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ON ISOMORPHISM OF SIMPLICIAL COMPLEXES
AND THEIR RELATED ALGEBRAS

R. ZAARE-NAHANDI

Communicated by Jürgen Herzog

Abstract. Here, we provide a simple proof for the fact that two
simplicial complexes are isomorphic if and only if their associated
Stanley-Reisner rings, or their associated facet rings are isomorphic
as K-algebras. As a consequence, we show that two graphs are
isomorphic if and only if their associated edge rings are isomorphic
as K-algebras. Based on an explicit K-algebra isomorphism of two
Stanley-Reisner rings, or facet rings or edge rings, we present a
fast algorithm to find explicitly the isomorphism of the associated
simplicial complexes, or graphs.

1. Introduction

Let X be a finite nonempty set. A simplicial complex ∆ on X is a set
of subsets of X such that, for any x ∈ X, {x} ∈ ∆, and if E ∈ ∆ and
F ⊆ E, then F ∈ ∆. A set in ∆ is called a face and a maximal face in
∆ is called a facet.

Let X = {x1, . . . , xn}, and ∆ be a simplicial complex on X. Let
R = K[x1, . . . , xn] be the polynomial ring in n indeterminates and with
coefficients in a field K. Let I(∆) be the ideal in R generated by all
square-free monomials xi1 . . . xis , provided that {xi1 , . . . , xis} 6∈ ∆. The
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quotient ring R/I(∆) is called the Stanley-Reisner ring of the simplicial
complex ∆.

It is easy to see that any quotient of a polynomial ring over an ideal,
generated by square-free monomials of degree greater than 1, is the
Stanley-Reisner ring of a simplicial complex. A natural question arises:
If two Stanley-Reisner rings are isomorphic, are their corresponding sim-
plicial complexes isomorphic? In 1996, W. Bruns and J. Gubeladze
proved that if the isomorphism of the rings is a K-algebra isomorphism,
then the corresponding simplicial complexes are isomorphic [1]. Here,
we provide an alternative and constructive proof for this result.

In 2002, S. Faridi in [2] defined the notion of facet ideal for a simplicial
complex which is a generalization of the notion of edge ideal for a graph
defined by R. Villarreal [7].

Let ∆ be a simplicial complex on the set X = {x1, . . . , xn}. Let F (∆)
be the ideal of R = K[x1, . . . , xn] generated by all square-free monomials
xi1 . . . xis , provided that {xi1 , . . . , xis} is a facet in ∆. The quotient ring
R/F (∆) is called the facet ring of the simplicial complex ∆.

Let G be a finite, simple and undirected graph with vertex set
{x1, . . . , xn}. The ideal E(G) of R = K[x1, . . . , xn] generated by all
square-free monomials xixj , provided that xi is adjacent to xj in G, is
called the edge ideal of G. The quotient ring R/E(G) is called the edge
ring of the graph G.

A question similar to the case of simplicial complexes can be stated
for facet rings and edge rings. In 1997, H. Hajiabolhassan and M. L.
Mehrabadi in [3] proved that two graphs are isomorphic if and only if
their corresponding edge rings are isomorphic as K-algebras. Here, we
prove the statement for the facet rings and conclude it for the edge rings.

Finally, we will present a fast algorithm which admits a K-algebra
isomorphism of two Stanley-Reisner rings, or two facet rings, or two
edge rings as the input and returns explicitly the isomorphism of the
corresponding simplicial complexes or graphs, as the output.

2. The isomorphism

Let I be an ideal of R = K[x1, . . . , xn] and J be an ideal of S =
K[y1, . . . , ym], both generated by monomials of degree greater than 1.
Let φ : R/I → S/J be a K-algebra isomorphism. Let f be a monomial
in R. Denote the image of f in R/I by f̄ . If f̄ is a zero-divisor in R/I,
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then it is easy to check that the constant term of φ(f̄) in S/J is zero.
As discussed in [1], in the K-algebra isomorphism arguments of Stanley-
Reisner rings of two simplicial complexes, without loss of generality, it
is enough to reduce our attention to the case that all variables are zero
divisor.

