [6] and [12].

The motivation of this article is to give a characterization of strongly
Jn-clean rings by virtue of strongly π-regularity, and then construct
many of such rings. Finally, we determine strong Jn-cleanness for 2× 2
matrices over commutative local rings in terms of solvability of quadratic
equations. We will show that strong Jn-cleanness (n ≥ 2), strong J2-
cleanness and strongly π-rad cleanness coincide for 2 × 2 matrices over
local rings.

Throughout, J(R) and U(R) will denote, respectively, the Jacobson
radical and the group of units in R. Furthermore Mn(R) stands for
the ring of all n × n matrices over a ring R. tr(A) denotes the trace
of A ∈ Mn(R), tA = tr2(A) − 4det(A), and N is the set of all natural
numbers.

2. Strong π-regularity

A ring R is strongly π-regular in case for any x ∈ R there exists some
n ∈ N such that xn ∈ xn+1R. The aim of this section is to characterize
the strongly Jn-cleanness by means of the strong π-regularity.

Theorem 2.1. Let R be a ring, and let n be a fixed natural number.
Then the following are equivalent:

(1) R is strongly Jn-clean.
(2) For any x ∈ R, there exist an idempotent e ∈ R and a unit u ∈ R

such that xn ≡ eu ≡ ue
(
mod J(R)

)
, ex = xe.

Proof. (1) ⇒ (2) For any x ∈ R, there exist an idempotent e ∈ R and
a unit u ∈ R such that x = e + u, ex = xe and exn ∈ J(R). Clearly,
x = ex + (1 − e)x. This implies that xn = exn + (1 − e)xn. It is easy
to verify that (1 − e)x = (1 − e)u, and so (1 − e)xn = (1 − e)un. Let
f = 1 − e and v = un. Then xn ≡ fv ≡ vf

(
mod J(R)

)
and fx = xf ,

as required.
(2) ⇒ (1) Let x ∈ R. Then there exist an idempotent e ∈ R and a

unit u ∈ R such that xn ≡ eu ≡ ue
(
mod J(R)

)
, ex = xe. Let f = 1− e
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and w = x− f . Choose v = xn−1u−1e− (1 + x+ · · ·+ xn−1)f . Then

wv = (x− f)
(
xn−1u−1e− (1 + x+ · · ·+ xn−1)f

)
= xnu−1e+ (1− x)(1 + x+ · · ·+ xn−1)f − fxn−1u−1e
≡ e+ (1− xn)f + fxn−1u−1xnu−1

(
mod J(R)

)
≡ e+ (1− xn)f + fxn−1eu−1

(
mod J(R)

)
= e+ f
= 1,

and so w ∈ R is right invertible. Likewise, we get vw = 1, and so w ∈ R
is left invertible. Hence, w ∈ U(R). Therefore, x = f + w is a sum of
an idempotent f ∈ R and a unit w ∈ R, and that fw = wf . One easily
checks that fxn ∈ J(R), as required. �

For a fixed natural number n, a ring R is said to be n-regular provided
that for any x ∈ R there exists a y ∈ R such that xn = xnyxn. Clearly,(

Z2 Z2

0 Z2

)
is 2-regular, while it is not regular. Let S = Tn(Z2), the

ring of all n× n upper triangular matrix over Z2. Then S is n-regular.

Let R = {


Ai

1
1

. . .

 | Ai is an i × i upper triangular matrix

over Z2, i = 1, 2, 3 · · · }. Then R is π-regular, while it is not n-regular
for all n ∈ N. Thus,

{ regular rings } $ {n -regular rings } $ {π -regular rings }
for all n ≥ 2.

Corollary 2.2. Let R be commutative, and let n be a fixed natural
number. Then the following are equivalent:

(1) R is strongly Jn-clean.
(2) R/J(R) is n-regular and every idempotent lifts modulo J(R).

Proof. (1) ⇒ (2) Since R is strongly Jn-clean, it is clean. In view of
[11, Theorem 30.2], R is an exchange ring. Hence, every idempotent
lifts modulo J(R), by [11, Theorem 29.2]. Let x ∈ R. According to
Theorem 2.1, there exist an idempotent e ∈ R and a unit u ∈ R such
that xn ≡ eu ≡ ue

(
mod J(R)

)
, ex = xe. This implies that xn ≡

exn ≡ u−1x2n
(
mod J(R)

)
. Therefore, xnu−1xn ≡ xne ≡ (ue)e = ue ≡

xn
(
mod J(R)

)
, and so R/J(R) is n-regular, as required.
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(2) ⇒ (1) As every idempotent lifts modulo J(R), R/J(R) is com-
mutative. For any x ∈ R, there exists a y ∈ R such that xn ≡
xnyxn

(
mod J(R)

)
. Set z = yxny. Then xn ≡ xnzxn

(
mod J(R)

)
and

z ≡ zxnz
(
mod J(R)

)
. Set u = z + 1− xnz. Since R is commutative, it

is easy to verify that

(xn + 1− xnz)u ≡ u(xn + 1− xnz) ≡ 1
(
mod J(R)

)
.

