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Abstract. In this paper, we study the extremal ranks and inertias
of the Hermitian matrix expression

f(X,Y ) = C4 −B4Y − (B4Y )∗ −A4XA∗
4,

where C4 is Hermitian, ∗ denotes the conjugate transpose, X and Y
satisfy the following consistent system of matrix equations A3Y =
C3, A1X = C1, XB1 = D1, A2XA∗

2 = C2, X = X∗. As conse-
quences, we get the necessary and sufficient conditions for the above
expression f(X,Y ) to be (semi) positive, (semi) negative. The
relations between the Hermitian part of the solution to the ma-
trix equation A3Y = C3 and the Hermitian solution to the sys-
tem of matrix equations A1X = C1, XB1 = D1, A2XA∗

2 = C2

are also characterized. Moreover, we give the necessary and suffi-
cient conditions for the solvability to the following system of matrix
equations A3Y = C3, A1X = C1, XB1 = D1, A2XA∗

2 = C2, X =
X∗, B4Y +(B4Y )∗+A4XA∗

4 = C4 and provide an expression of the
general solution to this system when it is solvable.
Keywords: Linear matrix equation, Moore-Penrose inverse, rank,
inertia.
MSC(2010):Primary: 15A24, 15A09, 15A03.

1. Introduction

It is well known that the linear matrix expressions and their special
cases–linear matrix equations are fundamental objects in matrix theory
and applications. In recent 30 years, many authors addressed to the
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research on extremal ranks and inertias of matrix expressions and ob-
tained many useful applications. In 2011, Liu and Tian [9] provided the
formulas for the extremal ranks and inertias of

A−BXC − (BXC)∗.

Chu [3], Liu and Tian [10] considered the extremal ranks and inertias of

A−BXB∗ − CY C∗.(1.1)

In 2011, Tian [15] derived the maximal and minimal ranks and inertias
of

f(X,Y ) = C4 −B4Y − (B4Y )∗ −A4XA∗
4.(1.2)

Note that the rank and inertia are not only important in matrix theory
but also powerful tools in investigating the solvability of some matrix
equations. One purpose of this work is to get the necessary and suf-
ficient conditions for the consistence of some new matrix equations by
investigating the rank and inertia of some Hermitian matrix expressions
with restrictions.

Study on the solvability conditions and the general solution to linear
matrix equations is active in recent years (e.g. [4], [7], [17]- [22]). The
well-known Lyapunov matrix equation

BX + (BX)∗ = A(1.3)

has played an important role in contemporary mathematics, such as
system theory, stability analysis, optimal control, model reduction, etc.
(e.g., [12, 13]). In 1998, Braden [1] gave the general solution to (1.3).
In 2007, Djordjević [5] considered the explicit solution to the equation
(1.3) for linear bounded operators on Hilbert spaces. Moreover, Cao [2]
investigated the general solution to

BXC + (BXC)∗ = A.(1.4)

Xu [20] obtained an explicit expression of the solution to the operator
equation (1.4). Liu [9] considered the general solutions to the matrix
equation (1.4). In 2012, Wang and He [17] studied some necessary and
sufficient conditions for the consistence of the matrix equation

A1X + (A1X)∗ +B1Y C1 + (B1Y C1)
∗ = E1(1.5)

and presented an expression of the general solution to (1.5).
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Hermitian solutions to some matrix equations were also investigated
by many authors. Khatri and Mitra [8] considered the Hermitian solu-
tions to

A3Y = C3,(1.6)

and

AY A∗ = B,

respectively. In 2010, Wang and Wu [16] considered the solvability con-
ditions and the Hermitian solution to the following system

A1X = C1, XB1 = D1, A2XA∗
2 = C2, A4XA∗

4 = C4(1.7)

for adjointable operators between Hilbert C∗-modules.
Note that the matrix equation (1.3) and the system of matrix equa-

tions (1.7) are special cases of

(1.8)

 A3Y = C3, A1X = C1, XB1 = D1,
A2XA∗

2 = C2, X = X∗,
B4Y + (B4Y )∗ +A4XA∗

4 = C4.

