FIXED POINTS FOR E-ASYMPTOTIC CONTRACTIONS AND BOYD-WONG TYPE E-CONTRACTIONS IN UNIFORM SPACES

A. AGHANIANS, K. FALLAHI AND K. NOUROUZI*

Communicated by Gholam Hossein Esslamzadeh

Abstract

In this paper we discuss the fixed points of asymptotic contractions and Boyd-Wong type contractions in uniform spaces equipped with an E-distance. A new version of Kirk's fixed point theorem is given for asymptotic contractions and Boyd-Wong type contractions is investigated in uniform spaces.

1. Introduction and preliminaries

In 2003, Kirk [5] discussed the existence of fixed points for (not necessarily continuous) asymptotic contractions in complete metric spaces. Jachymski and Jóźwik [4] constructed an example to show that continuity of the self-mapping is essential in Kirk's theorem. They also established a fixed point result for uniformly continuous asymptotic φ contractions in complete metric spaces.

[^0]Motivated by [5, Theorem 2.1] and [4, Example 1], we aim to give a more general form of [5, Theorem 2.1] in uniform spaces where the selfmappings are assumed to be continuous. We also generalize the BoydWong fixed point theorem [3, Theorem 1] to uniform spaces equipped with an E-distance.

We begin with some basics in uniform spaces which are needed in this paper. The reader can find an in-depth discussion in, e.g., [6].

A uniformity on a nonempty set X is a nonempty collection \mathcal{U} of subsets of $X \times X$ (called the entourages of X) satisfying the following conditions:
(1) Each entourage of X contains the diagonal $\{(x, x): x \in X\}$;
(2) \mathcal{U} is closed under finite intersections;
(3) For each entourage U in \mathcal{U}, the set $\{(x, y):(y, x) \in U\}$ is in \mathcal{U};
(4) For each $U \in \mathcal{U}$, there exists an entourage V such that $(x, y),(y, z)$ $\in V$ implies $(x, z) \in U$ for all $x, y, z \in X$;
(5) \mathcal{U} contains the supersets of its elements.

If \mathcal{U} is a uniformity on X, then (X, \mathcal{U}) (shortly denoted by X) is called a uniform space.

If d is a metric on a nonempty set X, then it induces a uniformity, called the uniformity induced by the metric d, in which the entourages of X are all the supersets of the sets

$$
\{(x, y) \in X \times X: d(x, y)<\varepsilon\}
$$

where $\varepsilon>0$.
It is well-known that a uniformity \mathcal{U} on a nonempty set X is separating if the intersection of all entourages of X coincides with the diagonal $\{(x, x): x \in X\}$. In this case, X is called a separated uniform space.

We next recall some basic concepts about E-distances. For more details and examples, the reader is referred to [1].

Definition 1.1. [1] Let X be a uniform space. A function $p: X \times X \rightarrow$ $\mathbb{R}^{\geq 0}$ is called an E-distance on X if
(1) for each entourage U in \mathcal{U}, there exists a $\delta>0$ such that $p(z, x) \leq$ δ and $p(z, y) \leq \delta$ imply $(x, y) \in U$ for all $x, y, z \in X$;
(2) p satisfies the triangular inequality, i.e.,

$$
p(x, y) \leq p(x, z)+p(z, y) \quad(x, y, z \in X)
$$

If p is an E-distance on a uniform space X, then a sequence $\left\{x_{n}\right\}$ in X is said to be p-convergent to a point $x \in X$, denoted by $x_{n} \xrightarrow{p}$ x, whenever $p\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$, and X is p-Cauchy whenever
$p\left(x_{m}, x_{n}\right) \rightarrow 0$ as $m, n \rightarrow \infty$. The uniform space X is called p-complete if every p-Cauchy sequence in X is p-convergent to some point of X.

The next lemma contains an important property of E-distances on separated uniform spaces. The proof is straightforward and it is omitted here.