Hence, u ∈ U(R). Let e = xnz. Then we can find an idempotent f ∈ R
such that e ≡ f

(
mod J(R)

)
. In addition, xn ≡ fu ≡ uf

(
mod J(R)

)
.

Further, fx = xf . According to Theorem 2.1, R is strongly Jn-clean. �

In view of [11, Remark 29.7], all commutative n-regular rings are ex-
change rings; hence, it follows from [11, Theorem 29.2] and Corollary 2.2
that every commutative n-regular ring is strongly Jn-clean. Obviously,
Z4 is 2-regular, while it is not regular. Also we see that Z8 is 3-regular,
while it is not 2-regular. In light of Proposition 2.4, Z4 is strongly J2-
clean and Z8 is strongly J3-clean. Let R = F[x]/(x2) = {a + bt | a, b ∈
F, t2 = 0}, where F is a field of characteristic 2. Then for any a ∈ R,
there exists a b ∈ R such that a2 = a3b. Hence, a2 = a2b2a2. That is, R
is commutative 2-regular. Thus, R is strongly J2-clean. In this case, R
is not commutative regular.

Recall that a ring R is of bounded index n provided that xn = 0 for
any nilpotent x ∈ R.

Lemma 2.3. Let R be a strongly π-regular ring of bounded index n.
Then for any x ∈ R, there exists N such that xnR = xn+1R.

Proof. Let x ∈ R. In light of [4, Proposition 13.1.18], there exist e =
e2 ∈ R, u ∈ U(R) and a nilpotent w ∈ R such that x = eu+w and e, u, w
commute. It is easy to verify that x−x2u−1 = (w+eu)−(w+eu)2u−1 =
w − w(2e + wu−1). By hypothesis, wn = 0, and so

(
x − x2u−1

)n
= 0.

This implies that xn ∈ xn+1R, as required. �

As is well known, a ring R is strongly π-regular if and only if for any
x ∈ R there exist y ∈ R and n ∈ R such that xn = x2ny, y = y2x and
xy = yx. By a similar method of the proof of this fact, we now derive
the following.

Theorem 2.4. Every strongly π-regular ring of bounded index n is
strongly Jn-clean.
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Proof. Let R be a strongly π-regular ring of bounded index n, and let
x ∈ R. According to Lemma 2.3, we have some y ∈ R such that xn =
xn+1y, and then xn = xn+iyi for any i ∈ N. Also we have some z ∈ R
such that yn = yn+1z; hence, yn = yn+jzj for any j ∈ N. Furthermore,
we get xn = x2nyn. As in the proof of [4, Proposition 13.15], we get
xn ∈ Rxn+1.

Write xn = xn+1y = rxn+1. Then xny = rxn+1y = rxn. By in-
duction, we get xnyk = rkxn for any k ∈ N. Let t = xnyn+1. Then
t = rn+1xn. It is easy to verify that xt = xn+1yn+1 = (xn+1y)yn =
xnyn = rnxn = rn(rxn+1) = (rn+1xn)x = tx;xn+1t = x2n+1yn+1 =
xn(xn+1y)yn = x2nyn = · · · = xn+1y = xn; t2x = t(xt) = t(xn+1yn+1) =
xn+1tyn+1 = xnyn+1 = t. Let s = tn. Then xn = x2ns, xs = sx, s =
s2xn. Set u = s + 1 − xns. Then xnu = xns + xn(1 − xns) = xns is
an idempotent. In addition, u−1 = xn + 1 − xns. Let e = xns. Then
xn = eu−1 = u−1e and ex = xe. Accordingly, the result follows by
Theorem 2.1. �

As a consequence, we deduce that every finite ring R is strongly Jn-
clean for all n ≥ |R|. In view of [8, Theorem 7.15] and Theorem 2.4,
every regular ring of bounded index n is strongly Jn-clean. Further, we
show that every right P -exchange ring of bounded index n is strongly
Jn-clean [4, Corollary 15.3.8].

By the decompositions of 2× 2 matrices, Ying considered the strong
J2-cleanness of 2×2 matrix ring over a division ring [12, Theorem 3.3.10].
As a consequence of Theorem 2.4, we extend Ying’s result to the general
case.

