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THE STREAMLINE DIFFUSION METHOD WITH

IMPLICIT INTEGRATION FOR THE

MULTI-DIMENSIONAL FERMI PENCIL BEAM

EQUATION

E. KAZEMI

Communicated by Mohammad Asadzadeh

Abstract. We derive error estimates in the appropriate norms,
for the streamline diffusion (SD) finite element methods for steady
state, energy dependent, Fermi equation in three space dimensions.
These estimates yield optimal convergence rates due to the maximal
available regularity of the exact solution. High order SD method
together with implicit integration are used. The formulation is
strongly consistent in the sense that the derivative in the pene-
tration is included in the stabilization term. Here our focus is on
theoretical aspects of the h and hp approximations in SD settings.

1. Introduction

In this paper we shall consider a pencil beam of particles normally in-
cident on a slab of finite thickness. The particles enter at a single point,
say at (x, y, z) = (0, 0, 0), in the direction of positive x-axis (µ = 1).
We assume the mean scattering angle is small (µ̄0 ≈ 1) and that large-
scattering is negligible. (This is often valid assumption for charged par-
ticle, such as electrons, protons, or heavy ions.) Thus the beam will
gradually broaden as it advances into slab. The problem of determining
quantitatively how such a beam broadens was first considered in 1940
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by Fermi([15]) who, using physical reasoning, derived a monoenergetic
model equation with a closed form solution. Fermi’s work was motivated
by the study of cosmic rays in the atmosphere. This physical problem
has applications in such diverse fields as astrophysics, material science,
electron microscopy, and radiation therapy. The Fermi equation is ob-
tained either as an asymptotic limit of the Fokker-Planck equation as
the transport cross-section (σtr) gets smaller or as an asymptotic limit of
the transport (linear Boltzmann) equation for vanishing transport cross-
section and high (tends to ∞) total cross-section (σt). It can be shown
that under appropriate conditions, the linear Boltzmann and Fokker-
Planck equations do in fact have the same leading-order approximation
(the Fermi equation) for pencil beam problems. For details in derivation
of Fermi equation we refer to [11]. (The physical quantities σtr and σt
are defined below). The Boltzmann equation for the basic pencil beam
transport problem with no absorption and no energy-dependencies is
given by

µ
∂ψ

∂ψ
+η

∂ψ

∂y
+ ξ

∂ψ

∂z
=

∫
4π
σs(Ω · Ω′)

[
ψ(x,Ω′)− ψ(x,Ω)

]
d2Ω′,

0 < x < 1,

ψ(0, y, z,Ω) = δ(y)δ(y)
δ(1− µ)

2π
, 0 < µ ≤ 1,

ψ(1, y, z,Ω) = 0, −1 ≤ µ < 0.

(1.1)

Here we follow the conventional notations. We use dimensionless spatial
variables, scaled so that the slab width is unity. The slab width in units

of mean free paths is σ−1
t , with σt = 2π

∫ 1
−1 σs(µ0)dµ0. We use the

notation

Ω = (µ, η, ξ), η =
√

1− µ2 cosφ, ξ =
√

1− µ2 sinφ.

The differential scattering cross section, for the case of no absorption,
has the expansion

(1.2) σs(µ0) = σt

∞∑
n=0

2n+ 1

4π
fnPn(µ0), f0 = 1, f1 = µ̄0.
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with Pn being the nth Legendre polynomial. The Fokker-Planck ap-
proximation to this transport equation is given by

µ
∂ψ

∂ψ
+η

∂ψ

∂y
+ ξ

∂ψ

∂z
=
σtr
2

[
∂

∂µ
(1− µ2)

∂

∂µ
+

1

1− µ2

∂2

∂φ2

]
ψ(x,Ω),

0 < x < 1,

ψ(0, y, z,Ω) = δ(y)δ(z)
δ(1− µ)

2π
, 0 < µ ≤ 1,

ψ(1, y, z,Ω) = 0, −1 ≤ µ < 0.

(1.3)

where σtr = σt(1− µ̄0). The Fokker-Planck equation (1.3) is usually de-
rived from transport equation (1.1) by assuming that small-angle scat-
tering dominates large-angle scattering, and by expanding the angular
flux in the integral in equation (1.1) into a Taylor series about Ω′ = Ω,
retaining only the second order terms. Fermi proposed the following
model to approximate pencil beam problems for σtr � 1:

∂ψ

∂x
+η

∂ψ

∂y
+ ξ

∂ψ

∂z
=
σtr
2

(
∂2

∂η2
+

∂2

∂ξ2

)
ψ(x,Ω), 0 < x < 1,

ψ(0, y, z, η, ξ) = δ(y)δ(z)δ(η)δ(ξ).

