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Abstract. We shall give a lower estimate of harmonic functions
of order greater than one in a half space, which generalize the result
obtained by B. Ya. Levin in a half plane.
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1. Introduction

Let R and R+ be the sets of all real numbers and of all positive real
numbers, respectively. Let Rn (n ≥ 2) denote the n-dimensional Eu-
clidean space with points x = (x′, xn), where x′ = (x1, x2, · · · , xn−1) ∈
Rn−1 and xn ∈ R. The boundary and closure of an open set D of Rn

are denoted by ∂D and D, respectively. The upper half space is the set
H = {(x′, xn) ∈ Rn : xn > 0}, whose boundary is ∂H.

For a set E, E ⊂ R+ ∪ {0}, we denote {x ∈ H : |x| ∈ E} and
{x ∈ ∂H : |x| ∈ E} by HE and ∂HE, respectively. We identify Rn with
Rn−1×R and Rn−1 with Rn−1×{0}, writing typical points x, y ∈ Rn

as x = (x′, xn), y = (y′, yn), where y′ = (y1, y2, · · · , yn−1) ∈ Rn−1 and
putting

x · y =
n∑

j=1

xjyj = x′ · y′ + xnyn, |x| =
√
x · x, |x′| =

√
x′ · x′,

|x′| = |x| cos θ and xn = |x| sin θ (0 < θ ≤ π/2).
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Let Br denote the open ball with center at the origin and radius
r (> 0) in Rn. We use the standard notations u+ = max{u, 0} and
u− = −min{u, 0}. In the sense of Lebesgue measure dy′ = dy1 · · · dyn−1

and dy = dy′dyn. Let σ denote (n−1)-dimensional surface area measure
and ∂/∂n denote differentiation along the inward normal into H.

The estimate we deal with has a long history which can be traced back
to Levin’s estimate of harmonic functions from below (see, for example,
Levin [6, p. 209]).

Theorem 1.1. Let A1 be a constant, u(z) harmonic in the upper half
space C+ and continuous on ∂C+. Suppose that

u(z) ≤ A1R
ρ, z ∈ C+, R = |z| > 1, ρ > 1

and

|u(z)| ≤ A1, |z| ≤ 1, Imz ≥ 0.

Then

u(Reiφ) ≥ −A2A1(1 +Rρ) sin−1 φ, Reiφ ∈ C+,

where A2 is a constant independent of A1, R, φ and the function u(z).

Further versions and refinements of Theorem 1.1 may be found in the
monograph Nikol’skǐı [7, Ch. 1] and in the paper Krasichkov-Ternovskǐı
[3].

In this article, we will consider functions u(x) harmonic in H and
continuous on H. In what follows we shall denote by M various values
which does not depend on K, R (= |x|), θ and the function u(x).

In this note we prove analogous estimates for u(x) in H.

Theorem 1.2. Suppose that

u(x) ≤ KRρ(R), x ∈ H, R = |x| > 1, ρ(R) > 1(1.1)

and

u(x) ≥ −K, |x| ≤ 1, xn ≥ 0.(1.2)

Then

u(x) ≥ −MK
(
1 + (2R)ρ(2R)

)
sin1−n θ,

where x ∈ H and ρ(R) is nondecreasing on [1,+∞).

Remark 1.3. If n = 2 and ρ(R) ≡ ρ, Theorem 1.2 is just a consequence
of Theorem 1.1.
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Theorem 1.4. If (1.1) and (1.2) hold, then

u(x) ≥ −MK

(
1 + (

N + 1

N
R)ρ(

N+1
N

R)

)
sin1−n θ,

where x ∈ H, N(≥ 1) is a sufficiently large number and ρ(R) is as
defined in Theorem 1.2.

2. Lemmas

Carleman’s formula [2] connects the modulus and the zeros of a func-
tion analytic in C+ (see, for example, [5, p. 224]). Nevanlinna’s formula
(see [6, p. 193]) refers to a harmonic function in a half disk. Armitage
and Kuran obtained a generalized Nevanlinna-type formula in a half
space and Poisson integral forumla for half balls resepectively, which
play important roles in our discussions.

Lemma 2.1. ([1]). If R > 1, then we have∫
{x∈H: |x|=R}

u(x)
nxn
Rn+1

dσ(x)+

∫
∂H(1,R)

u(x′)(
1

|x′|n
− 1

Rn
)dx′ = c1+

c2
Rn

,

where

c1 =

∫
{x∈H:|x|=1}

(
(n− 1)xnu(x) + xn

∂u(x)

∂n

)
dσ(x)

and

c2 =

∫
{x∈H:|x|=1}

(
xnu(x)− xn

∂u(x)

∂n

)
dσ(x).