To our knowledge, there has been little results about this system. The
purpose of this work is to give the solvability conditions and the expres-
sions of the general solution to (1.8). In order to obtain the necessary
and sufficient conditions for the consistence of the system (1.8), we give
the extremal ranks and inertias of the matrix expression (1.2) subject
to the matrix equations (1.6) and

A1X = C1, XB1 = D1, A2XA∗
2 = C2, X = X∗.(1.9)

The paper is organized as follows. In Section 2, we consider the
extremal ranks and inertias of (1.2), where Y and X satisfy (1.6) and
(1.9), respectively. We then obtain the relations between the Hermitian
part of the solution to (1.6) and the Hermitian solution to (1.9). In
section 3, we give the solvability conditions for (1.8) and the expression
of the solution to (1.8) when it is solvable. As a special case of the
system (1.8), we derive some new solvability conditions for the system
(1.7) and a new expression of the general solution to (1.7), which extend
the main result in [16].

Throughout this paper, we denote the field of complex numbers by
C, the set of all m × n matrices over C by Cm×n, the set of all m ×m
Hermitian matrices by Cm×m

h . The symbols In, A
∗ and R (A) stand for

the n× n identity matrix, the conjugate transpose, the column space of
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a complex matrix A, respectively. The Moore-Penrose inverse A† of A,
is the unique matrix A†, such that

(i)AA†A = A, (ii)A†AA† = A†, (iii) (AA†)∗ = AA†, (iv) (A†A)∗ = A†A.

If a Hermitian matrix X satisfies the equality (i), then it is called a
Hermitian g inverse of A and is denoted by A−

h . Moreover, LA and

RA stand for the two projectors LA = I − A†A, RA = I − AA†. The
eigenvalues of a Hermitian matrix A ∈ Cn×n are real and the inertia of
A is defined to be the triplet

In(A) = {i+(A), i−(A), i0(A)},
where i+(A), i−(A) and i0(A) stand for the numbers of positive, negative
and zero eigenvalues of A, respectively. For two Hermitian matrices A
and B of the same size, we say A ≥ B (A ≤ B) in the Löwner partial
ordering if A−B is positive (negative) semidefinite. The Hermitian part
of X is defined as H(X) = (X +X∗)/2.

2. Extremal ranks and inertias of (1.2) subject to (1.6) and
(1.9) with applications

In this section, we give the extremal ranks and inertias of (1.2) subject
to (1.6) and (1.9). Then we characterize the relations between the Her-
mitian part of the solution to (1.6) and the Hermitian solution to (1.9).
We also consider the extremal ranks and inertias of Hermitian Schur
complement of a given Hermitian matrix, which extend the known re-
sults in [9].

Lemma 2.1. [8] Let A3 and C3 be given. Then the following statements
are equivalent:
(a) Equation (1.6) is consistent.
(b)

RA3C3 = 0.(2.1)

(c)

r
[
A3 C3

]
= r(A3).(2.2)

In this case, the general solution can be written as

Y = A†
3C3 + LA3U,(2.3)

where U is arbitrary matrix over C with appropriate size.
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Lemma 2.2. ( [14]) Let A1, B1, C1, D1, A2, and C2 = C∗
2 be given. Set

E1 =

[
A1

B∗
1

]
, F1 =

[
C1

D∗
1

]
, M = A2LE1 ,

Q = C2 −A2[E
†
1F1 + F ∗

1 (E
†
1)

∗ − E†
1E1F

∗
1 (E

†
1)

∗]A∗
2.