(1.4)

Fermi obtained this model using physical reasoning, not as an approx-
imation to the transport or Fokker-Planck equations. The main virtue
of the Fermi equation is that by artificially extending the range of η
and ξ to the entire real line and by Fourier transforming with respect
to y, z, η and ξ, one can obtain the exact solution for σtr = σtr(x).
However, it is not generally possible to derive an exact form solution
for σtr = σtr(x, y, z). In this paper we study the approximate solution
for the three-dimensional Fermi pencil beam equation using high order
stabilization methods. We prove stability estimates and derive optimal
convergence rates for the weighted current function, as in the convec-
tion dominated convection diffusion problems. This work extends the
results introduced in [2] to the case of the multidimensional Fermi equa-
tion. The SD-method and DG-method for Fermi equation in two space
dimensions are studied there and error bounds of order O(hk+1/2) are
given for the weighted current function. A posteriori error estimates are
also studied in [3]. We refer to [6] which considers different stabilization
techniques for Vlasov-Poisson-Fokker-Planck System using continuous
and discontinuous space-time elements. The hp-analysis are also inves-
tigated in [8]. Some fullydiscrete schemes with numerical results can
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be found in [7]. There are several points of concern with this type of
problems: The Fermi equation considered in this paper is degenerate in
both convection and diffusion in the sense that drift and diffusion are
taking place in, physically, different domains. Besides the problem is
convection dominated since the diffusion term has a very small coeffi-
cient compared to the coefficient of the convection term. Furthermore,
the problem is associated with a boundary condition in form of product
of certain δ functions, which are not suitable for numerical considera-
tion involving L2 norms. We have therefore considered model problems
with somewhat smoother data approaching Dirac δ function. Finally, in
spite of the assumption of no back-scattering, i.e., the scattering angle
−π/2 ≤ θ ≤ π/2, we still need to restrict the range of θ, through fo-
cusing or filtering, and avoid small intervals in vicinity of the endpoints
±π/2, in order to get, after scaling, bounded computational domains
relevant in numerical considerations. The streamline diffusion method
(SD-method) is a generalized form of the standard Galrekin method de-
signed for the finite element studies of the hyperbolic problems, giving
good stability and high accuracy. The SD-method which is used for our
purpose in this paper is obtained by modifying the test function through
adding a multiple of the ”drift-terms” involved in the equation to the
usual test function. This yields a weighted least square control of the
residual of the finite element solution. See, e.g., [17] and [18] and the
references therein for further details in the SD method. Here we have
considered both h and hp versions of SD methods. As for numerical
implementation, a characteristic method, as well as a semi-streamline
diffusion for Fermi pencil beam equation have been studied in [2] and
[7], respectively. An outline of this paper is as follows: In Section 2, we
introduce the model problem and present some notations. Section 3 is
devoted to the study of stability estimates and proof of the convergence
rates for the, h, streamline diffusion approximation of the Fermi equa-
tion. In Section 4 the hp analysis of streamline diffusion with implicit
integration over x variable are illustrated and studied.
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2. Notations and preliminaries

By introducing the new angular variables

v1 =
η

µ
=

η√
1− η2 − ξ2

,

v2 =
ξ

µ
=

ξ√
1− η2 − ξ2

,
(2.1)

in (1.4) we consider a model problem for three dimensional Fermi equa-
tion on a bounded polygonal domains Ωx ⊂ R3 with velocities v ∈ Ωv ⊂
R2:
(2.2)

∂f
∂x + v · ∇⊥f = σtr

2 (∆vf), in (0, L]× Ω,
f(0, x⊥, v) = f0(x⊥, v), in Ω = Ωx⊥ × Ωv,
f(x, x⊥, v) = 0,

in (0, L]× ([Γ−v × Ωv] ∪ [Ωx⊥ × ∂Ωv]),

where f0 ∈ L2(Ω), and the outflow boundary is given by

(2.3) Γ−v = {x⊥ ∈ ∂Ωx⊥ : n(x⊥) · v < 0}, for v ∈ Ωv.

Here n(x⊥) is the outward unit normal to ∂Ωx⊥ at the point x⊥ ∈
∂Ωx⊥ , x⊥ = (y, z), v = (v1, v2), ∇⊥ = ( ∂

∂y ,
∂
∂z ) and, σtr = σtr(x, y, z)

is the transport cross-section (actually σtr = σtr[E(x, y, z)] is energy
dependent).
We shall use a finite element structure on Ωx⊥ × Ωv: by letting T x⊥h =
{τx⊥} and T vh = {τv} be finite element subdivisions of Ωx⊥ and Ωv,
into the elements τx⊥ and τv, respectively. Thus, Th = T x⊥h × T vh =
{τx⊥ × τv} = {τ} will be a subdivision of Ω = Ωx⊥ × Ωv with elements
{τx⊥ × τv} = {τ}. We also use the partition 0 = x0 < x1 < . . . < xM =
L of the interval I = (0, L] into subintervals Im = (xm−1, xm), m =
1, ...,M . Now, let Ch be the corresponding subdivision ofQL := (0, L]×Ω
into elements K = Im × τ with the mesh parameter h = diam K. Let
Pp(K) be the set of all polynomials of degree at most p on K; in x, x⊥
and v, and define the finite element space

(2.4) Vh = {g ∈ H̃0 : g ◦ FK ∈ Pp(K̂); ∀K ∈ Ch},

with

(2.5) H̃0 =

M∏
m=1

H1
0 (Sm), Sk = Ik × Ω, k = 1, · · · ,M.
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and

(2.6) H1
0 (Sm) = {g ∈ H1(Sm) : g ≡ 0 on ∂Ωv}.