Example 2.5. Let D be a division ring. Then Mn(D) is strongly Jn-
clean, while it is not strongly Jn−1-clean.

Proof. In view of [8, Theorem 7.2], Mn(D) is a strongly π-regular ring
of bounded index n. Therefore, Mn(D) is strongly Jn-clean from Theo-
rem 2.4. By a similar method [12, Proposition 3.3.9], one can check the

next assertion. Choose A =


0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 1
0 0 0 · · · 0

 ∈ Mn(D). Then A

is not strongly Jn−1-clean. Otherwise, we have some E = E2 ∈ Mn(D)
and U ∈ GLn(D) such that EA = AE and (EA)n−1 ∈ J

(
Mn(R)

)
.

Write E = (eij). As EAn−1 = An−1E, we get eni = 0 (i = 1, · · · , n−1).
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As (EA)n−1 ∈ J
(
Mn(R)

)
, we get enn = 0. So every entry at the last

row of U are zero, a contradiction. Accordingly, Mn(D) is not strongly
Jn−1-clean. �

Example 2.6. Let D be a division ring, and let R = {
(
a b
0 a

)
| a, b ∈

D}. Then R is strongly Jn-clean for all n ∈ N.

Proof. Let

(
a b
0 a

)
∈ R. If a 6= 0, then

(
a b
0 a

)
∈ R is invertible. If

a = 0, then

(
0 b
0 0

)
=

(
1 0
0 1

)
+

(
−1 b
0 −1

)
. Accordingly, R is

strongly Jn-clean for all n ∈ N. �

3. Examples

Let R be a ring, and let a ∈ R. Let `(a) = {r ∈ R | ra = 0} and
r(a) = {r ∈ R | ar = 0}. We begin this section with considering the
strong Jn-cleanness in corner rings.

Lemma 3.1. Let R be a ring, and let a = e+ w be a strongly Jn-clean
decomposition of a in R. Then `(a) ⊆ `(e) and r(a) ⊆ r(e).
Proof. Let r ∈ `(a). Then ra = 0. Write a = e + w, e = e2, w ∈
U(R), ew = we and ewn ∈ J(R). Hence, ew2n+1 ∈ J(R). We observe
that 1 + ew ∈ U(R). Thus, re = −rw, and so re = −rwe = −rew.
It follows that re(1 + ew) = 0, and then re = 0. That is, r ∈ `(e).
Therefore, `(a) ⊆ `(e). A similar argument shows that r(a) ⊆ r(e). �

Theorem 3.2. Let R be a ring, let n be a fixed natural number, and let
f ∈ R be an idempotent. Then a ∈ fRf is strongly Jn-clean in R if and
only if a is strongly Jn-clean in fRf .

Proof. Suppose a = e − w, e = e2 ∈ fRf,w ∈ U(fRf), ew = we and
ean ∈ J(fRf). Hence, a = (e+1−f)−(1−f+w) ∈ fRf is strongly clean
in R. In addition, (e+ 1− f)an = ean ∈ J(R). Clearly, (e+ 1− f)a =
ea = ae = a(e+ 1− f), and thus, a ∈ fRf is strongly Jn-clean in R.

Conversely, suppose that a = e + w, e = e2 ∈ R,w ∈ U(R), ew = we
and ewn ∈ J(R). As a ∈ fRf , it follows from Lemma 3.1 that

1−f ∈ `(a)
⋂
r(a) ⊆ `(e)

⋂
r(e) = R(1−e)

⋂
(1−e)R = (1−e)R(1−e).

Hence, ef = e = fe. We observe that a = fef + fwf , (fef)2 =
fef , fwf = a − fef = a − e = w ∈ U(fRf). Furthermore, fef ·



Some classes of strongly clean rings 1105

fwf = fewf = fwef = fwf · fef . In addition, fef(fwf)n = fewnf ∈
fJ(R)f ⊆ J(fRf), as required. �

As a consequence, every corner of a strongly Jn-clean ring is strongly
Jn-clean.

Example 3.3. Let D be a division ring, and let R =
∞⊕
i=1

Mi(D). Then

R is strongly π-rad clean, while R is not strongly Jn-clean for all n ∈ N.

Proof. Let x ∈ R. Write x = (x1, x2, · · · , xm, 0, 0, · · · ) ∈ R. In view
of Corollary 2.2, all xi ∈ Mi(D)(i = 1, · · · ,m) are strongly Jm-clean.
Therefore we conclude that x ∈ R is strongly Jm-clean; hence, it is
strongly π-rad clean. If R is strongly Jn-clean, then so is Mn+1(D) by
Theorem 3.2. This contradicts the result of Corollary 2.2, and we are
done. �

For a commutative ring R, R is strongly Jn-clean if and only if R is
strongly π-rad clean. But such rings are very different in the nonocom-
mutative case. From Example 3.3, we see that

{strongly rad clean } = { strongly J1 -clean rings }
$ { strongly J2 -clean rings } $ { strongly J3 -clean rings }
$ · · · $ { strongly π -rad clean rings }.