Then the following statements are equivalent:
(a) System (1.9) is consistent.
(b)

E1F
∗
1 = F1E

∗
1 , RE1F1 = 0, RMQ = 0.(2.4)

(c)

E1F
∗
1 = F1E

∗
1 , r

[
E1 F1

]
= r(E1), r

[
A2 C2

E1 F1A
∗
2

]
= r

[
A2

E1

]
.(2.5)

In this case, the general Hermitian solution to (1.9) can be expressed
as

X =E†
1F1 + F ∗

1 (E
†
1)

∗ − E†
1E1F

∗
1 (E

†
1)

∗ + LE1M
†Q(M †)∗LE1(2.6)

+ LE1LMV LE1 + (LE1LMV LE1)
∗,

where V is an arbitrary Hermitian matrix over C with appropriate size.

Lemma 2.3. ( [11]) Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n, D ∈ Cm×p, E ∈
Cq×n, Q ∈ Cm1×k, and P ∈ Cl×n1 be given. Then

(a) r(A) + r(RAB) = r(B) + r(RBA) = r
[
A B

]
.

(b) r(A) + r(CLA) = r(C) + r(ALC) = r

[
A
C

]
.

(c) r(B) + r(C) + r(RBALC) = r

[
A B
C 0

]
.

(d) r(P ) + r(Q) + r

[
A BLQ

RPC 0

]
= r

A B 0
C 0 P
0 Q 0

 .

(e) r

[
RBALC RBD
ELC 0

]
+ r(B) + r(C) = r

A D B
E 0 0
C 0 0

 .
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Lemma 2.4. ( [15]) Let A ∈ Cm×m
h , B ∈ Cm×n, C ∈ Cn×n

h , Q ∈ Cm×n,
P ∈ Cp×n be given, and T ∈ Cm×m be nonsingular. Then

(a) i±(TAT
∗) = i±(A),

(b) i±

[
A 0
0 C

]
= i±(A) + i±(C),

(c) i±

[
0 Q
Q∗ 0

]
= r(Q),

(d) i±

[
A BLP

LPB
∗ 0

]
+ r(P ) = i±

 A B 0
B∗ 0 P ∗

0 P 0

 .

Lemma 2.5. ( [23]) Let p(X,Y ) = A−BX−(BX)∗−CY D−(CY D)∗,
where A,B,C, and D are given with appropriate sizes, and let

M1 =

 A B C
B∗ 0 0
C∗ 0 0

 ,M2 =

 A B D∗

B∗ 0 0
D 0 0

 ,M3 =

[
A B C D∗

B∗ 0 0 0

]
,

M4 =

 A B C D∗

B∗ 0 0 0
C∗ 0 0 0

 ,M5 =

 A B C D∗

B∗ 0 0 0
D 0 0 0

 .

Then we have the identities:

max
X,Y

r [p(X,Y )] = min {m, r(M1), r(M2), r(M3)} ,

min
X,Y

r [p(X,Y )] =

2r(M3)− 2r(B) + max{u+ + u−, v+ + v−, u+ + v−, u− + v+},

max
X,Y

i± [p(X,Y )] = min {i±(M1), i±(M2)} ,

min
X,Y

i± [p(X,Y )] =

r(M3)− r(B) + max {i±(M1)− r(M4), i±(M2)− r(M5)} ,

where

u± = i±(M1)− r(M4), v± = i±(M2)− r(M5).
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For convenience of representation, we adopt the following notations:

S1 =
{
Y
∣∣∣ A3Y = C3

}
,

S2 =
{
X = X∗

∣∣∣ A1X = C1, XB1 = D1, A2XA∗
2 = C2

}
.

Now we give the main theorem of this paper.

Theorem 2.6. Let A1, C1, B1, D1, A2, C2 = C∗
2 , A3, C3, A4, B4, and C4 =

C∗
4 ∈ Cm×m be given, and let E1, F1,M,Q be as in Lemma 2.2. Assume

that (1.6) and (1.9) are consistent, respectively. Then,
(a) The maximal rank of (1.2) is

max
Y ∈S1,X∈S2

r [f(X,Y )] = min {m, k1, k2, k3} .(2.7)

(b) The minimal rank of (1.2) is

min
Y ∈S1,X∈S2

r [f(X,Y )] =(2.8)

2k3 − 2k5 +max{s+ + s−, t+ + t−, s+ + t−, s− + t+}.