Moreover

(2.7)

(f, g)m = (f, g)Sm, ‖g‖2m = (g, g)m,
〈f, g〉m = (f(xm, ., .), g(xm, ., .))Ω, |g|2m = 〈g, g〉m,
〈f, g〉Γ− =

∫
Γ− fg(β · n)ds, 〈f, g〉Γ−m =

∫
Im
〈f, g〉Γ−ds,

〈f, g〉Γ−I =
∫
I 〈f, g〉Γ−ds,

where

Γ− = {(x⊥, v) ∈ Γ = ∂(Ωx⊥ × Ωv) : β · n < 0},

β = (v,0) and n = (nx⊥ ,nv) with nx⊥ and nv being outward unit
normals to ∂Ωx⊥ and ∂Ωv, respectively. Throughout the paper C will
denote a constant not necessarily the same at each occurrence and inde-
pendent of the parameters and functions involved in the problem, unless
otherwise specifically specified. Finally, for piecewise polynomials wi
defined on the triangulation C′h = {K} with C′h ⊂ Ch and for Di being
some differential operators, we use the notation,

(2.8)
(D1w1, D2w2)Q′ =

∑
K∈C′h

(D1w1, D2w2)K , Q′ =
⋃
K∈C′h

K,

where (., .)Q is the usual L2(Q) scalar product and ‖.‖Q is the corre-
sponding L2(Q)-norm.

3. Streamline diffusion method

3.1. Streamline diffusion method. For σtr constant or σtr = σtr(x)
one can obtain closed form analytic solution for the Fermi equation. Be-
low we use a variational formulation, with a test functions consisting
of the sum of a trial function g and an extra streaming term: h(∂xg +
v · ∂x⊥g), i.e., we use test functions different from the trial functions,
therefore we are dealing with a kind of Petrov-Galerkin method. We
prove a stability lemma for the discrete problem in general three dimen-
sional case, i.e., with σ = σtr = σtr(x, y, z), using also the corresponding
variational formulation we derive our first a priori error estimate. In our
studies the parameter σ is, basically, of the order of mesh size or smaller.
For Fermi equation (2.2) we define continuous variational formulation
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as: Find f ∈ H1(QL) such that for all g ∈ H1(QL),

(fx + v · ∇⊥f, g + δ(gx + v · ∇⊥g))QL
+ σ(∇vf,∇vg)QL

−δσ(∆vf, gx + v · ∇⊥g)QL
+ 〈f, g〉0 − 〈f, g〉Γ− = 〈f0, g〉0.

(3.1)

where δ is of order of mesh size. To proceed, we introduce the corre-
sponding bilinear form

B(f, g) = (fx + v · ∇⊥f, g + h(gx + v · ∇⊥g))QL
+ σ(∇vf,∇vg)QL

− hσ(∆vf, gx + v · ∇⊥g)QL
+ 〈f, g〉0 − 〈f, g〉Γ− .

(3.2)

Now our objective is to solve the following discrete variational problem:
Find fh ∈ V h such that

(3.3) B(fh, g) = L(g), ∀g ∈ Vh,

where

(3.4) L(g) = 〈f0, g〉0.

Below we shall show that the bilinear form B is coercive:

Lemma 3.1. There is a constant C such that

(3.5) B(g, g) ≥ C|||g|||2, ∀g ∈ Vh,

where

|||g|||2 = [σ‖∇vg‖2QL
+ |g|2M + |g|20 + h ‖ gx + v · ∇⊥g ‖2QL

+

∫
I×∂Ω

g2 | β.n |dvds].

Proof. We let fh = g in (3.2). Then,

B(g, g) = h‖gx + v · ∇⊥g‖2QL
+ σ‖∇vg‖2QL

− hσ(∆vg, gx + v · ∇⊥g)QL

− 〈g, g〉Γ−I + (gx, g)QL
+ 〈g, g〉0 + (v · ∇⊥g, g)QL

.

(3.6)

By a partial integration, we have that

(3.7) (gx, g) = 1
2〈g, g〉 |

xM
x0 = 1

2

∫
Ω[g2(xM )− g2(x0)],
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and also since β = (v,0),

(v · ∇⊥g, g)− 〈g, g〉Γ−I =
1

2

∫
I×∂Ω

g2(β · n)dv −
∫
I×Γ−

g2(β · n)dv

=
1

2

∫
I×∂Ω

g2|β · n|dv.
(3.8)

Now since σ = σtr is independent of velocity variable v, we may use the
inverse estimate and assumption on σ to obtain

hσ(∆vg, gx + v · ∇⊥g)QL
≤ 1

2(σ‖∇vg‖2QL
+ h‖gx + v · ∇⊥g‖2QL

).