We say that B is a subring of a ring A provided that B is a non-empty
subset of A such that for any x, y ∈ B, x− y, xy ∈ B and that 1A ∈ B.
Let B be a subring of A. Set R[A,B] = {(a1, a2, · · · , an, b, b, · · · ) | ai ∈
A, b ∈ B,n ≥ 1}. Then R[A,B] is a ring under the general addition and
multiplication.

Theorem 3.4. Let B be a subring of a ring A, and let n be a fixed
natural number. Then R[A,B] is strongly Jn-clean if and only if

(1) A is strongly Jn-clean.
(2) For any x ∈ B, there exists an idempotent e ∈ B such that

x− e ∈ U(B), ex = xe and (ex)n ∈ J(A)
⋂
J(B).

Proof. SupposeR[A,B] is strongly Jn-clean. ThenA is strongly Jn-clean
by Theorem 3.2. For any x ∈ B, we see that (0, x, x, · · · ) ∈ R[A,B]. By
hypothesis, there exist an idempotent (f1, · · · , fs, f, f, · · · ) ∈ R[A,B]
and a unit (v1, · · · , vt, v, v, · · · ) ∈ R[A,B] such that

(0, x, x, · · · ) = (f1, · · · , fs, f, f, · · · ) + (v1, · · · , vt, v, v, · · · )
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is a strongly clean expression and (f1, · · · , fs, f, f, · · · )(0, x, x, · · · )n ∈
J
(
R[A,B]

)
. This implies that x = f + v is a strongly clean expression

in B. One easily checks that J
(
R[A,B]

)
=
[
J(A), J(A)

⋂
J(B)

]
. As a

result, we see that fxn ∈ J(A)
⋂
J(B), as required.

Conversely, assume that (1) and (2) hold. Let (a1, · · · , am, a, a, · · · ) ∈
R[A,B]. Then we have strongly clean expressions a1 = e1+u1, · · · , am =
em+um, a = e+u, and that e1a

n
1 , · · · , emanm ∈ J(A), ean ∈ J(A)

⋂
J(B).

Thus, we have a strongly clean decomposition (a1, · · · , am, a, a, · · · ) =
(e1, · · · , em, e, e, · · · ) + (u1, · · · , um, u, u, · · · ). In addition,
(e1, · · · , em, e, e, · · · )(a1, · · · , am, a, a, · · · )n ∈ R

[
J(A), J(A)

⋂
J(B)

]
.

Therefore R[A,B] is strongly Jn-clean. �

Example 3.5. Let D be a division ring, and let A = M2(D), B =

{
(
a b
0 a

)
| a, b ∈ D}. Then R[A,B] is strongly J2-clean.

Proof. In view of Example 2.5, A is strongly J2-clean. Let

(
a b
0 a

)
∈

B. If a 6= 0, then

(
a b
0 a

)
=

(
0 0
0 0

)
+

(
a b
0 a

)
is a strongly clean

expression. Obviously,

(
0 0
0 0

)(
a b
0 a

)
∈ J(A)

⋂
J(B). If a = 0,

then

(
0 b
0 0

)
=

(
1 0
0 1

)
+

(
−1 b
0 −1

)
is a strongly clean expres-

sion. In addition,

(
1 0
0 1

)(
0 b
0 0

)2

∈ J(A)
⋂
J(B). According to

Theorem 3.4, R[A,B] is strongly J2-clean. In this case, R[A,B] is not
strongly J1-clean. �

Example 3.6. Let D be a division ring, and let A = M3(D), B =

{

 a b c
0 a 0
0 0 a

 | a, b, c ∈ D}. Then R[A,B] is strongly J3-clean.

Proof. In view of Example 2.5, A is strongly J3-clean. Let

 a b c
0 a 0
0 0 a

∈
B. If a 6= 0, then

 a b c
0 a 0
0 0 a

 =

 0 0 0
0 0 0
0 0 0

 +

 a b c
0 a 0
0 0 a

 is
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a strongly clean expression. Obviously,

 0 0 0
0 0 0
0 0 0

 a b c
0 a 0
0 0 a

 ∈
J(A)

⋂
J(B). If a = 0,

then

 0 0 0
0 b c
0 0 0

 =

 1 0 0
0 1 0
0 0 1

 +

 −1 b c
0 −1 0
0 0 −1

 is a strongly

clean expression. In addition,

 1 0 0
0 1 0
0 0 1

 0 b c
0 0 0
0 0 0

3

∈ J(A)
⋂
J(B).

