# CHARACTERISTIC FUNCTION OF A MEROMORPHIC FUNCTION AND ITS DERIVATIVES 

J. WU AND Z. WU *

## Communicated by Javad Mashreghi


#### Abstract

In this paper, some results of Singh, Gopalakrishna and Kulkarni (1970s) have been extended to higher order derivatives. It has been shown that, if $\sum_{a} \Theta(a, f)=2$ holds for a meromorphic function $f(z)$ of finite order, then for any positive integer $k, T(r, f) \sim T\left(r, f^{(k)}\right), r \rightarrow \infty$ if $\Theta(\infty, f)=1$ and $T\left(r, f^{(k)}\right) \sim$ $(k+1) T(r, f), r \rightarrow \infty$ if $\Theta(\infty, f)=0$.


## 1. Introduction

Let $f(z)$ be a meromorphic function in the complex plane $\mathbb{C}$. Assume that basic definitions, theorems and standard notations of the Nevanlinna theory for meromorphic function (see [3], [10] or [12]) are known. We use the following notations of frequent use of value distribution (see [3]) with their usual meaning:

$$
m(r, f), N(r, a), \bar{N}(r, a), \delta(a, f), \Theta(a, f), \cdots
$$

As usual, if $a=\infty$, we write $N(r, \infty)=N(r, f), \bar{N}(r, \infty)=\bar{N}(r, f)$. We denote by $S(r, f)$ any quantity such that

$$
S(r, f)=o(T(r, f)), \quad r \rightarrow+\infty
$$

[^0]without restriction if $f(z)$ is of finite order and otherwise except possibly for a set of values of $r$ of finite linear measure. The well known Nevanlinna's deficiency relation states that
$$
\sum_{a} \delta(a, f) \leq \sum_{a} \Theta(a, f) \leq 2
$$

If $\sum_{a} \delta(a, f)=2$, then we say that $f(z)$ has maximum deficiency sum (see [2]).

Let $f(z)$ be a meromorphic scalar valued function in $\mathbb{C}$. On the characteristic function of derivative of $f(z)$ with maximum deficiency sum has been studied by Shan, Singh, Gopalakrishna, Edrei and Weitsman [1], [4]-[8]. For example, Edrei [1] and Weitsman [8] have proved

Theorem A Let $f(z)$ be a transcendental meromorphic function of finite order and assume $\sum_{a \in \mathbb{C}} \delta(a, f)=\eta \geq 1$ and $\delta(\infty)=2-\eta$. Then

$$
T\left(r, f^{\prime}\right) \sim \eta T(r, f), r \rightarrow+\infty
$$

If $\sum_{a} \delta(a, f)=2$ is replaced by $\sum_{a} \Theta(a, f)=2$, Singh, Gopalakrishna [6] and Singh, Kulkarni [7] have proved

Theorem B Let $f(z)$ be a transcendental meromorphic scalar valued function of finite order and assume $\sum_{a} \Theta(a, f)=2$. Then

$$
\lim _{r \rightarrow+\infty} \frac{T\left(r, f^{\prime}\right)}{T(r, f)}=2-\Theta(\infty)
$$

Hence
(1) if $\Theta(\infty, f)=1, T(r, f) \sim T\left(r, f^{\prime}\right)$ as $r \rightarrow \infty$;
(2) if $\Theta(\infty, f)=0, T\left(r, f^{\prime}\right) \sim 2 T(r, f)$ as $r \rightarrow \infty$.

We extend the above result to higher order derivatives as follows:
Theorem 1.1. Suppose that $f$ is a transcendental meromorphic function of finite order and $\sum_{a} \Theta(a, f)=2$. Then for any positive integer $k$, we have
(1) if $\Theta(\infty, f)=1, T(r, f) \sim T\left(r, f^{(k)}\right)$ as $r \rightarrow \infty$;
(2) if $\Theta(\infty, f)=0, T\left(r, f^{(k)}\right) \sim(k+1) T(r, f)$ as $r \rightarrow \infty$.

From Theorem 1.1, we can get
Corollary 1.2. [11] Suppose that $f$ is a transcendental meromorphic function of finite order and $\sum_{a} \delta(a, f)=2$. Then for any positive integer $k$, we have
(1) if $\delta(\infty, f)=1, T(r, f) \sim T\left(r, f^{(k)}\right)$ as $r \rightarrow \infty$;
(2) if $\delta(\infty, f)=0, T\left(r, f^{(k)}\right) \sim(k+1) T(r, f)$ as $r \rightarrow \infty$.