Thus our bilinear form will satisfy

B(g, g) ≥ h‖gx + v · ∇⊥g‖2QL
+ σ‖∇vg‖2QL

+
1

2
〈g, g〉0

+
1

2
〈g, g〉M −

1

2
h‖gx + v · ∇⊥g‖2QL

− 1

2
σ‖∇vg‖2QL

=
1

2
|||g|||2,

(3.9)

which gives the desired result. �

We shall also need the following interpolation error estimates, see
Ciarlet [14]: Let f ∈ Hr+1(Ω) then there exists an interpolant f̃h ∈ Vh
of f such that

‖f − f̃h‖ ≤ Chr+1‖f‖r+1,(3.10)

‖f − f̃h‖1 ≤ Chr‖f‖r+1,(3.11)

|f − f̃h| ≤ Chr+1/2‖f‖r+1.(3.12)

Let η = f − f̃h be the interpolation error and set ξ = fh − f̃h. We
may write the error as

(3.13) e = f − fh = η − ξ.

The convergence theorem is now:

Theorem 3.2. Let f and fh be the solutions of the continuous and
discrete Fermi equation satisfying (2.2) and (3.3), respectively. Then
there is a constant C = C(Ω) such that we have

(3.14) |||f − fh||| ≤ Chk+1/2‖f‖k+1.
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Proof. Using the relation B(e, ξ) = 0 (since ξ ∈ Vh), we have that

|||ξ|||2 ≤ B(ξ, ξ) = B(η − e, ξ) = B(η, ξ)

= (ηx + v · ∇⊥η, ξ + h(ξx + v · ∇⊥ξ))QL
+ σ(∇vη,∇vξ)QL

− hσ(∆vη, ξx + v · ∇⊥ξ)QL
+ 〈η, ξ〉0 − 〈η, ξ〉Γ−I .

(3.15)

Integrating by parts,

(ηx + v · ∇⊥η, ξ)QL
+ 〈η, ξ〉0 − 〈η, ξ〉Γ−I

= −(η, ξx + v.∇⊥ξ) + 〈η, ξ〉M +
1

2

∫
I×∂Ω

ηξ|β · n|.
(3.16)

By the inverse estimate and assumption on σ
(3.17)

σ(∇vη,∇vξ)QL
≤ σ‖∇vη‖QL

‖∇vξ‖QL
≤ σ‖∇vη‖2QL

+
σ

4
‖∇vξ‖2QL

,

and

hσ(∆vη, ξx + v · ∇⊥ξ)QL
≤ hσ‖∆vη‖QL

‖ξx + v · ∇⊥ξ‖QL

≤ Ch−1‖η‖2QL
+
h

4
‖ξx + v · ∇⊥ξ‖2QL

.
(3.18)

Combining the estimates (3.15)-(3.18) gives

|||ξ|||2 ≤ B(η, ξ) ≤ 1

4
|||ξ|||2 + C

[
h−1 ‖ η ‖2QL

+h‖ηx + v · ∇⊥η‖2QL

+σ‖∇vη‖2QL
+ |η|2M +

∫
I×∂Ω

η2|β · n|dvds
]
.

(3.19)

Using (3.10)-(3.12) and a kick-back argument we obtain the desired re-
sult. �

Remark 3.3. Here are some features of problem (2.2): (i) The lack of
pure current term for the beam problem, i.e., no absorption on the left
hand side of the equation, will lead to stability with no explicit L2-norm
control. Besides, in all the above estimates the semi-norms, (L2-norms

of partial derivatives), appear with a small coefficients of order O(
√
h).

Since the test functions are zero on part of ∂Ω with positive Lebesgue
measure, we could again use a version of the Poincare-Friedricks inequal-
ity and obtain an estimate for the L2-norm with the same coefficients
as for the semi-norms involved in the weighted stability norm, i.e., we
add a L2-norm with a coefficient of order O(

√
h) to the |||.||| norm in
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Lemma 3.1. However, a better approach would be through Lemma 3.4
(cf. [2]) below, in a situation where jump discontinuities are introduced
and included in the stability norm |||.|||. This approach improves the

L2-norm estimate regaining the factor h1/2.

Lemma 3.4. For any constant C1 > 0, we have for g ∈ Vh,
(3.20)

‖g‖QL
≤

[
1
C1
‖gx + v.∇⊥g‖2QL

+

M∑
m=1

|g−|2m +

∫
I×∂Ω

g2|β · n|

]
heC1h

Proof. See the argument in the proof of Lemma 4.2 in [2]. �

4. Stabilized high order SD method

In this section, we address the full discretization of Fermi equation
(2.2) by considering both the backward Euler for variable x and the high
order streamline diffusion method for remaining variables. We derive a
stability estimate in a general framework that may be easily extended
to include theta-scheme. For notational simplicity, we use the uniform
partition 0 = x0 < x1 < . . . < xM = L of the interval I = (0, L] into
subintervals Im = (xm−1, xm), where xm − xm−1 = k for m = 1, ...,M .
Now, let Th be the subdivision of Ω into elements {K} with the mesh
parameter h = diam K. We assume that each K ∈ Th is the image
under a family of bijective affine maps {FK} of a fixed standard master

element K̂ into K, where K̂ is purely the open unit hypercube in R4.
Let Pp(K) be the set of all polynomials of degree at most p on K.