(c) The maximal inertia of (1.2) is

max
Y ∈S1,X∈S2

i± [f(X,Y )] = min {i±(N1), i±(N2)} .(2.9)

(d) The minimal inertia of (1.2) is

min
Y ∈S1,X∈S2

i± [f(X,Y )] =(2.10)

k3 − k5 +max {i±(N1)− k4,−i∓(N2)} ,
where

k1 = r


C4 B4 A4 C∗

3 0 1
2A4F

∗
1

B∗
4 0 0 A∗

3 0 0
A∗

4 0 0 0 A∗
2 E∗

1

C3 A3 0 0 0 0
0 0 A2 0 −C2 −1

2A2F
∗
1

1
2F1A

∗
4 0 E1 0 −1

2F1A
∗
2 0

− 2r

[
A2

E1

]
−2r(A3),

k2 = r


C4 B4 A4 C∗

3
1
2A4F

∗
1

B∗
4 0 0 A∗

3 0
A∗

4 0 0 0 E∗
1

C3 A3 0 0 0
1
2F1A

∗
4 0 E1 0 0

− 2r(E1)− 2r(A3),
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k3 = r


C4 B4 A4 C∗

3

B∗
4 0 0 A∗

3

C3 A3 0 0
F1A

∗
4 0 E1 0

− r(E1)− 2r(A3),

k4 = r


C4 B4 A4 C∗

3 0 0
B∗

4 0 0 A∗
3 0 0

A∗
4 0 0 0 A∗

2 E∗
1

C3 A3 0 0 0 0
F1A

∗
4 0 E1 0 0 0

− r

[
A2

E1

]
− 2r(A3)− r(E1),

k5 = r

[
A3

B3

]
− r(A3),

i±(N1) =i±


C4 B4 A4 C∗

3 0 1
2A4F

∗
1

B∗
4 0 0 A∗

3 0 0
A∗

4 0 0 0 A∗
2 E∗

1

C3 A3 0 0 0 0
0 0 A2 0 −C2 −1

2A2F
∗
1

1
2F1A

∗
4 0 E1 0 −1

2F1A
∗
2 0


− r

[
A2

E1

]
− r(A3),

i±(N2) = i±


C4 B4 A4 C∗

3
1
2A4F

∗
1

B∗
4 0 0 A∗

3 0
A∗

4 0 0 0 E∗
1

C3 A3 0 0 0
1
2F1A

∗
4 0 E1 0 0

− r(E1)− r(A3),

s± = i±(N1)− k4, t± = −i∓(N2).

Proof. By Lemma 2.1 and Lemma 2.2, the general solutions to (1.6) and
(1.9) can be expressed as

Y = Y0 + LA3U,(2.11)

X = X0 + LE1LMV LE1 + (LE1LMV LE1)
∗,(2.12)

where Y0 and X0 are special solutions to (1.6) and (1.9), respectively,
U and V are arbitrary matrices over C with appropriate sizes. Let
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A = C4−A4X0A
∗
4−B4Y0− (B4Y0)

∗, B = B4LA3 , C = A4LE1LM , D =
LE1A

∗
4. Substituting (2.11) and (2.12) into (1.2) gives

f(X,Y )
Y ∈S1,X∈S2

= h(U, V )
U,V

= A−BU − (BU)∗ − CV D − (CV D)∗.(2.13)

Applying Lemma 2.5 to (2.13) yields

max
U,V

r [h(U, V )] = min {m, r(N1), r(N2), r(N3)} ,(2.14)

min
U,V

r [h(U, V )] =(2.15)