Lemma 1.2. [1] Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two arbitrary sequences in a separated uniform space X equipped with an E-distance p. If $x_{n} \xrightarrow{p} x$ and $x_{n} \xrightarrow{p} y$, then $x=y$. In particular, $p(z, x)=p(z, y)=0$ for some $z \in X$ implies $x=y$.

Using E-distances, p-boundedness and p-continuity are defined in uniform spaces.
Definition 1.3. [1] Let p be an E-distance on a uniform space X. Then
(1) X is called p-bounded if

$$
\delta_{p}(X)=\sup \{p(x, y): x, y \in X\}<\infty .
$$

(2) A mapping $T: X \rightarrow X$ is called p-continuous on X if $x_{n} \xrightarrow{p} x$ implies $T x_{n} \xrightarrow{p} T x$ for all sequences $\left\{x_{n}\right\}$ and all points x in X.

2. E-asymptotic contractions

In this section, we denote by Φ the class of all functions $\varphi: \mathbb{R}^{\geq 0} \rightarrow$ $\mathbb{R}^{\geq 0}$ with the following properties:

- φ is continuous on $\mathbb{R}^{\geq 0}$;
- $\varphi(t)<t$ for all $t>0$.

It is worth mentioning that if $\varphi \in \Phi$, then

$$
0 \leq \varphi(0)=\lim _{t \rightarrow 0^{+}} \varphi(t) \leq \lim _{t \rightarrow 0^{+}} t=0
$$

that is, $\varphi(0)=0$.
Following [5, Definition 2.1], we define E-asymptotic contractions.
Definition 2.1. Let p be an E-distance on a uniform space X. We say that a mapping $T: X \rightarrow X$ is an E-asymptotic contraction if

$$
\begin{equation*}
p\left(T^{n} x, T^{n} y\right) \leq \varphi_{n}(p(x, y)) \quad \text { for all } x, y \in X \text { and } n \geq 1 \tag{2.1}
\end{equation*}
$$

where $\left\{\varphi_{n}\right\}$ is a sequence of nonnegative functions on $\mathbb{R}^{\geq 0}$ converging uniformly to some $\varphi \in \Phi$ on the range of p.

If (X, d) is a metric space, then replacing the E-distance p by the metric d in Definition 2.1, we get the concept of an asymptotic contraction introduced by Kirk [5, Definition 2.1]. So each asymptotic contraction on a metric space is an E-asymptotic contraction on the uniform space induced by the metric. But in the next example, we see that the converse is not generally true.

Example 2.2. Uniformize the set $X=[0,1]$ with the uniformity induced from the Euclidean metric and put $p(x, y)=y$ for all $x, y \in X$. It is easily verified that p is an E-distance on X. Define $T: X \rightarrow X$ and $\varphi_{1}: \mathbb{R}^{\geq 0} \rightarrow \mathbb{R}^{\geq 0}$ by

$$
T x=\left\{\begin{array}{cc}
0 & 0 \leq x<1 \\
\frac{1}{8} & x=1
\end{array} \quad \text { and } \quad \varphi_{1}(t)=\left\{\begin{array}{cc}
\frac{1}{16} & 0 \leq t<1 \\
\frac{1}{8} & t \geq 1
\end{array}\right.\right.
$$

for all $x \in X$ and all $t \geq 0$, and set $\varphi_{n}=\varphi$ for $n \geq 2$, where φ is any arbitrary fixed function in Φ. Clearly, $\varphi_{n} \rightarrow \varphi$ uniformly on $\mathbb{R} \geq 0$ and $T^{n}=0$ for all $n \geq 2$. To see that T is an E-asymptotic contraction on X, it suffices to check (2.1) for $n=1$. To this end, given $x, y \in[0,1]$, if $y=1$, then we have

$$
p(T x, T 1)=T 1=\frac{1}{8}=\varphi_{1}(1)=\varphi_{1}(p(x, 1))
$$

and for $0 \leq y<1$, we have

$$
p(T x, T y)=T y=0 \leq \frac{1}{16}=\varphi_{1}(y)=\varphi_{1}(p(x, y)) .
$$

But T fails to be an asymptotic contraction on the metric space X with the functions φ_{n} since

$$
\left|T 1-T \frac{1}{2}\right|=\frac{1}{8}>\frac{1}{16}=\varphi_{1}\left(\frac{1}{2}\right)=\varphi_{1}\left(\left|1-\frac{1}{2}\right|\right)
$$

In the next example, we see that an E-asymptotic contraction need not be p-continuous.