(4.1) V p
h = χph ∩H

1
0 (Ω),

where

(4.2) χph = {g ∈ C0(Ω) : g ◦ FK ∈ Pp(K̂); ∀K ∈ Th}.

In the previous section we descretized all variables with finite element
method, assuming fh to be the approximate solution and using test
functions of the form g + δ(gx + v · ∇⊥g) where δ as a small parameter
of order h (or hα, α > 1), would supply us with a necessary (missing)
diffusion term of order h in the direction of streamlines: (1, v,0). More
specifically, in the stability estimates we have been able to control an
extra term of the form h‖gx + v · ∇⊥g‖. In this section, however, the
choice of δ is somewhat involved and in addition to the equation type, it
also depends on the choice of the parameters h and p which are chosen
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locally (elementwise) in an optimal manner. Therefore, in hp-analysis,
δ would appropriately appear as an elementwise (local) parameter.

4.1. The semidiscrete problem. Now the semidiscrete problem reads:
Find fh(x) ∈ V p

h such that for all g ∈ V p
h ,

(∂xfh(x), g) +
∑
K∈Th

(∂xfh(x), δK(v · g))K + B̂δ(fh(x), g) = 0,(4.3)

where bilinear form B̂δ(., .) is defined by

B̂δ(f, g) =
∑
K∈Th

[(v · ∇⊥f, g + δK(v · ∇⊥g))K + σ(∇vf,∇vg)K

−δKσ(∆vf, v · ∇⊥g)K ]− 〈f, g〉Γ− .
(4.4)

Here δ is the non-negative piecewise constant function which satisfies

δ|K = δK , δK = constant for K ∈ Th.

The precise choice of δ depends on the nature of the coefficients in the
partial differential equation and will be discussed in more details later.
Note that in the hp version of the SD-approach we interpret (., .)Ω as∑

K∈Th(., .)K counting for the local character of parameter δK . We

also define the norm [||.||]δ, in a natural way obtained from (4.4) by
considering the local effects of δK ,

(4.5) [||g||]2δ =
1

2

∑
K∈Th

(
σ‖∇vg‖2K + δK‖v · ∇⊥g‖2K

)
.

Further, we assume that the family of partitions {Th}h>0 is shape regu-
lar, in the sense that there is a positive constant C0, independent of h,
such that

(4.6) C0h
4
K ≤ meas(K), ∀K ∈

⋃
h>0

{Th},

where meas(K) is the diameter of four dimensional sphere inscribed in
K. In order to analyze the semi-discrete method (4.3), we define the

Ritz projection Rh associated with the stabilized bilinear form B̂δ as
Rhf ∈ V p

h such that

(4.7) B̂δ(Rhf, g) = B̂δ(f, g), ∀g ∈ V p
h .

For the problem (4.7) we have the following stability lemma:
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Lemma 4.1. Assume that the local SD-parameter δK is selected in the
range

(4.8) 0 < δK ≤
h2
K

σC2
I p

4
, ∀K ∈ Th,

where CI is the constant in an inverse estimate. Then the bilinear form
B̂δ(., .) is coercive on V p

h × V
p
h , i.e.,

(4.9) B̂δ(g, g) ≥ 1

2
[||g||]2δ , ∀g ∈ V p

h .

Proof. We use the definition of hatBδ in (4.4) and write

B̂δ(g,g) = δK‖v · ∇⊥g‖2K + σ‖∇vg‖2K
− δKσ(∆vg, v · ∇⊥g)K + (v · ∇⊥g, g)K .

(4.10)

Using Green’s formula we also have

(4.11) (v · ∇⊥g, g) = 1
2

∫
∂Ω+ g

2(β · n)dv.

The estimate of the term involving δKσ, where we apply Cauchy-Schwarz
and inverse inequalities together with the assumption on δK , implies that

δKσ(∆vg, v · ∇⊥g)K

≤ 1

2
CIh

−1
K p2

√
σδK

[
σ‖∇vg‖2K + δK‖v · ∇⊥g‖2K

]
≤ 1

2

[
σ‖∇vg‖2K + δK‖v · ∇⊥g‖2K

]
.

(4.12)

Combining (4.10)-(4.12) will give the desired result. �

In what follows we shall use the following approximation property:
Let g ∈ Hs(K) and ‖.‖s,K be the usual Sobolev norm on K; there exists
a constant C depending on s and r but independent of g, hK and p, and
a polynomial Πpg of degree p, such that for any 0 ≤ r ≤ s the following
estimate holds true (see [9]),

(4.13) ‖g −Πpg‖r,K ≤ C
hµ−rK

ps−r
‖g‖s,K ,

where s ≥ 0, and µ = min(p + 1, s). We shall also require a global
counterpart of the above approximation result for the finite element
space V p

h , so in the sequel we adopt the following:
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Lemma 4.2. Let g ∈ H1
0 (Ω) ∩ Hr(Ω), r > 2 such that g |K∈ Hs(K),

with a positive integer s ≥ r and K ∈ Ch. Then there exists an inter-
polant Πpg ∈ V p

h of g which is continuous on Ω such that

(4.14) ‖g −Πpg‖1,K ≤ C
hµ−1
K

ps−1
‖g‖s,K ,

where, C > 0 is a constant independent of h and p, and µ = min(p+1, s).