By virtue of Theorem 3.4, R[A,B] is strongly J3-clean. In this case,
R[A,B] is not strongly J2-clean. �

4. Matrices over local rings

Let a ∈ R. Let la : R → R and ra : R → R denote, respectively, the
abelian group endomorphisms given by la(r) = ar and ra(r) = ra for
all r ∈ R. Thus, la − rb is an abelian group endomorphism such that
(la − rb)(r) = ar − rb for any r ∈ R. Following Diesl, a local ring R is
bleached provided that for any a ∈ U(R), b ∈ J(R), la − rb, lb − ra are
both surjective. Let T2(R) denote the ring of all upper triangular 2× 2
matrices over R. For Jn-cleanness of T2(R), we can derive the following.

Proposition 4.1. Let R be a local ring, and let n be a fixed natural
number. Then the following are equivalent:

(1) T2(R) is strongly Jn-clean.
(2) T2(R) is strongly J1-clean.
(3) T2(R) is strongly π-rad clean.
(4) R is bleached.

Proof. (1)⇒ (3) is trivial.
(3) ⇒ (4) Since T2(R) is strongly π-rad clean, it follows from [6,

Theorem 4.2.4] that R is bleached, as desired.
(4) ⇒ (2) As R is bleached, it follows from [6, Theorem 4.2.4] that

T2(R) is strongly rad clean, and so R is strongly J1-clean.
(2)⇒ (1) is trivial. �

Let R be a commutative local ring. Then T2(R) is strongly Jn-clean
for all n ∈ N. But it is hard to determine the strongly Jn-cleanness for
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general case. In the next, we discuss the strongly Jn-cleanness for full
matrices.

Lemma 4.2. Let R be a local ring, and let E ∈ M2(R) be idempotent.
Then E ∈M2(R) is similar to an idempotent matrix.

Proof. In view of [4, Lemma 16.4.11], E ∈ GL2(R) or I2 −E ∈ GL2(R)

or there exists some P ∈ GL2(R) such that P−1EP =

(
0 λ
1 µ

)
. If

E ∈ GL2(R), then E = I2. If I2 − E ∈ GL2(R), then E = 0. If

there exists some P ∈ GL2(R) such that P−1EP =

(
0 λ
1 µ

)
, then(

0 λ
1 µ

)
∈ M2(R) is idempotent; hence, λ = 0 and µ = 1. One easily

checks that(
1 1
−1 0

)(
0 0
1 1

)(
1 1
−1 0

)−1
=

(
1 1
−1 0

)(
0 0
1 1

)(
0 −1
1 1

)
=

(
1 0
0 0

)
.

Therefore, E is similar to an idempotent matrix. �

Lemma 4.3. Let a ∈ R, u ∈ U(R), and let n be a fixed natural number.
Then the following are equivalent:

(1) a ∈ R is strongly Jn-clean.
(2) uau−1 ∈ R is strongly Jn-clean.

Proof. (1) ⇒ (2) Write a = e + w, e = e2, w ∈ U(R), ew = we and
ean ∈ J(R). Then uau−1 = ueu−1 + uwu−1. Clearly, ueu−1 ∈ R
is an idempotent and uwu−1 ∈ U(R). In addition,

(
ueu−1

)(
uwu−1

)
=(

uwu−1
)(
ueu−1

)
. Further, (ueu−1)(uau−1)n = ueanu−1 ∈ J(R). There-

fore, uau−1 ∈ R is strongly Jn-clean.
(2)⇒ (1) is proved in the same manner. �

Theorem 4.4. Let R be a local ring, and let n be a fixed natural number.
Then A ∈ M2(R) is strongly Jn-clean if and only if A ∈ GL2(R) or
An ∈ J

(
M2(R)

)
or A admits a diagonal reduction.