2r(N3)− 2r(B) + max{s+ + s−, t+ + t−, s+ + t−, s− + t+},

max
U,V

i± [h(U, V )] = min {i±(N1), i±(N2)} ,(2.16)

min
U,V

i± [h(U, V )] =(2.17)

r(N3)− r(B) + max {i±(N1)− r(N4), i±(N2)− r(N5)} ,

where

N1 =

 A B C
B∗ 0 0
C∗ 0 0

 , N2 =

 A B D∗

B∗ 0 0
D 0 0

 , N3 =

[
A B C D∗

B∗ 0 0 0

]
,

N4 =

 A B C D∗

B∗ 0 0 0
C∗ 0 0 0

 , N5 =

 A B C D∗

B∗ 0 0 0
D 0 0 0

 ,

s± = i±(N1)− r(N4), t± = i±(N2)− r(N5).
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Note that r(N2) = r(N5). Applying Lemma 2.3, we have

k1 : = r(N1) = r

 A B C
B∗ 0 0
C∗ 0 0

 = r

 A B4LA3 A4LE1LM

RA∗
3
B∗

4 0 0
RM∗RE∗A∗

4 0 0



= r


A B4 A4LE1 0 0
B∗

4 0 0 A∗
3 0

RE∗A∗
4 0 0 0 M∗

0 A3 0 0 0
0 0 M 0 0

− 2r(A3)− 2r(M)

= r


C4 B4 A4 C∗

3 0 1
2A4F

∗
1

B∗
4 0 0 A∗

3 0 0
A∗

4 0 0 0 A∗
2 E∗

1

C3 A3 0 0 0 0
0 0 A2 0 −C2 −1

2A2F
∗
1

1
2F1A

∗
4 0 E1 0 −1

2F1A
∗
2 0

−2r
[
A2

E1

]
− 2r(A3).

Similarly, we can get the results of the ranks of N2 −N4, B and inertias
of N1 and N2 by using Lemma 2.3 and Lemma 2.4.

Corollary 2.7. Let A1, C1, B1, D1, A2, C2, A3, C3, A4, B4, C4, E1, F1, k1−
k6, s, t,N1, and N2 be the same as in Theorem 2.6. Assume that (1.6)
and (1.9) are consistent, respectively. Then,
(a) There exist Y ∈ S1 and X ∈ S2 such that C4 − B4Y − (B4Y )∗ −
A4XA∗

4 > 0 if and only if

i+(N1) ≥ m, i+(N2) ≥ m.

(b) There exist Y ∈ S1 and X ∈ S2 such that C4 − B4Y − (B4Y )∗ −
A4XA∗

4 < 0 if and only if

i−(N1) ≥ m, i−(N2) ≥ m.

(c) There exist Y ∈ S1 and X ∈ S2 such that C4 − B4Y − (B4Y )∗ −
A4XA∗

4 ≥ 0 if and only if

k3 − k5 + i−(N1)− k4 ≤ 0, k3 − k5 − i+(N2) ≤ 0.

(d) There exist Y ∈ S1 and X ∈ S2 such that C4 − B4Y − (B4Y )∗ −
A4XA∗

4 ≤ 0 if and only if

k3 − k5 + i+(N1)− k4 ≥ 0, k3 − k5 − i−(N2) ≥ 0.
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(e) C4 −B4Y − (B4Y )∗ −A4XA∗
4 > 0 for all Y ∈ S1 and X ∈ S2 if and

only if

k3 − k5 + i+(N1)− k4 = m, or k3 − k5 − i−(N2) = m.

(f) C4 −B4Y − (B4Y )∗ −A4XA∗
4 < 0 for all Y ∈ S1 and X ∈ S2 if and

only if

k3 − k5 + i−(N1)− k4 = m, or k3 − k5 − i+(N2) = m.

(g) C4 −B4Y − (B4Y )∗ −A4XA∗
4 ≥ 0 for all Y ∈ S1 and X ∈ S2 if and

only if
i−(N1) = 0 or i−(N2) = 0.