Proof. See, e.g., [16] where a proof is outlined, assuming certain regu-
larity degree. More elaborated proof can be found in [23], [12] and the
references therein. �

We shall also need the following trace inequality:

(4.15) ‖η‖2∂K ≤ C(‖∇η‖K‖η‖K + h−1
K ‖η‖

2
K), ∀K ∈ Th.

Theorem 4.3. Let Th be a shape regular mesh on Ω and let f be the
exact solution of (2.2) that satisfies the assumptions of Lemma 4.2.
Let Rhf be the solution of (4.7) and assume that the SD-parameter δK

satisfies 0 < δK ≤
h2K

σC2
I p

4 for each K ∈ Th. Then the following error

bound holds true
(4.16)

[||f −Rhf ||]2δ ≤ C
∑
K∈Th

h2µ−1
K

p2s−2
(

1

p2
+

1

p
+ σh−1

K + δKh
−1
K +

hK
δKp2

)‖f‖2s,K .

Proof. We first decompose the error in a discrete and interpolation error

(4.17) f −Rhf = η − ξ,

where η = f−Πpf and ξ = Rhf−Πpf . Here Πpf ∈ V p
h is the conforming

interpolant of f in Lemma 4.2. Using triangle inequality we get

(4.18) [||f −Rhf ||]δ ≤ [||η||]δ + [||ξ||]δ,
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Using (4.7) and Lemma 4.1 we get

1

2
[||ξ||]2δ ≤ B̂δ(ξ, ξ) = B̂δ(η, ξ)

= σ(∇vη,∇vξ)− σ
∑
K∈Th

δK(∆vη, v · ∇⊥ξ)K

+ (v · ∇⊥η, ξ) +
∑
K∈Th

δK(v · ∇⊥η, v · ∇⊥ξ)K

=

5∑
i=1

Ti.

(4.19)

The terms T1 and T3 to T7 can be estimated by the same techniques as
in the proof of Theorem 3.2. Further, using the inverse inequality and
assumptions on σ and δK we get

|T2| ≤ δKσ‖∆vη‖K‖v · ∇⊥ξ‖K
≤ CIδKσp2h−1

k ‖∇vη
n‖K‖v · ∇⊥ξ‖K

≤ 2σ‖η‖2K +
δK
8
‖v · ∇⊥ξ‖2K .

We shall rewrite the estimates above concisely as

(4.20) [||ξ||]2δ ≤ C(I1 + I2),

where

I1 =
∑

K∈Th
(
‖η‖2K + δ−1

K ‖η‖2K + δK‖v · ∇⊥η‖2K + σ‖∇vη‖2
)
,

I2 =

∫
∂Ω+

η2|β · n|dvds.

Below we estimate I1 and I2 separately. As for I1, using Lemma 4.2 and
assumption on δK we have,

(4.21) I1 ≤ C
∑
K∈Th

h2µ−2
K

p2s−2
(δ−1
K

h2
K

p2
+ δK + σ)‖f‖2s,K .

As, for the term I2, we have from trace estimate (4.15),

(4.22) I2 ≤
∑
K∈Th

(h−1
K

h2µ
K

p2s
)‖f‖2s,K .
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Hence from (4.20)-(4.22) we get that
(4.23)

[||ξ||]2δ ≤ C
∑
K∈Th

h2µ−1
K

p2s−2
(

1

p2
+

1

p
+ σh−1

K + δKh
−1
K +

hK
δKp2

)‖f‖2s,K .

Finally, the term [||η||]δ can be estimated in the same way and we get,

(4.24) [||η||]2δ ≤ C
∑
K∈Th

h2µ−1
K

p2s−2
(
1

p
+ σh−1

K + δKh
−1
K )‖f‖2s,K .

Substituting the estimates (4.23)-(4.24) into (4.18), we get the desired
result and the proof is complete. �

Remark 4.4. In Theorem 4.3, we chose δK for all K ∈ Ch when σ
is small compared to hk and 1

p . The parameter Cδ is selected in a way

that δK satisfies the hypothesis of Theorem 4.3. This particular choice
of δK is motivated by our analysis in the discretization error (4.16) in
the norm [||.||]δ, in order to give hp-error bound as,

(4.25) [||f −Rhf ||]2δ ≤ C
∑
K∈Th

h2µ−1
K

p2s−1
‖f‖2s,K .

We note that our assumption on σ has a key role on obtaining the opti-
mality of the error bound simultaneously in h and p.

Remark 4.5. For notational simplicity we have not chosen to allow an
element-by-element variation of the polynomial degree p and the local
Sobolev smoothness parameter s of the analytical solution f . However
our analysis can be extended easily to this case by replacing p by pK ,
s by sK and ‖f‖s by ‖f‖s,K for K ∈ Th. Subsequently, in the local
approximation (4.13), µ = min(p + 1, s) is replaced by µK = min(pK +
1, sK).