Example 2.3. Let X and p be as in Example 2.2. Define a mapping $T: X \rightarrow X$ by $T x=0$ if $0<x \leq 1$ and $T 0=1$. Note that T is fixed point free. Now, let φ_{1} be the constant function 1 and $\varphi_{2}=\varphi_{3}=\cdots=\varphi$, where φ is an arbitrary fixed function in Φ. Then T satisfies (2.1) and since $T 0 \neq 0$, it follows that T fails to be p-continuous on X.

Theorem 2.4. Let p be an E-distance on a separated uniform space X such that X is p-complete and let $T: X \rightarrow X$ be a p-continuous E asymptotic contraction for which the functions φ_{n} in Definition 2.1 are all continuous on $\mathbb{R}^{\geq 0}$ for large indices n. Then T has a unique fixed point $u \in X$, and $T^{n} x \xrightarrow{p} u$ for all $x \in X$.

Proof. We divide the proof into three steps.
Step 1: $p\left(T^{n} x, T^{n} y\right) \rightarrow 0$ as $n \rightarrow \infty$ for all $x, y \in X$.
Let $x, y \in X$ be given. Letting $n \rightarrow \infty$ in (2.1), we get
$0 \leq \limsup _{n \rightarrow \infty} p\left(T^{n} x, T^{n} y\right) \leq \lim _{n \rightarrow \infty} \varphi_{n}(p(x, y))=\varphi(p(x, y)) \leq p(x, y)<\infty$.
Now, if

$$
\limsup _{n \rightarrow \infty} p\left(T^{n} x, T^{n} y\right)=\varepsilon>0
$$

then there exists a strictly increasing sequence $\left\{n_{k}\right\}$ of positive integers such that $p\left(T^{n_{k}} x, T^{n_{k}} y\right) \rightarrow \varepsilon$, and so by the continuity of φ, one obtains

$$
\varphi\left(p\left(T^{n_{k}} x, T^{n_{k}} y\right)\right) \rightarrow \varphi(\varepsilon)<\varepsilon
$$

Therefore, there is an integer $k_{0} \geq 1$ such that $\varphi\left(p\left(T^{n_{k}} x, T^{n_{k}} y\right)\right)<\varepsilon$. So (2.1) yields

$$
\begin{aligned}
\varepsilon & =\limsup _{n \rightarrow \infty} p\left(T^{n} x, T^{n} y\right) \\
& =\limsup _{n \rightarrow \infty} p\left(T^{n}\left(T^{n_{k_{0}}} x\right), T^{n}\left(T^{n_{k_{0}}} y\right)\right) \\
& \leq \lim _{n \rightarrow \infty} \varphi_{n}\left(p\left(T^{n_{k_{0}}} x, T^{n_{k_{0}}} y\right)\right) \\
& =\varphi\left(p\left(T^{n_{k_{0}}} x, T^{n_{k_{0}}} y\right)\right)<\varepsilon,
\end{aligned}
$$

which is a contradiction. Hence

$$
\limsup _{n \rightarrow \infty} p\left(T^{n} x, T^{n} y\right)=0
$$

Consequently,

$$
0 \leq \liminf _{n \rightarrow \infty} p\left(T^{n} x, T^{n} y\right) \leq \limsup _{n \rightarrow \infty} p\left(T^{n} x, T^{n} y\right)=0,
$$

that is, $p\left(T^{n} x, T^{n} y\right) \rightarrow 0$.
Step 2: The sequence $\left\{T^{n} x\right\}$ is p-Cauchy for all $x \in X$.
Suppose that $x \in X$ is arbitrary. If $\left\{T^{n} x\right\}$ is not p-Cauchy, then there exist $\varepsilon>0$ and positive integers m_{k} and n_{k} such that

$$
m_{k}>n_{k} \geq k \quad \text { and } \quad p\left(T^{m_{k}} x, T^{n_{k}} x\right) \geq \varepsilon \quad k=1,2, \ldots .
$$