For any i, 1 ≤ i ≤ n, let L(xi) denote the set of yj ’s such that ȳj

appears in the linear part of φ(x̄i) with nonzero coefficient.

Lemma 2.1. With the above notations, if φ : R/I → S/J is a K-algebra
isomorphism, then m = n and L(xi) 6= ∅, for each i, 1 ≤ i ≤ n.

Proof. The ideal J is generated by monomials of degree greater than
one, and therefore, (S/J)1, the degree one homogeneous component of
S/J , is an m-dimensional K-vector space with basis {ȳ1, . . . , ȳm}. The
map φ is surjective, and thus the set {(φ(x̄1))1, . . . , (φ(x̄n))1} generates
(S/J)1 as a vector space over K. Therefore, n ≥ m. The map φ is
isomorphism, and thus φ−1 is surjective too and therefore, m ≥ n. For
the last claim, note that if for some i, 1 ≤ i ≤ n, L(xi) = ∅, then
(φ(x̄i))1 = 0 and the set {(φ(x̄1))1, . . . , (φ(x̄n))1} can not generate an
n-dimensional vector space. �

Let ∆1 and ∆2 be two simplicial complexes on sets {x1, . . . , xn}
and {y1, . . . , ym}, respectively. Let K[∆1] = K[x1, . . . , xn]/I(∆1) and
K[∆2] = K[y1, . . . , ym]/I(∆2) be the Stanley-Reisner rings associated
with ∆1 and ∆2.

Theorem 2.2. With the above notations, ∆1 and ∆2 are isomorphic as
simplicial complexes if and only if K[∆1] and K[∆2] are isomorphic as
K-algebras.

Proof. It is obvious that if ∆1 and ∆2 are isomorphic as simplicial
complexes, then K[∆1] and K[∆2] are isomorphic as K-algebras. For
the converse, assume that φ : K[∆1] → K[∆2] is a K-algebra isomor-
phism. By Lemma 2.1, m = n. An isomorphism as φ, can be uniquely
determined by images of x̄i, i = 1, . . . , n, and

φ(f̄(x1, . . . , xn)) = φ(f(x̄1, . . . , x̄n)) = f(φ(x̄1), . . . , φ(x̄n))

for any polynomial f̄ in K[∆1]. Let φ(x̄i) = fi(ȳ1, . . . , ȳn), i = 1, . . . , n.
By Lemma 2.1, for each i, fi has no nonzero constant term and has
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nonzero linear part. Suppose φ−1 is the inverse of φ and let φ−1(ȳi) =
gi(x̄1, . . . , x̄n), i = 1, . . . , n. Let fi1 and gi1 denote the linear homoge-
neous components of fi and gi, respectively:

fi1 = ai1ȳ1 + · · ·+ ainȳn, i = 1, . . . , n
gj1 = bj1x̄1 + · · ·+ bjnx̄n, j = 1, . . . , n.

The equalities φ ◦ φ−1(ȳi) = ȳi and φ−1 ◦ φ(x̄i) = x̄i, for i = 1, . . . , n,
imply that 

a11 . . . a1n

a21 . . . a2n
...

...
an1 . . . ann



b11 . . . b1n

b21 . . . b2n
...

...
bn1 . . . bnn

 =


b11 . . . b1n

b21 . . . b2n
...

...
bn1 . . . bnn



a11 . . . a1n

a21 . . . a2n
...

...
an1 . . . ann

 = I,

where I is the identity matrix of order n. Therefore, in the following
matrix, sum of entries of each row and each column is 1:

M(φ) =


a11b11 a21b12 · · · an1b1n

a12b21 a22b22 · · · an2b2n
...