(h)C4 −B4Y − (B4Y )∗ −A4XA∗
4 ≤ 0 for all Y ∈ S1 and X ∈ S2 if and

only if
i+(N1) = 0 or i+(N2) = 0.

Next, we reveal the relations between the Hermitian part of the so-
lution to (1.6) and the Hermitian solution to (1.9). Let A4 = Im,
B4 = −Im/2, C4 = 0, put

u1 = 2m− 2r

[
A2

E1

]
− 2r(A3) +

r


0 2A∗

3 A∗
2 E∗

1+
2A3 2A3C

∗
3 + 2C3A

∗
3 0 A∗

3F
∗
1

A2 0 −C2 −1
2A2F

∗
1

E1 F ∗
1A

∗
3 −1

2F1A
∗
2 0

 ,

u2 = 2m+ r

 0 2A∗
3 E∗

1

2A3 2A3C
∗
3 + 2C3A

∗
3 A3F

∗
1

0 F1A
∗
3 0

− 2r(E1)− 2r(A3),

u3 = 2m+ r

[
2A3 2A3C

∗
3

E1 0

]
− r(E1)− 2r(A3),

u4 = 2m− r

[
A2

E1

]
− 2r(A3)− r(E1)+

r

 0 2A∗
3 A∗

2 E∗
1

2A3 2A3C
∗
3 + 2C3A

∗
3 0 0

E1 2F1A
∗
3 0 0

 ,

k5 = r

[
A3

B3

]
− r(A3),
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i±(M1) = m− r

[
A2

E1

]
− r(A3)+

i±


0 2A∗

3 A∗
2 E∗

1

2A3 2A3C
∗
3 + 2C3A

∗
3 0 A∗

3F
∗
1

A2 0 −C2 −1
2A2F

∗
1

E1 F ∗
1A

∗
3 −1

2F1A
∗
2 0

 ,

i±(M2) = m+ i±

 0 2A∗
3 E∗

1

2A3 2A3C
∗
3 + 2C3A

∗
3 A3F

∗
1

0 F1A
∗
3 0

− r(E1)− r(A3),

p± = i±(M1)− k4, q± = −i∓(M2).

Then we get the next corollary.

Corollary 2.8. Assume that (1.6) and (1.9) are consistent, respectively.
Then,
(a) The maximal rank of 1

2(Y + Y ∗)−X is

max
Y ∈S1,X∈S2

r [f(X,Y )] = min {m, u1, u2, u3} .

(b) The minimal rank of 1
2(Y + Y ∗)−X is

min
Y ∈S1,X∈S2

r [f(X,Y )] = 2u3 − 2k5+

max{p+ + p−, q+ + q−, p+ + q−, p− + q+}.

(c) The maximal inertia of 1
2(Y + Y ∗)−X is

max
Y ∈S1,X∈S2

i± [f(X,Y )] = min {i±(M1), i±(M2)} .

(d) The minimal inertia of 1
2(Y + Y ∗)−X is

min
Y ∈S1,X∈S2

i± [f(X,Y )] = u3 − k5 +max {i±(M1)− u4,−i∓(M2)} .

Therefore:
(e) There exist Y ∈ S1 and X ∈ S2 such that 1

2(Y + Y ∗) > X if and
only if

i+(M1) ≥ m, i+(M2) ≥ m.

(f) There exist Y ∈ S1 and X ∈ S2 such that 1
2(Y + Y ∗) < X if and

only if

i−(M1) ≥ m, i−(M2) ≥ m.
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(g) There exist Y ∈ S1 and X ∈ S2 such that 1
2(Y + Y ∗) ≥ X if and

only if

u3 − k5 + i−(M1)− u4 ≤ 0, u3 − k5 − i+(M2) ≤ 0.

(h) There exist Y ∈ S1 and X ∈ S2 such that 1
2(Y + Y ∗) ≤ X if and

only if

u3 − k5 + i+(M1)− u4 ≥ 0, u3 − k5 − i−(M2) ≥ 0.