Proof. If A ∈ GL2(R), then A = 0 + A is a strongly Jn-clean decom-
position. If An ∈ J

(
M2(R)

)
, then A = I2 + (A − I2) is a strongly

Jn-clean decomposition. Suppose A is similar to a matrix

(
α 0
0 β

)
. If
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α ∈ J(R), β ∈ U(R), then(
α 0
0 β

)
=

(
1 0
0 0

)
+

(
α− 1 0

0 β

)
is a strongly J1-clean decomposition. In view of Lemma 4.3, A is strongly
J1-clean. If α ∈ U(R), β ∈ J(R), similarly, A is strongly J1-clean. If
α, β ∈ U(R), then A ∈ GL2(R). If α, β ∈ J(R), then A ∈ J

(
M2(R)

)
,

and so A is strongly J1-clean. Thus one direction is proved.
Conversely, assume that A ∈M2(R) is strongly Jn-clean. Then there

exists an idempotent E ∈M2(R) and a W ∈ GL2(R) such that A = E+
W,EW = WE and EAn ∈ J

(
M2(R)

)
. According to Lemma 4.2, there

exists K ∈ GL2(R) such that KEK−1 = diag(f1, f2), where f1, f2 ∈ R
are idempotents. As R is local, every idempotent in R is 0 or 1. If
f1 = f2 = 0, then A ∈ GL2(R). If f1 = f2 = 1, then E = I2; hence,
An ∈ J

(
M2(R)

)
. So we may assume that f1 = 1, f2 = 0 or f1 = 0, f2 =

1. Thus, there exists some H ∈ GL2(R) such that HEH−1 =

(
1 0
0 0

)
.

Hence

HAH−1 =

(
1 0
0 0

)
+HWH−1.

Set V = (vij) := HWH−1. It follows from EW = WE that

(
1 0
0 0

)
V =

V

(
1 0
0 0

)
, and so v12 = v21 = 0 and v11, v22 ∈ U(R). We conclude

that HAH−1 =

(
1 + v11 0

0 v22

)
, and therefore A admits a diagonal

reduction. �

Corollary 4.5. Let R be a local ring, and let n ≥ 2 be a fixed natural
number. Then the following are equivalent:

(1) A ∈M2(R) is strongly Jn-clean.
(2) A ∈M2(R) is strongly J2-clean.
(3) A ∈M2(R) is strongly π-rad clean.

Proof. (1)⇒ (3) is trivial.
(3) ⇒ (2) Suppose A ∈ M2(R) is strongly π-rad clean. Then there

exists some m ∈ N such that A ∈M2(R) is strongly Jm-clean. By virtue
of Theorem 4.4, A ∈ GL2(R) or An ∈ J

(
M2(R)

)
or A admits a diagonal

reduction. If An ∈ J
(
M2(R)

)
, then A

n
= 0 in M2

(
R/J(R)

)
. As R/J(R)

is a division ring, it follows by [8, Theorem 7.2] that M2

(
R/J(R)

)
is a
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regular ring of bounded index 2. Hence, A
2

= 0, and so A2 ∈ J
(
M2(R)

)
.

By using Theorem 4.4 again, A ∈M2(R) is strongly J2-clean.
(2)⇒ (1) is obvious. �

Corollary 4.6. Let R be a commutative local ring. Then the following
are equivalent:

(1) M2(R) is strongly clean.
(2) M2(R) is strongly J2-clean.
(3) M2(R) is strongly π-rad clean.

Proof. (1)⇒ (3) is clear by [6, Corollary 4.3.7].
(3)⇒ (2) is obvious from Corollary 4.5.
(2)⇒ (1) is trivial. �

We naturally ask whether M2(R) is strongly clean if and only if M2(R)
is strongly J1-clean? The answer is negative. For instance, letting A =(

0 1
0 0

)
∈ M2

(
Z2

)
, one easily checks that A is not strongly J1-clean,

and so M2

(
Z2

)
is not strongly J1-clean, but M2

(
Z2

)
is strongly clean.

Corollary 4.7. Let R be a commutative local ring. Then A ∈ M2(R)
is strongly clean if and only if A ∈ GL2(R) or I2 − A ∈ GL2(R) or
A ∈M2(R) is strongly J1-clean.

Proof. One direction is obvious. Conversely, assume that A ∈ M2(R)
is strongly clean. If A 6∈ GL2(R) or I2 − A 6∈ GL2(R), it follows
by [4, Corollary 16.4.7] that there exists some U ∈ GL2(R) such that
UAU−1 = diag(1 + α, β), where α, β ∈ U(R). Thus, A ∈ M2(R) is
strongly J1-clean by Theorem 4.4. �

Recall that A ∈ M2(R) is purely singular provided that A, I2 − A 6∈
GL2(R).

Corollary 4.8. Let R be a commutative local ring, and let A ∈M2(R)
be purely singular. Then the following are equivalent:

(1) A ∈M2(R) is strongly J1-clean.
(2) A ∈M2(R) is strongly J2-clean.
(3) A ∈M2(R) is strongly clean.