...
...

a1nbn1 a2nbn2 · · · annbnn

 .
It is well known that, there is a transversal of length n with nonzero el-

ements in the matrix M(φ). See for instance, [4] or [6]. By a transversal,
we mean a sequence of entries of the matrix with no common columns
or rows. In other words, a transversal is a term in expansion of determi-
nant of the matrix. Let 1j1, 2j2, . . . , njn be indices of a transversal with
nonzero elements in M(φ). By a change of indices of yi’s and permuting
corresponding columns of M(φ), suppose that the nonzero transversal is
the main diagonal. Under this assumption, yi ∈ L(xi) and xi ∈ L−1(yi),
for i = 1, . . . , n, where L−1(yi) is the set of variables with nonzero coef-
ficients in the linear part of φ−1(ȳi). For a subset of {x1, . . . , xn} as F ,
which is not in ∆1, there is a minimal set E ⊆ F , where E 6∈ ∆1 and any
proper subset of E belongs to ∆1. Let {xi1 , . . . , xir} be a minimal set
not belonging to ∆1. Then, xi1 · · ·xir is a generator of I(∆1), that is,
x̄i1 · · · x̄ir = 0 in K[∆1], and therefore φ(x̄i1 · · · x̄ir) = 0 in K[∆2]. This
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means that φ(x̄i1) · · ·φ(x̄ir) ∈ I(∆2). The ideal I(∆2) is homogeneous
and generated by monomials and therefore each homogeneous compo-
nent and each monomial of φ(x̄i1) · · ·φ(x̄ir) belongs to I(∆2). Therefore,
the product fi11 · · · fir1 is in I(∆2). In this case, there are two possibil-
ities:

• yi1 · · · yir ∈ I(∆2), which means that {yi1 , · · · , yir} 6∈ ∆2;
• yi1 · · · yir is canceled by another monomial in fi11 · · · fir1.

We prove that the second case is not possible. The second condition
implies that, for some j, 1 ≤ j ≤ r, yij appears with nonzero coefficients
in more than one fil1. Let yα1

t1
· · · yαs

ts be the smallest monomial with
lexicographic order in the set of all monomials with nonzero coefficients
in the expansion of fi11 · · · fir1 with {t1, . . . , ts} ⊆ {i1, . . . , ir}. This
monomial appears once in the expansion and so can not be canceled by
another monomial. Therefore, yα1

t1
· · · yαs

ts ∈ I(∆2) and since I(∆2) is a
radical ideal, then yt1 · · · yts ∈ I(∆2) and so, ȳi1 · · · ȳir ∈ I(∆2). There-
fore, {xi1 , . . . , xir} 6∈ ∆1 implies that {yi1 , . . . , yir} 6∈ ∆2. With a similar
argument for φ−1, {yi1 , . . . , yir} 6∈ ∆2 implies that {xi1 , . . . , xir} 6∈ ∆1,
that is, ∆1

∼= ∆2. �

Note that, for any simplicial complex ∆, the ideal I(∆) has no mono-
mial of degree one, but in the case of facet ideals, zero dimensional
facets correspond to degree one monomials in F (∆). To use Lemma 2.1
in the proof of the next theorem, we will assume that there is not any
zero dimensional facet in simplicial complexes. This does not reduce the
generality of the theorem. Because, two simplicial complexes are iso-
morphic if and only if they have the same number of zero dimensional
facets and the parts without any zero dimensional facet are isomorphic.

Theorem 2.3. Any two simplicial complexes ∆1 and ∆2 are isomor-
phic if and only if their corresponding facet rings are isomorphic as
K-algebras.

Proof. The “only if” part is obvious. To prove the “if” part, let

K[x1, . . . , xn]/F (∆1)
φ→ K[y1, . . . , ym]/F (∆2)