For the semi-discrete problem (4.3) we have the following stability
result:

Lemma 4.6. Suppose that f is the exact solution of problem (2.2), fh is
the solution of problem (4.3) and δK satisfies the hypothesis of Theorem
4.3. Then there is a constant C independent of x, h and p such that for
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all x ∈ [0, L] we have

‖fh(x)− f(x)‖2 ≤‖fh,0 − f0‖2 + C
∑
K∈Th

h2µ−1
K

p2s−1

[
‖f0‖2s,K

+

∫ x

0
‖∂xf‖2s,Kdx

]
,

(4.26)

and

∫ x

0
[||fh(s)− f(s)||]δds ≤C

{
‖fh,0 − f0‖+

∑
K∈Th

h
µ−1/2
K

ps−1/2

[
‖f0‖s,K

+

∫ x

0
(‖f(s)‖s,K + ‖∂xf(s)‖s,Kds)

]}
.

(4.27)

Proof. We decompose the error in two partes

(4.28) fh(x)− f(x) = fh(x)−Rhf(x) +Rh(x)− f(x) = θ(x) + η(x),

where

θ(x) = fh(x)−Rhf(x),

and

η(x) = Rhf(x)− f(x).

To bound the projection error η(x) from Theorem 4.3, we have

(4.29) ‖η(x)‖2 ≤ C
∑
K∈Th

h2µ−1
K

p2s−1

[
‖f0‖2s,K +

∫ x

0
‖∂xf(s)‖2s,Kds

]
where we have used

(4.30) ‖f(x)‖2s,K ≤ C
[
‖f0‖2s,K +

∫ x

0
‖∂xf(s)‖2s,Kds

]
.

Since the projection Rh does not depend on x, using (2.2), (4.3) and
definition (4.7) of Rh we have

(∂xθ(x), g) + B̂δ(θ(x), g) = −(∂xη(x), g)

−
∑
K∈Th

(∂xη(x) + ∂xθ(x), δK(v · ∇⊥θ))K ∀g ∈ V p
h .

(4.31)
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By choosing g = θ(x) and using Lemma 4.1 we obtain

1

2

[
‖∂xθ(x)‖2 + [||θ||]2δ

]
≤ (∂xθ(x), θ(x)) + B̂δ(θ(x), θ(x))

= −(∂xη(x), θ(x))−
∑
K∈Th

(∂xη(x) + ∂xθ(x), δK(v · ∇⊥θ))K ,
(4.32)

To bound the second term on the right hand side the inequality above,
we have

(4.33) (∂xθ(x), δK(v · ∇⊥θ))K ≤ δK‖∂xθ(x)‖2 +
δK
4
‖(v · ∇⊥θ)‖2.

The term (∂xη(x), δK(v ·∇⊥θ))K may be estimated in the same fashion.
We proceed by choosing δK ≤ 1

4 and absorbing these terms in the left
hand side of (4.32), to obtain

(4.34) ‖∂xθ(x)‖2 ≤ C‖∂xη(x)‖2.
By integrating from 0 to x we have

(4.35) ‖θ(x)‖2 ≤ ‖θ(0)‖2 + C

∫ x

0
‖∂xη(s)‖2ds.

Using Remark 4.4 we have

‖θ(0)‖2 ≤ 2‖fh,0 − f0‖2 + 2‖f(0)−Rh(0)‖2

≤ 2‖fh,0 − f0‖2 + 2
∑
K∈Th

h2µ−1
K

p2s−1
‖f0‖2s,K

(4.36)

and also

(4.37) ‖∂xη(s)‖2 ≤
∑
K∈Th

h2µ−1
K

p2s−1
‖∂xf‖2s,K .

Thus, from (4.35)-(4.37) we deduce

‖θ(x)‖2 ≤ ‖fh,0 − f0‖2

+ C

∑
K∈Th

h2µ−1
K

p2s−1

[
‖f0‖2s,K +

∫ x

0
‖∂xf(s)‖2s,Kds

] .
(4.38)

Combining (4.31), (4.29) and (4.43) we obtain the desired result. To
prove the estimate (4.27), using (4.32) and the coercivity Lemma 4.1 we
have

1

2
‖∂xθ(x)‖2 + [||θ(x)||]2δ ≤ ‖∂xη(x)‖‖θ(x)‖,(4.39)
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and thus by integration over x we obtain

‖θ(x)‖+
∫ x

0
[||θ(s)||]δds ≤ ‖fh,0 − f0‖

+ C

∑
K∈Th

h
µ−1/2
K

ps−1/2

[
‖f0‖s,K +

∫ x

0
‖∂xf(s)‖s,Kds

] ,

(4.40)

which proves the estimate (4.27). �

4.2. The discretization in x variable. Below we discretize in x by
the backward Euler scheme which leads to a sequence of boundary value
problem. Find fnh ∈ V h such that
(4.41)

(∂̄xf
n
h , g) +

∑
K∈Th

(∂̄xf
n
h , δK(v · g))K + B̂δ(f

n
h , g) = 0 ∀g ∈ V p

h ,

where f0
h is some suitable approximation of f0 and and ∂̄x is a first step

backward Euler operator defined by

∂̄xf
n
h =

fnh−f
n−1
h
k .