Keeping the integer n_{k} fixed for sufficiently large k, say $k \geq k_{0}$, and using Step 1, we may assume without loss of generality that $m_{k}>n_{k}$ is the smallest integer with $p\left(T^{m_{k}} x, T^{n_{k}} x\right) \geq \varepsilon$, that is,

$$
p\left(T^{m_{k}-1} x, T^{n_{k}} x\right)<\varepsilon
$$

Hence for each $k \geq k_{0}$, we have

$$
\begin{aligned}
\varepsilon & \leq p\left(T^{m_{k}} x, T^{n_{k}} x\right) \\
& \leq p\left(T^{m_{k}} x, T^{m_{k}-1} x\right)+p\left(T^{m_{k}-1} x, T^{n_{k}} x\right) \\
& <p\left(T^{m_{k}} x, T^{m_{k}-1} x\right)+\varepsilon
\end{aligned}
$$

If $k \rightarrow \infty$, since $p\left(T^{m_{k}} x, T^{m_{k}-1} x\right) \rightarrow 0$, it follows that $p\left(T^{m_{k}} x, T^{n_{k}} x\right) \rightarrow$ ε.

We next show by induction that

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} p\left(T^{m_{k}+i} x, T^{n_{k}+i} x\right) \geq \varepsilon, \quad i=1,2, \ldots \tag{2.2}
\end{equation*}
$$

To this end, note first that from Step 1,

$$
\begin{aligned}
\varepsilon= & \lim _{k \rightarrow \infty} p\left(T^{m_{k}} x, T^{n_{k}} x\right)=\limsup _{k \rightarrow \infty} p\left(T^{m_{k}} x, T^{n_{k}} x\right) \\
\leq & \limsup _{k \rightarrow \infty}\left[p\left(T^{m_{k}} x, T^{m_{k}+1} x\right)+p\left(T^{m_{k}+1} x, T^{n_{k}+1} x\right)\right. \\
& \left.+p\left(T^{n_{k}+1} x, T^{n_{k}} x\right)\right] \\
\leq & \limsup _{k \rightarrow \infty} p\left(T^{m_{k}} x, T^{m_{k}+1} x\right)+\limsup _{k \rightarrow \infty} p\left(T^{m_{k}+1} x, T^{n_{k}+1} x\right) \\
& +\limsup _{k \rightarrow \infty} p\left(T^{n_{k}+1} x, T^{n_{k}} x\right) \\
= & \limsup _{k \rightarrow \infty} p\left(T^{m_{k}+1} x, T^{n_{k}+1} x\right)
\end{aligned}
$$

that is, (2.2) holds for $i=1$. If (2.2) is true for some i, then

$$
\begin{aligned}
\varepsilon \leq & \limsup _{k \rightarrow \infty} p\left(T^{m_{k}+i} x, T^{n_{k}+i} x\right) \\
\leq & \limsup _{k \rightarrow \infty}\left[p\left(T^{m_{k}+i} x, T^{m_{k}+i+1} x\right)+p\left(T^{m_{k}+i+1} x, T^{n_{k}+i+1} x\right)\right. \\
& \left.+p\left(T^{n_{k}+i+1} x, T^{n_{k}+i} x\right)\right] \\
\leq & \limsup _{k \rightarrow \infty} p\left(T^{m_{k}+i+1} x, T^{n_{k}+i+1} x\right)
\end{aligned}
$$