## 2. Proof of Theorem 1.1

Proof. (1) We prove Theorem 1.1 (1) by induction. Since $\Theta(\infty, f)=1$, by Theorem B, we have $T(r, f) \sim T\left(r, f^{\prime}\right)$ as $r \rightarrow \infty$. Assume that

$$
\begin{equation*}
T(r, f) \sim T\left(r, f^{(k)}\right), r \rightarrow \infty \tag{2.1}
\end{equation*}
$$

Now we prove $T(r, f) \sim T\left(r, f^{(k+1)}\right)$ as $r \rightarrow \infty$.
Without loss of generality we can assume that $q \geq 2$. Put

$$
F(z)=\sum_{i=1}^{q} \frac{1}{f(z)-a_{i}}, \quad a_{i} \in \mathbb{C} .
$$

Then (See [6])

$$
\sum_{i=1}^{q} m\left(r, a_{i}\right) \leq m(r, F)+O(1) .
$$

So

$$
\begin{aligned}
\sum_{i=1}^{q} m\left(r, a_{i}\right) & \leq m(r, F)+O(1) \\
& =m\left(r, \frac{1}{f^{(k+1)}} F f^{(k+1)}\right)+O(1) \\
& \leq m\left(r, \frac{1}{f^{(k+1)}}\right)+m\left(r, \sum_{i=1}^{q} \frac{f^{(k+1)}}{f(z)-a_{i}}\right)+O(1) \\
& =m\left(r, \frac{1}{f^{(k+1)}}\right)+S(r, f) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
q T(r, f) & \leq \sum_{i=1}^{q} N\left(r, a_{i}\right)+m\left(r, \frac{1}{f^{(k+1)}}\right)+S(r, f) \\
& =\sum_{i=1}^{q} N\left(r, a_{i}\right)+T\left(r, f^{(k+1)}\right)-N\left(r, \frac{1}{f^{(k+1)}}\right)+S(r, f) \\
& \leq \sum_{i=1}^{q} N\left(r, a_{i}\right)+T\left(r, f^{(k+1)}\right)-N\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) \\
& =T\left(r, f^{(k+1)}\right)+\sum_{i=1}^{q} \bar{N}\left(r, a_{i}\right)-N_{0}\left(r, \frac{1}{f^{\prime}}\right)+S(r, f)
\end{aligned}
$$

where $N_{0}\left(r, \frac{1}{f^{\prime}}\right)$ is formed with the zeros of $f^{\prime}$ which are not zeros of any of the $f-a_{i}, i=1,2, \cdots, q$. Since $N_{0}\left(r, \frac{1}{f^{\prime}}\right) \geq 0$, we have

$$
q T(r, f) \leq T\left(r, f^{(k+1)}\right)+\sum_{i=1}^{q} \bar{N}\left(r, a_{i}\right)+S(r, f)
$$

Thus

$$
\sum_{i=1}^{q}\left(1-\frac{\bar{N}\left(r, a_{i}\right)}{T(r, f)}\right) \leq \frac{T\left(r, f^{(k+1)}\right)}{T(r, f)}+\frac{S(r, f)}{T(r, f)}
$$

So

$$
\sum_{i=1}^{q} \Theta\left(a_{i}, f\right) \leq \liminf _{r \rightarrow \infty} \frac{T\left(r, f^{(k+1)}\right)}{T(r, f)}
$$

holds for any $q \geq 2$. Letting $q \rightarrow \infty$, we obtain

$$
\begin{equation*}
1=\sum_{a \neq \infty} \Theta(a, f) \leq \liminf _{r \rightarrow \infty} \frac{T\left(r, f^{(k+1)}\right)}{T(r, f)} \tag{2.2}
\end{equation*}
$$

Combining (2.1) and (2.2) we have

$$
\begin{equation*}
1 \leq \liminf _{r \rightarrow \infty} \frac{T\left(r, f^{(k+1)}\right)}{T\left(r, f^{(k)}\right)} \leq \limsup _{r \rightarrow \infty} \frac{T\left(r, f^{(k+1)}\right)}{T\left(r, f^{(k)}\right)} \tag{2.3}
\end{equation*}
$$

On the other hand, since $\bar{N}\left(r, f^{(k)}\right)=\bar{N}(r, f), \Theta(\infty, f)=1$ and (2.1), we have

$$
\limsup _{r \rightarrow \infty} \frac{\bar{N}\left(r, f^{(k)}\right)}{T\left(r, f^{(k)}\right)} \leq \limsup _{r \rightarrow \infty} \frac{\bar{N}(r, f)}{T(r, f)}=0 .
$$

So

$$
\Theta\left(\infty, f^{(k)}\right)=1
$$

Thus

$$
\begin{aligned}
T\left(r, f^{(k+1)}\right) & =m\left(r, f^{(k+1)}\right)+N\left(r, f^{(k+1)}\right) \\
& \leq m\left(r, f^{(k)}\right)+m\left(r, \frac{f^{(k+1)}}{f^{(k)}}\right)+N\left(r, f^{(k)}\right)+\bar{N}\left(r, f^{(k)}\right) \\
& =T\left(r, f^{(k)}\right)+\bar{N}\left(r, f^{(k)}\right)+S(r, f) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{T\left(r, f^{(k+1)}\right)}{T\left(r, f^{(k)}\right)} \leq 2-\Theta\left(\infty, f^{(k)}\right)=1 \tag{2.4}
\end{equation*}
$$

(2.1) and (2.3)-(2.4) together imply $T(r, f) \sim T\left(r, f^{(k+1)}\right)$ as $r \rightarrow \infty$.