Based on discretization, we consider the following variational formula-
tion: Find fnh ∈ V

p
h , such that

(fnh , g) +
∑
K∈Th

(fnh , δK(v · g))K + kB̂δ(f
n
h , g) = L̂n(g) ∀g ∈ V p

h ,

where

(4.42) L̂n(g) = (fn−1
h , g) +

∑
K∈Th

(fn−1
h , δK(v · g))K .

We shall now prove the following error estimate for the fully discrete
problem (4.41):
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Theorem 4.7. Suppose fnh and f be the solutions of (4.41) and (2.2),
respectively. Then for n ≥ 0 we have

‖fnh − f(xn)‖2+

n∑
j=1

[||f jh − f(xj)||]2δ ≤ ‖fh,0 − f0‖2

+ C
{ ∑
K∈Th

h2µ−1
K

p2s−1

[
‖f0‖2s,K +

∫ x

0
‖∂xf(s)‖2s,Kds

]
+ k2

∫ xn

0
‖∂xxf(s)‖2ds

}
.

(4.43)

Proof. In an analogy with (4.44) we write

(4.44) fnh − f(xn) = fnh −Rhf(xn) +Rhf(xn)− f(xn) = θn + ηn.

It follows from variational formulation (4.41) and (2.2) that for n ≥ 1

(∂̄xθ
n, g) + B̂δ(θ

n, g) = −(ωn, g)

−
∑
K∈Th

(ωn + ∂̄xθ
n, δK(v · ∇⊥g))K ∀g ∈ V p

h ,

(4.45)

where

(4.46) ωn = (Rh − I)∂̄xf(tn) + ∂̄xf(tn)− ∂xf(tn) = ωn1 + ωn2 .

By Cauchy’s inequality we have

(4.47) (∂̄xθ
n, δK(v·∇⊥g))K ≤

δK
k

(‖θn‖2K+‖θn−1‖2K)+
δK
4
‖(v·∇⊥g)‖2K .

We also use a similar argument to estimate the term (ωn, δK(v · g)). By
choosing δK ≤ 1

4 , g = θn, and using standard kick-back arguments to
(4.45) we obtain

(4.48) ‖θn‖2 − ‖θn−1‖2 + k[||θn||]2δ ≤ C
[
k‖ωn1 ‖2 + k‖ωn2 ‖2

]
.

Now sum over j = 1, . . . , n. Then by application of standard dissipation
relations, we have

(4.49) ‖θn‖2 + k
n∑
j=1

[||θj ||]2δ ≤ ‖θ0‖2 + C

k n∑
j=1

‖ωj1‖
2 + k

n∑
j=1

‖ωj2‖
2

 .
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We may write

ωj1 = (Rh − I)k−1

∫ xj

xj−1

∂xfds = k−1

∫ xj

xj−1

(Rh − I)∂xfds

≤ k−
1
2

(∫ xj

xj−1

|(Rh − I)∂xfds|

) 1
2

,

(4.50)

whence by Remark 4.4,
(4.51)

k
n∑
j=1

‖ωj1‖
2 ≤

n∑
j=1

∫ xj

xj−1

|(Rh−I)∂xf |2ds ≤ C
∑
K∈Th

h2µ−1
K

p2s−1

∫ xn

0
‖∂xf‖2s,Kds.

The second term is estimated by Taylor’s formula,

ωj2 = k−1(f(xj)− f(xj−1))− ∂xf(xj) =− k−1

∫ xj

xj−1

(s− xj−1)∂xxf(s)ds

≤k
1
2

(∫ xj

xj−1

|∂xxf(s)|ds

) 1
2

,

(4.52)

so that

(4.53) k

n∑
j=1

‖ωj2‖
2 ≤ k2

∫ xn

0
‖∂xxf(s)‖2ds .

It remains to estimate the approximation of the Ritz-projection, i.e.,
[||ηn||]δ. By equation (4.29) we have
(4.54)

n∑
j=1

[||η(xj)||]2δ ≤ C
∑
K∈Th

h2µ−1
K

p2s−1

[
‖f0‖2s,K +

∫ xn

0
‖∂xf(s)‖2s,Kds

]
.

Combining all the estimates, we complete the proof of the theorem. �

Conclusion: Our analysis extends the result of [2] to a three dimen-
sional degenerate type convection-dominated convection-diffusion prob-
lem with a small and variable diffusion coefficient. To enhance stability
while keeping accuracy, we used a consistent stabilized method using
space-time elements. We also considered semidiscretization as an inter-
mediate step and combined the method with backward Euler scheme and
obtained optimal error estimates in appropriate norms for sufficiently
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smooth solutions. However, as it is known, the main drawback of us-
ing hp-SD method is that, the stabilization terms involve coupling with
the second order term, the source term and the x-derivative. This can
cause to severe computational costs. Regarding the numerical aspects,
the dimension of the discretized problem is 4-dimensional in transversal
domain which is difficult to handle. One remedy shall be considering
the discrete velocity model of the Fermi equation which we address in
our future work.
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