Consequently, we have

$$
\varphi(\varepsilon)=\lim _{k \rightarrow \infty} \varphi\left(p\left(T^{m_{k}} x, T^{n_{k}} x\right)\right)
$$

$$
\begin{aligned}
& =\lim _{k \rightarrow \infty} \lim _{i \rightarrow \infty} \varphi_{i}\left(p\left(T^{m_{k}} x, T^{n_{k}} x\right)\right) \\
& =\lim _{i \rightarrow \infty} \lim _{k \rightarrow \infty} \varphi_{i}\left(p\left(T^{m_{k}} x, T^{n_{k}} x\right)\right) \\
& \geq \limsup _{i \rightarrow \infty} \limsup _{k \rightarrow \infty} p\left(T^{m_{k}+i} x, T^{n_{k}+i} x\right) \\
& \geq \varepsilon,
\end{aligned}
$$

where the first equality holds because φ is continuous, the second equality holds because $\left\{\varphi_{i}\right\}$ is pointwise convergent to φ on the range of p, the third equality holds because $\left\{\varphi_{i}\right\}$ is uniformly convergent to φ on the range of p, and the last two inequalities hold by (2.1) and (2.2), respectively. Hence $\varphi(\varepsilon) \geq \varepsilon$, which is a contradiction. Therefore $\left\{T^{n} x\right\}$ is p-Cauchy.

Step 3: T has a unique fixed point.

Because X is p-complete, it is concluded from Steps 1 and 2 that the family $\left\{\left\{T^{n} x\right\}: x \in X\right\}$ of Picard iterates of T is p-equiconvergent, that is, there exists $u \in X$ such that $T^{n} x \xrightarrow{p} u$ for all $x \in X$. In particular, $T^{n} u \xrightarrow{p} u$. We claim that u is the unique fixed point for T. To this end, first note that since T is p-continuous on X, it follows that $T^{n+1} u \xrightarrow{p} T u$, and so, by Lemma 1.2, we have $u=T u$. And if $v \in X$ is a fixed point for T, then

$$
p(u, v)=\lim _{n \rightarrow \infty} p\left(T^{n} u, T^{n} v\right) \leq \lim _{n \rightarrow \infty} \varphi_{n}(p(u, v))=\varphi(p(u, v)),
$$

which is impossible unless $p(u, v)=0$. Similarly $p(u, u)=0$ and using Lemma 1.2 once more, we get $v=u$.

It is worth mentioning that the boundedness of some orbit of T is not necessary in Theorem 2.4 unlike [5, Theorem 2.1] or [2, Theorem 4.1.15].

As a consequence of Theorem 2.4, we have the following version of $[1$, Theorem 3.1].
Corollary 2.5. Let p be an E-distance on a separated uniform space X such that X is p-complete and p-bounded and let a mapping $T: X \rightarrow X$ satisfy

$$
\begin{equation*}
p(T x, T y) \leq \varphi(p(x, y)) \quad \text { for all } x, y \in X \tag{2.3}
\end{equation*}
$$

where $\varphi: \mathbb{R}^{\geq 0} \rightarrow \mathbb{R}^{\geq 0}$ is nondecreasing and continuous with $\varphi^{n}(t) \rightarrow 0$ for all $t>0$. Then T has a unique fixed point $u \in X$, and $T^{n} x \xrightarrow{p} u$ for all $x \in X$.

Proof. Note first that $\varphi(0)=0$; for if $0<t<\varphi(0)$ for some t, then the monotonicity of φ implies that $0<t<\varphi(0) \leq \varphi^{n}(t)$ for all $n \geq 1$, which contradicts the fact that $\varphi^{n}(t) \rightarrow 0$.

Next, since φ is nondecreasing, it follows that T satisfies

$$
p\left(T^{n} x, T^{n} y\right) \leq \varphi^{n}(p(x, y)) \quad \text { for all } x, y \in X \text { and } n \geq 1
$$

Setting $\varphi_{n}=\varphi^{n}$ for each $n \geq 1$ in Definition 2.1, it is seen that $\left\{\varphi_{n}\right\}$ converges pointwise to the constant function 0 on $[0,+\infty)$, and since

$$
\sup \left\{\varphi^{n}(p(x, y)): x, y \in X\right\}=\varphi^{n}\left(\delta_{p}(X)\right) \rightarrow 0
$$

it follows that $\left\{\varphi_{n}\right\}$ converges uniformly to 0 on the range of p. Because the constant function 0 belongs to Φ, it is concluded that T is an E asymptotic contraction on X. Moreover, φ_{n} 's are all continuous on $\mathbb{R}^{\geq 0}$ and (2.3) ensures that T is p-continuous on X. Consequently, the result follows immediately from Theorem 2.4.