Lemma 2.2. ([4]). Let R > 1, u(x) be a function in B+
R = BR ∩H and

continuous in B
+
R. Then

u(x) =

∫
{y∈H: |y|=R}

R2 − |x|2

ωnR
(

1

|y − x|n
− 1

|y − x∗|n
)u(y)dσ(y)

+
2xn
ωn

∫
∂H[0,R)

(
1

|y′ − x|n
− Rn

|x|n
1

|y′ − x̃|n
)u(y′)dy′,

where x ∈ B+
R , x̃ = R2x/|x|2, x∗ = (x′,−xn) and ωn = π

n
2 /Γ(1 + n

2 ) is
the volume of the unit n-ball in Rn.
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3. Proof of Theorem 1

By applying Lemma 2.1 to u(x), we have∫
{x∈H: |x|=R}

u+(x)
nxn
Rn+1

dσ(x) +

∫
∂H(1,R)

u+(x′)(
1

|x′|n
− 1

Rn
)dx′(3.1)

=

∫
{x∈H: |x|=R}

u−(x)
nxn
Rn+1

dσ(x)

+

∫
∂H(1,R)

u−(x′)(
1

|x′|n
− 1

Rn
)dx′ + c1 +

c2
Rn

.

It immediately follows from (1.1) that∫
{x∈H: |x|=R}

u+(x)
nxn
Rn+1

dσ(x) ≤ MKRρ(R)−1(3.2)

and ∫
∂H(1,R)

u+(x′)(
1

|x′|n
− 1

Rn
)dx′ ≤ MKRρ(R)−1.(3.3)

Hence from (3.1), (3.2) and (3.3) we have∫
{x∈H: |x|=R}

u−(x)
nxn
Rn+1

dσ(x) ≤ MKRρ(R)−1(3.4)

and ∫
∂H(1,R)

u−(x′)(
1

|x′|n
− 1

Rn
)dx′ ≤ MKRρ(R)−1.(3.5)

And (3.5) gives∫
∂H(1,R)

u−(x′)

|x′|n
dx′

≤ 2n

2n − 1

∫
∂H(1,R)

u−(x′)

(
1

|x′|n
− 1

(2R)n

)
dx′

≤ MK(2R)ρ(2R)−1.(3.6)

Since −u(x) ≤ u−(x), by applying Lemma 2.2 to −u(x) we have

−u(x) ≤ I1(x) + I2(x),(3.7)

where

I1(x) =

∫
{y∈H: |y|=R}

R2 − |x|2

ωnR
(

1

|y − x|n
− 1

|y − x∗|n
)u−(y)dσ(y)
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and

I2(x) =
2xn
ωn

∫
∂H[0,R)

(
1

|y′ − x|n
− Rn

|x|n
1

|y′ − x̃|n
)u−(y′)dy′.

We remark that
1

|y − x|n
− 1

|y − x∗|n
≤ 2nxnyn

|y − x|n+2
(3.8)

and

|y − x|n ≥ xnn = |x|n sinn θ, x ∈ H, yn = 0.(3.9)

If we put |x| = r > 1/2 and R = 2r in (3.7), then we finally have from
(3.4), (3.8) and (3.9)

I1(x) ≤
∫
{y∈H: |y|=R}

R2 − r2

ωnR

2nxnyn
ωn|y − x|n+2

u−(y)dσ(y)

≤ MKRρ(R)(3.10)

and

I2(x) ≤ I21(x) + I22(x),(3.11)

where

I21(x) =
2

ωnx
n−1
n

∫
∂H(1,R)

u−(y′)dy′

and

I22(x) =
2

ωnx
n−1
n

∫
∂H[0,1]

u−(y′)dy′.

We obtain that

I21(x) ≤ 2Rn

ωnx
n−1
n

∫
∂H(1,R)

u−(y′)

|y′|n
dy′

≤ MK(2R)ρ(2R) sin1−n θ(3.12)

and

I22(x) ≤ 2K

ωnx
n−1
n

∫
∂H[0,1]

dy′

≤ MK sin1−n θ(3.13)

from (3.6) and (1.2), respectively.
From (3.7), (3.10), (3.11), (3.12) and (3.13), we have for |x| > 1/2

−u(x) ≤ MK
(
1 + (2R)ρ(2R)

)
sin1−n θ.(3.14)
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For |x| ≤ 1/2, we have from (1.2)

−u(x) ≤ K ≤ K
(
1 + (2R)ρ(2R)

)
sin1−n θ.(3.15)

Thus the conclusion immediately follows from (3.14) and (3.15).

4. Proof of Theorem 2

By modifying (3.6), we have∫
∂H(1,R)

u−(x′)

|x′|n
dx′

≤ (N + 1)n

(N + 1)n −Nn

∫
∂H(1,R)

u−(x′)

(
1

|x′|n
− 1

(N+1
N R)n

)
dx′

≤ MK(
N + 1

N
R)ρ(

N+1
N

R)−1.

Then (3.12), (3.14) and (3.15) are replaced by the following estimates

I21(x) ≤ MK

(
N + 1

N
R

)ρ(N+1
N

R)−1

sin1−n θ.(4.1)

−u(x) ≤ MK

(
1 + (

N + 1

N
R)ρ(

N+1
N

R)

)
sin1−n θ.(4.2)

−u(x) ≤ K ≤ MK

(
1 + (

N + 1

N
R)ρ(

N+1
N

R)

)
sin1−n θ.(4.3)

All (3.7), (3.10), (3.11), (4.1), (3.12), (4.2) and (4.3) give

u(x) ≥ −MK

(
1 + (

N + 1

N
R)ρ(

N+1
N

R)

)
sin1−n θ

from which the conclusion immediately follows.
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