We can prove (2) of Theorem 1.1 by using the same method as that in [11]. As [11] may not be abundantly available, we give the following proof. From Nevanlinna's second fundamental theorem, we have

$$
(q-1) T(r, f) \leq T(r, f)+\sum_{i=1}^{q} \bar{N}\left(r, a_{i}\right)+\bar{N}(r, f)+S(r, f)
$$

Thus

$$
\sum_{i=1}^{q} \Theta\left(a_{i}, f\right) \leq 1+\liminf _{r \rightarrow \infty} \frac{\bar{N}(r, f)}{T(r, f)} \leq 1+\limsup _{r \rightarrow \infty} \frac{\bar{N}(r, f)}{T(r, f)} \leq 2
$$

Letting $q \rightarrow \infty$, we obtain

$$
2=\sum_{a \neq \infty} \Theta(a, f) \leq 1+\liminf _{r \rightarrow \infty} \frac{\bar{N}(r, f)}{T(r, f)} \leq 1+\limsup _{r \rightarrow \infty} \frac{\bar{N}(r, f)}{T(r, f)} \leq 2
$$

So

$$
\begin{equation*}
T(r, f) \sim N(r, f) \sim \bar{N}(r, f), r \rightarrow \infty \tag{2.5}
\end{equation*}
$$

Since

$$
\begin{aligned}
(k+1) \bar{N}(r, f) & \leq N(r, f)+k \bar{N}(r, f)=N\left(r, f^{(k)}\right) \\
& \leq T\left(r, f^{(k)}\right) \\
& \leq m(r, f)+m\left(r, \frac{f^{(k)}}{f}\right)+N\left(r, f^{(k)}\right) \\
& =T(r, f)+k \bar{N}(r, f)+S(r, f) .
\end{aligned}
$$

From this and (2.5), we get $T\left(r, f^{(k)}\right) \sim(k+1) T(r, f)$ as $r \rightarrow \infty$.

## 3. Proof of Corollary 1.2

Proof. Since $\delta(a, f) \leq \Theta(a, f)$ for every $a \in \mathbb{C} \cup\{\infty\}$, if $\sum_{a} \delta(a, f)=2$, then $\sum_{a} \Theta(a, f)=2$ and $\delta(a, f)=\Theta(a, f)$ for every $a \in \mathbb{C} \cup\{\infty\}$. Hence Corollary 1.2 follows by Theorem 1.1.

## Acknowledgments

This research was partially supported by the NNSF of China (Grant No. 11201395) and by NSF of Educational Department of the Hubei Province (Grant No. Q20132801, D20132804).

## References

[1] A. Edrei, Sums of deficiencies of meromorphic functions II, J. Analyse Math. 19 (1967) 53-74.
[2] M. L. Fang, A note on a result of Singh and Kulkarni, Int. J. Math. Math. Sci. 23 (2000) 285-288.
[3] W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
[4] S. M. Shah and S. K. Singh, Borel's theorem on $a$-points and exceptional values of entire and meromorphic functions, Math. Z. 59 (1953) 88-93.
[5] S. M. Shah and S. K. Singh, On the derivative of a meromorphic function with maximum defect, Math. Z. 65 (1956) 171-174.
[6] S. K. Singh and H. S. Gopalakrishna, Exceptional values of entire and meromorphic functions, Math. Ann. 191 (1971) 121-142.
[7] S. K. Singh and V. N. Kulkarni, Characteristic function of a meromorphic function and its derivative, Ann. Polon. Math. 28 (1973) 123-133.
[8] A. Weitsman, Meromorphic functions with maximal deficiency sum and a conjecture of F. Nevanlinna, Acta Math. 123 (1969) 115-139.
[9] H. Wittich, Neuere Untersuchungen Über eindeutige Analytische Funktionen, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1955.
[10] L. Yang, Value Distribution Theory and its New Research, Science Press Beijing, Beijing, 1993.
[11] L. Z. Yang, Sum of deficiencies of meromorphic function and its characteristic function, J. Shandong Univ. Nat. Sci. 24 (1989) 7-11.
[12] J. H. Zheng, Value Distribution of Meromorphic Functions, Tsinghua University Press Beijing, Beijing; Springer, Heidelberg, 2010.

Jia Wu
Xianning Vocational and Technical College, P.O. Box 437100, Xianning, P. R. China Email: 44976882@qq.com

## Zhaojun Wu

School of Mathematics and Statistics, Hubei University of Science and Technology, P.O. Box 437100, Xianning, P. R. China

Email: wuzj52@hotmail.com


[^0]:    MSC(2010): Primary: 30D30; Secondary: 30D35.
    Keywords: Characteristic function, Nevanlinna's deficiency, maximum deficiency sum. Received: 20 July 2011, Accepted: 21 February 2012.
    *Corresponding author
    (c) 2013 Iranian Mathematical Society.