The next corollary is a partial modification of Kirk's theorem [5, Theorem 2.1] in uniform spaces. One can find it with an additional assumption, e.g., in [2, Theorem 4.1.15].

Corollary 2.6. Let X be a complete metric space and let $T: X \rightarrow X$ be a continuous asymptotic contraction for which the functions φ_{n} in Definition 2.1 are all continuous on $\mathbb{R} \geq 0$ for large indices n. Then T has a unique fixed point $u \in X$, and $T^{n} x \rightarrow u$ for all $x \in X$.

3. Boyd-Wong type E-contractions

In this section, we denote by Ψ the class of all functions $\psi: \mathbb{R}^{\geq 0} \rightarrow$ $\mathbb{R}^{\geq 0}$ with the following properties:

- ψ is upper semicontinuous on $\mathbb{R}^{\geq 0}$ from the right, i.e.,

$$
t_{n} \downarrow t \geq 0 \quad \text { implies } \quad \limsup _{n \rightarrow \infty} \psi\left(t_{n}\right) \leq \psi(t) ;
$$

- $\psi(t)<t$ for all $t>0$, and $\psi(0)=0$.

It might be interesting for the reader to be mentioned that the family Φ defined and used in Section 2 is contained in the family Ψ but these two families do not coincide. To see this, consider the function $\psi(t)=0$ if $0 \leq t<1$, and $\psi(t)=\frac{1}{2}$ if $t \geq 1$. Then ψ is upper semicontinuous from the right but it is not continuous on $\mathbb{R}^{\geq 0}$. Furthermore, the upper semicontinuity of ψ on $\mathbb{R} \geq 0$ from the right and the condition that $\psi(t)<$
t for all $t>0$, do not imply that ψ vanishes at zero in general. In fact, the function $\psi: \mathbb{R}^{\geq 0} \rightarrow \mathbb{R}^{\geq 0}$ defined by the rule

$$
\psi(t)=\left\{\begin{array}{cc}
a & t=0 \\
\frac{t}{2} & 0<t<1 \\
\frac{1}{2 t} & t \geq 1
\end{array}\right.
$$

for all $t \geq 0$, where a is an arbitrary positive real number, confirms this claim.

Theorem 3.1. Let p be an E-distance on a separated uniform space X such that X is p-complete and let $T: X \rightarrow X$ satisfy

$$
\begin{equation*}
p(T x, T y) \leq \psi(p(x, y)) \quad \text { for all } x, y \in X \tag{3.1}
\end{equation*}
$$

where $\psi \in \Psi$. Then T has a unique fixed point $u \in X$, and $T^{n} x \xrightarrow{p} u$ for all $x \in X$.

Proof. We divide the proof into three steps as Theorem 2.4.

Step 1: $p\left(T^{n} x, T^{n} y\right) \rightarrow 0$ as $n \rightarrow \infty$ for all $x, y \in X$.

Let $x, y \in X$ be given. Then for each nonnegative integer n, by the contractive condition (3.1) we have

$$
\begin{equation*}
p\left(T^{n+1} x, T^{n+1} y\right) \leq \psi\left(p\left(T^{n} x, T^{n} y\right)\right) \leq p\left(T^{n} x, T^{n} y\right) \tag{3.2}
\end{equation*}
$$

Thus, $\left\{p\left(T^{n} x, T^{n} y\right)\right\}$ is a nonincreasing sequence of nonnegative numbers and so it converges decreasingly to some $\alpha \geq 0$. Letting $n \rightarrow \infty$ in (3.2), by the upper semicontinuity of ψ from the right, we get

$$
\alpha=\lim _{n \rightarrow \infty} p\left(T^{n+1} x, T^{n+1} y\right) \leq \limsup _{n \rightarrow \infty} \psi\left(p\left(T^{n} x, T^{n} y\right)\right) \leq \psi(\alpha)
$$

which is a contradiction unless $\alpha=0$. Consequently, $p\left(T^{n} x, T^{n} y\right) \rightarrow 0$.