Proof. (1)⇒ (2)⇒ (3) are trivial.
(3)⇒ (2) Since A ∈M2(R) is purely singular, we complete the proof

by Corollary 4.7. �
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Let Z(2) = {mn | m,n ∈ N, 2 - n}. Then

(
1 1
−2

9 0

)
∈ M2

(
Z(2)

)
is

strongly J1-clean for all n ∈ N, by Corollary 4.8.

Let χ(A) denote the characteristic polynomial of a matrix A ∈M2(R),
i.e., χ(A) = x2 − tr(A)x + det(A). Furthermore, we can derive the
following.

Corollary 4.9. Let R be a commutative local ring. Then A ∈M2(R) is
strongly J2-clean if and only if det(A) ∈ U(R), or χ(A) ≡ t2

(
mod J(R)

)
,

or A admits a diagonal reduction.

Proof. Suppose A ∈M2(R) is strongly J2-clean. In light of Theorem 4.4,
A ∈ GL2(R) or A2 ∈ J

(
M2(R)

)
or A admits a diagonal reduction.

If A2 ∈ J
(
M2(R)

)
, then A ∈ M2

(
R/J(R)

)
is nilpotent. Therefore,

χ(A) ≡ t2
(
mod N(R/J(R))

)
. Write χ(A) = t2 + at + b. Then there

exists some m ∈ N such that am ∈ J(R). As J(R) is maximal, it
is prime. Hence, a ∈ J(R). Likewise, b ∈ J(R). This shows that
χ(A) ≡ t2

(
mod J(R)

)
, as required.

Conversely, assume that det(A) ∈ U(R), or χ(A) ≡ t2
(
mod J(R)

)
, or

A admits a diagonal reduction. If χ(A) ≡ t2
(
mod J(R)

)
, then χ(A) ≡

t2
(
mod R/J(R)

)
. This implies that A is nilpotent in M2

(
mod R/J(R)

)
.

Therefore, Am ∈ J
(
M2(R)

)
. In light of Theorem 4.4, A ∈ M2(R)

is strongly Jm-clean, and so it is strongly π-rad clean. Accordingly,
A ∈M2(R) is strongly J2-clean, by Corollary 4.6. �

5. Criteria via quadratic equations

Many authors characterized strong cleanness by means of quadratic
equations. The purpose of this section is to study the strongly Jn-
cleanness of a single 2 × 2 matrix over commutative local rings. It is
shown that such property can be characterized by a kind of quadratic
equations. We begin this section with two elementary lemmas.

Lemma 5.1. Let R be a commutative local ring. Then A ∈ M2(R) is

an idempotent if and only if A = 0 or A = I2 or A =

(
a b
c 1− a

)
where bc = a− a2 in R.

Proof. See [4, Lemma 16.4.10]. �
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Lemma 5.2. Let R be a commutative ring, and let A = (aij) ∈M2(R).
If a21 ∈ U(R) and χ(A) has two roots x1, x2 ∈ R such that x1 − x2 ∈
U(R), then A is similar to diag(x1, x2).

Proof. See [4, Lemma 16.4.30]. �

Lemma 5.3. Let R be a commutative local ring, let n be a fixed natural
number, and let A = (aij) ∈ M2(R) be strongly Jn-clean. Then A ∈

GL2(R) or An ∈ J
(
M2(R)

)
, or A is similar to a matrix

(
0 λ
1 µ

)
,

where λ ∈ J(R), µ ∈ U(R).

Proof. If A 6∈ GL2(R) and An 6∈ J
(
M2(R)

)
. It follows from Theorem 4.4

that there exists a P ∈ GL2(R) such that P−1AP =

(
α 0
0 β

)
, where

α ∈ J(R), β ∈ U(R). Thus, B21(1)P−1APB21(−1) =

(
α 0

α− β β

)
.

As α− β ∈ U(R), it is easy to check that

B12

(
− α(α− β)−1

)
B21(1)P−1APB21(−1)B12

(
α(α− β)−1

)
=

(
0 −α(α− β)−1β

α− β (α− β)α(α− β)−1 + β

)
.

This implies that

[α− β, 1]B12

(
− α(α− β)−1

)
B21(1)P−1APB21(−1)

B12

(
α(α− β)−1

)
[(α− β)−1, 1]

=

(
0 −(α− β)α(α− β)−1β
1 (α− β)α(α− β)−1 + β

)
.

Let λ = −(α− β)α(α− β)−1β and µ = (α− β)α(α− β)−1 + β.
As α ∈ J(R), we see that β−(β−α)α(α−β)−1 ∈ U(R), i.e., µ ∈ U(R).