be a K-algebra isomorphism between the facet rings corresponding to
∆1 and ∆2. Similar to the proof of Theorem 2.2, it follows that m = n.
By an appropriate change of indices, we may assume that {y1, . . . , yn}
is the set corresponding to the main diagonal which we assumed to be a
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transversal with nonzero elements in the matrix M(φ). Then, yi ∈ L(i)
and xi ∈ L−1(yi), for i = 1, . . . , n. Let {xi1 , . . . , xis} be a facet in
∆1. Then, xi1 · · ·xis is in the minimal generating set of F (∆1) and
φ(x̄i1) · · ·φ(x̄is) ∈ F (∆2). The same argument as the proof of Theo-
rem 1, implies that yi1 · · · yis ∈ F (∆2). If yi1 · · · yis ∈ F (∆2) is not
in the minimal generating set of F (∆2), then, without loss of gener-
ality, we may assume that yi1 · · · yis−t ∈ F (∆2), for some t, 1 ≤ t ≤
s − 1. This means that, φ−1(ȳi1) · · ·φ−1(ȳis−t) ∈ F (∆1) and therefore,
xi1 · · ·xis−t ∈ F (∆1), which is a contradiction to minimality of xi1 · · ·xis

in F (∆1). Therefore, {yi1 , . . . , yis} is a facet in ∆2, and this gives a bi-
jection between ∆1 and ∆2 as an isomorphism of simplicial complexes. �

A simple and undirected graph G can be regarded as a simplicial
complex with facets {xi, xj}, where xi is adjacent to xj in G. With
this interpretation, the edge ideal of G is the same as its facet ideal.
Therefore, we have the following result.

Corollary 2.4. Let G1 and G2 be two graphs. G1 and G2 are isomorphic
as graphs if and only if their edge rings are isomorphic as K-algebras.

Corollary 2.5. Let ∆1 and ∆2 be two simplicial complexes, F (∆1) and
F (∆2) be their facet ideals. Let Γ1 and Γ2 be two simplicial complexes
such that F (∆1) and F (∆2) are their Stanley-Reisner ideals. By the
above theorems, ∆1 and ∆2 are isomorphic if and only if Γ1 and Γ2

are isomorphic.

Corollary 2.5 can be proved directly and then one can assume that
Theorem 2.3 as a corollary of Theorem 2.2. Note that Corollary 2.5 leads
us to define a new dual for a given simplicial complex ∆ as indicated in
the corollary by Γ. It would be another project to investigate properties
of this duality.

3. The algorithm

Here, we present a fast algorithm to construct explicitly an isomor-
phism between two simplicial complexes or two graphs, when a K-
algebra isomorphism of their associated rings is given.
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Algorithm 1. Let R = K[x1, . . . , xn]/I and S = K[y1, . . . , yn]/J be
two K-algebras and I and J be ideals generated by some square-free
monomials of degree greater than one. Any K-algebra homomorphism
φ : R → S can be uniquely determined by the images of x̄1, . . . , x̄n. In
the following, we assume that R and S are Stanley-Reisner rings of some
simplicial complexes.

Input: K-algebras R and S, and a K-algebra isomorphism φ : R→ S,
Output: A simplicial complex ∆1 associated with R and a simplicial com-
plex ∆2 associated with S as their Stanley-Reisner rings and a bijection
ψ : {x1, . . . , xn} → {y1, . . . , yn} which determines an isomorphism of ∆1

and ∆2.

Step 1. Construct a simplicial complex ∆1 with the underlying set
{x1, . . . , xn} and faces {xi1 , . . . , xir}, where xi1 · · ·xir is not divided by
any of generators of I. Construct ∆2 on the set {y1, . . . , yn}, and faces
{yi1 , . . . , yis} where yi1 · · · yis 6∈ J .
Step 2. Find the matrix M(φ).
Step 3. Find a transversal with nonzero elements in M(φ).
Step 4. Use the transversal in Step 3 to construct the map ψ : ∆1 → ∆2.

The proof of Theorem 2.3 guaranties the correctness of the algorithm.
It is known that finding a nonzero transversal in a matrix which has such
a transversal, has a polynomial time algorithm [5], and so, the above
algorithm is polynomial time too.

Algorithm 2. In Algorithm 1, we may consider the K-algebras R and
S as facet rings of simplicial complexes, or if I and J are generated by
some square-free monomials of degree 2, as edge rings of graphs. Then,
in Step 1, we must construct a simplicial complexes ∆1 and ∆2 such that
R and S are their facet rings, respectively. Following steps 2, 3, and 4,
we finally obtain an isomorphism of simplicial complexes or graphs.
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