Step 2: The sequence $\left\{T^{n} x\right\}$ is p-Cauchy for all $x \in X$.

Let $x \in X$ be arbitrary and suppose on the contrary that $\left\{T^{n} x\right\}$ is not p-Cauchy. Then similar to the proof of Step 2 of Theorem 2.4, it is seen that there exist an $\varepsilon>0$ and sequences $\left\{m_{k}\right\}$ and $\left\{n_{k}\right\}$ of positive integers such that $m_{k}>n_{k}$ for each k and $p\left(T^{m_{k}} x, T^{n_{k}} x\right) \rightarrow \varepsilon$. On the other hand, for each k, by (3.1) we have

$$
\begin{aligned}
p\left(T^{m_{k}} x, T^{n_{k}} x\right) \leq & p\left(T^{m_{k}} x, T^{m_{k}+1} x\right)+p\left(T^{m_{k}+1} x, T^{n_{k}+1} x\right) \\
& +p\left(T^{n_{k}+1} x, T^{n_{k}} x\right)
\end{aligned}
$$

$$
\begin{aligned}
\leq & p\left(T^{m_{k}} x, T^{m_{k}+1} x\right)+\psi\left(p\left(T^{m_{k}} x, T^{n_{k}} x\right)\right) \\
& +p\left(T^{n_{k}+1} x, T^{n_{k}} x\right)
\end{aligned}
$$

Letting $k \rightarrow \infty$ and using Step 1 and the upper semicontinuity of ψ from the right, we obtain

$$
\begin{aligned}
\varepsilon= & \lim _{k \rightarrow \infty} p\left(T^{m_{k}} x, T^{n_{k}} x\right)=\limsup _{k \rightarrow \infty} p\left(T^{m_{k}} x, T^{n_{k}} x\right) \\
\leq & \limsup _{k \rightarrow \infty}\left[p\left(T^{m_{k}} x, T^{m_{k}+1} x\right)+\psi\left(p\left(T^{m_{k}} x, T^{n_{k}} x\right)\right)\right. \\
& \left.+p\left(T^{n_{k}+1} x, T^{n_{k}} x\right)\right] \\
\leq & \limsup _{k \rightarrow \infty} p\left(T^{m_{k}} x, T^{m_{k}+1} x\right)+\limsup _{k \rightarrow \infty} \psi\left(p\left(T^{m_{k}} x, T^{n_{k}} x\right)\right) \\
& +\limsup _{k \rightarrow \infty} p\left(T^{n_{k}+1} x, T^{n_{k}} x\right) \\
= & \limsup _{k \rightarrow \infty} \psi\left(p\left(T^{m_{k}} x, T^{n_{k}} x\right)\right) \\
\leq & \psi(\varepsilon)
\end{aligned}
$$

which is a contradiction. Therefore, $\left\{T^{n} x\right\}$ is p-Cauchy.

Step 3: T has a unique fixed point.

Since X is p-complete, it follows from Steps 1 and 2 that the family $\left\{\left\{T^{n} x\right\}: x \in X\right\}$ is p-equiconvergent to some $u \in X$. In particular, $T^{n} u \xrightarrow{p} u$. Since (3.1) implies the p-continuity of T on X, it follows that $T^{n+1} u \xrightarrow{p} T u$ and so, by Lemma 1.2 , we have $u=T u$, that is, u is a fixed point for T. If $v \in X$ is a fixed point for T, then

$$
p(u, v)=p(T u, T v) \leq \psi(p(u, v))
$$

which is impossible unless $p(u, v)=0$. Similarly $p(u, u)=0$. Therefore, using Lemma 1.2 once more, one gets $v=u$.