Therefore A is similar to

(
0 λ
1 µ

)
, where λ ∈ J(R), µ ∈ U(R). �

Theorem 5.4. Let R be a commutative local ring, and let n ∈ N be a
fixed natural number. Then the following are equivalent:

(1) A ∈M2(R) is strongly Jn-clean.
(2) A ∈ GL2(R) or An ∈ J

(
M2(R)

)
, or χ(A) has a root in J(R)

and a root in U(R).

Proof. (1) ⇒ (2) Let A ∈ M2(R) be strongly Jn-clean. Assume that
A 6∈ GL2(R) and An 6∈ J

(
M2(R)

)
. In view of Theorem 4.4, A is similar
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to the matrix B =

(
α 0
0 β

)
∈ M2(R), where λn ∈ J(R), µ ∈ U(R).

Thus,

χ(A) = det(xI2 −A) = det(xI2 −B) = (x− α)(x− β),

and so χ(A) = 0 has a root α and a root β. As J(R) is maximal, it is
prime. Hence, α ∈ J(R), as required.

(2) ⇒ (1) Let A ∈ M2(R). If A ∈ GL2(R) or An ∈ J
(
M2(R)

)
, then

A ∈M2(R) is strongly Jn-clean. Otherwise, it follows by the hypothesis
that the equation χ(A) = 0 has a root x1 ∈ J(R) and a root x2 ∈ U(R).
Clearly, x1 − x2 ∈ U(R).

Case I. a21 ∈ U(R). It follows from Lemma 5.2 that there exists a

P ∈ GL2(R) such that P−1AP =

(
α1 0
0 α2

)
for some α1 ∈ J(R), α2 ∈

U(R). Thus,

P−1AP =

(
1 0
0 0

)
+

(
α1 − 1 0

0 α2

)
is a strongly Jn-clean expression. Therefore, A ∈ M2(R) is strongly
Jn-clean by Lemma 4.3.

Case II. a12 ∈ U(R). Then(
0 1
1 0

)−1
A

(
0 1
1 0

)
=

(
a22 a21
a12 a11

)
∈M2(R).

Applying Case I and Lemma 4.3, we see that A ∈ M2(R) is strongly
J1-clean.

Case III. a12, a21, a11 ∈ J(R). Clearly, tr(A) = x1 + x2 and det(A) =
x1x2. As tr(A) ∈ U(R), a22 ∈ U(R). Obviously,(

1 0
1 1

)−1
A

(
1 0
1 1

)
=

(
a11 + a12 a12

a21 + a22 − a11 − a12 a22 − a12

)
∈M2(R),

where a21 + a22 − a11 − a12 ∈ U(R). Applying Case I and Lemma 4.3,
A ∈M2(R) is strongly J1-clean.

Case IV. a12, a21 ∈ J(R), a11 ∈ U(R). Clearly, det(A) = x1x2 ∈ J(R).
This implies that a22 6∈ U(R), and so a22 ∈ J(R). Obviously,(

1 0
1 1

)−1
A

(
1 0
1 1

)
=

(
a11 + a12 a12

a21 + a22 − a11 − a12 a22 − a12

)
∈M2(R),

where a21 + a22 − a11 − a12 ∈ U(R). Applying Case I and Lemma 4.3,
A ∈M2(R) is strongly J1-clean.
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In any case, A ∈M2(R) is strongly Jn-clean, as asserted. �

Let A =

(
1 3
3 1

)
∈ M2

(
Z(2)

)
. In light of Theorem 5.4, we claim

that A ∈ M2

(
Z(2)

)
is strongly J2-clean, but it is not strongly J1-clean.

Clearly, A2 ∈ J
(
M2(Z(2))

)
, and so A ∈ M2

(
Z(2)

)
is strongly J2-clean.

But A 6∈ GL2

(
Z(2)

)
and A 6∈ J

(
M2(Z(2))

)
. On the other hand, χA has

no root in J
(
Z(2)

)
. Accordingly, A ∈M2

(
Z(2)

)
is not strongly J1-clean,

by Theorem 5.4. Furthermore, we can derive the following.

Corollary 5.5. Let R be a commutative local ring, let n ∈ N be a fixed
natural number, and let A ∈M2(R). Then the following are equivalent:

(1) A ∈M2(R) is strongly Jn-clean.
(2) A ∈ GL2(R) or An ∈ J

(
M2(R)

)
, or the equation x2 − x =

t−1A det(A) is a root in J(R).

Corollary 5.6. Let R be a commutative local ring, let n ∈ N be a fixed
natural number, and let A ∈ M2(R). If 1

2 ∈ R, then the following are
equivalent:

(1) A ∈M2(R) is strongly Jn-clean.
(2) A ∈ GL2(R) or An ∈ J

(
M2(R)

)
, or tr2(A) − 4det(A) = u2 for

some u ∈ U(R).
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