As an immediate consequence of Theorem 3.1, we have the BoydWong's theorem [3] in metric spaces:

Corollary 3.2. Let X be a complete metric space and let a mapping $T: X \rightarrow X$ satisfy

$$
\begin{equation*}
d(T x, T y) \leq \psi(d(x, y)) \quad \text { for all } x, y \in X \tag{3.3}
\end{equation*}
$$

where $\psi \in \Psi$. Then T has a unique fixed point $u \in X$, and $T^{n} x \rightarrow u$ for all $x \in X$.

In the following example, we see that Theorem 3.1 guarantees the existence and uniqueness of a fixed point while Corollary 3.2 cannot be applied.

Example 3.3. Let the set $X=[0,1]$ be endowed with the uniformity induced by the Euclidean metric and define a mapping $T: X \rightarrow X$ by $T x=0$ if $0 \leq x<1$, and $T 1=\frac{1}{4}$. Then T does not satisfy (3.3) for any $\psi \in \Psi$ since it is not continuous on X. In fact, if $\psi \in \Psi$ is arbitrary, then

$$
\left|T 1-T \frac{3}{4}\right|=\frac{1}{4}>\psi\left(\frac{1}{4}\right)=\psi\left(\left|1-\frac{3}{4}\right|\right) .
$$

Now set $p(x, y)=\max \{x, y\}$. Then p is an E-distance on X and T satisfies (3.1) for the function $\psi: \mathbb{R} \geq 0 \rightarrow \mathbb{R} \geq 0$ defined by the rule $\psi(t)=$ $\frac{t}{4}$ for all $t \geq 0$. It is easy to check that this ψ belongs to Ψ, and the hypotheses of Theorem 3.1 are fulfilled.

Remark 3.4. In Theorem 2.4 (Corollary 2.6), assume that for some index k the function φ_{k} belongs to Φ. Then Theorem 3.1 (Corollary 3.2) implies that T^{k} and so T has a unique fixed point u and $T^{k n} x \xrightarrow{p} u$ for all $x \in X$. So, it is concluded by the p-continuity of T that the family $\left\{\left\{T^{n} x\right\}: x \in X\right\}$ is p-equiconvergent to u. Hence the significance of Theorem 2.4 (Corollary 2.6) is whenever none of φ_{n} 's satisfy $\varphi_{n}(t)<t$ for all $t>0$, that is, whenever for each $n \geq 1$ there exists a $t_{n}>0$ such that $\varphi_{n}\left(t_{n}\right) \geq t_{n}$.

References

[1] M. Aamri and D. El Moutawakil, Common fixed point theorems for E-contractive or E-expansive maps in uniform spaces, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 20 (2004), no. 1, 83-91.
[2] R. P. Agarwal, D. O'Regan and D. R. Sahu, Fixed Point Theory for LipschitzianType Mappings with Applications, Springer, New York, 2009.
[3] D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969) 458-464.
[4] J. Jachymski and I. Jóźwik, On Kirk's asymptotic contractions, J. Math. Anal. Appl. 300 (2004), no. 1, 147-159.
[5] W. A. Kirk, Fixed points of asymptotic contractions, J. Math. Anal. Appl. 277 (2003), no. 2, 645-650.
[6] S. Willard, General Topology, Addison-Wesley Publishing Co., Mass.-LondonDon Mills, Ont., 1970.

Aris Aghanians
Department of Mathematics, K. N. Toosi University of Technology, P.O. Box 163151618, Tehran, Iran
Email: a.aghanians@dena.kntu.ac.ir
Kamal Fallahi
Department of Mathematics, K. N. Toosi University of Technology, P.O. Box 163151618, Tehran, Iran
Email: k_fallahi@dena.kntu.ac.ir

Kourosh Nourouzi

Department of Mathematics, K. N. Toosi University of Technology, P.O. Box 163151618, Tehran, Iran
Email: nourouzi@kntu.ac.ir

[^0]: MSC(2010): Primary: 47H10; Secondary: 54E15, 47H09.
 Keywords: Separated uniform space, E-asymptotic contraction, Boyd-Wong type E contraction, fixed point.
 Received: 1 June 2012, Accepted: 1 December 2012.
 *Corresponding author
 (c) 2013 Iranian Mathematical Society.