(i) 1
2(Y + Y ∗) > X for all Y ∈ S1 and X ∈ S2 if and only if

u3 − k5 + i+(M1)− u4 = m, or u3 − k5 − i−(M2) = m.

(j) 1
2(Y + Y ∗) < X for all Y ∈ S1 and X ∈ S2 if and only if

u3 − k5 + i−(M1)− u4 = m, or u3 − k5 − i+(M2) = m.

(k) 1
2(Y + Y ∗) ≥ X for all Y ∈ S1 and X ∈ S2 if and only if

i−(M1) = 0 or i−(M2) = 0.

(l)12(Y + Y ∗) ≤ X for all Y ∈ S1 and X ∈ S2 if and only if

i+(M1) = 0 or i+(M2) = 0.

(m)There exist Y ∈ S1 and X ∈ S2 such that 1
2(Y + Y ∗) = X if and

only if

2u3 + p+ + p− ≤ 2k5, or 2u3 + q+ + q− ≤ 2k5,

or 2u3 + p+ + q− ≤ 2k5, or 2u3 + p− + q+ ≤ 2k5.

For a 2 × 2 block Hermitian matrix M =

[
A B
B∗ D

]
, the SA = D −

BA−
hB is in fact a linear matrix function D − B∗XB subject to the

Hermitian solution of the matrix equation AXA = A. In Theorem 2.6,
let A1, C1, B1, D1, A3, C3 vanish, and let C4 = D ∈ Cm×m

h , A2 = C2 =
A = A∗, A4 = B. Then we have the following result.

Corollary 2.9. Let A ∈ Cm×m
h , B ∈ Cm×n and D ∈ Cn×n

h be given. Let

N =

[
A 0 B
0 B∗ D

]
.
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Then the maximal and minimal values of the rank, positive and negative
signatures of the Schur complement D −B∗A−

hB are given by

max r(D −B∗A−
hB) = min{r[B∗, D], r(M)− r(A)},

max i±(D −B∗A−
hB) = i±(M)− i±(A),

min r(D −B∗A−
hB) = r(A) + 2r[B∗, D] + r(M)− 2r(N),

min i±(D −B∗A−
hB) = i±(A) + r[B∗, D] + i±(M)− r(N).

Remark 2.10. It is the main result of Theorem 5.3 in [9].

3. The solvability conditions and the expression of the general
solution to (1.8)

Now we consider the solvability conditions and the explicit expression
of the general solution to (1.8). We begin with a lemma which plays an
important role in the development in this section.

Lemma 3.1. ( [17]) Let A1 ∈ Cm×n1 , B1 ∈ Cm×n2 , C1 ∈ Cq×m, and
E1 ∈ Cm×m

h be given. Let A = RA1B1, B = C1RA1 , E = RA1E1RA1 ,M =
RAB

∗, N = A∗LB, S = B∗LM . Then the following statements are equiv-
alent:
(a) Equation (1.5) is consistent.
(b)

RMRAE = 0, RAERA = 0, LBELB = 0.

(c)

r

[
E1 B1 C∗

1 A1

A∗
1 0 0 0

]
= r

[
B1 C∗

1 A1

]
+ r(A1),

r

E1 B1 A1

A∗
1 0 0

B∗
1 0 0

 = 2r
[
B1 A1

]
,

r

E1 C∗
1 A1

A∗
1 0 0

C1 0 0

 = 2r
[
C∗
1 A1

]
.

In this case, the general solution of equation (1.5) can be expressed as

Y =
1

2
[A†EB† −A†B∗M †EB† −A†S(B†)∗EN †A∗B† +A†E(M †)∗

+ (N †)∗EB†S†S] + LAV1 + V2RB + U1LSLM +RNU∗
2LM

−A†SU2RNA∗B†,
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X =A†
1[E1 −B1Y C1 − (B1Y C1)

∗]−1

2
A†

1[E1 −B1Y C1 − (B1Y C1)
∗]A1A

†
1

−A†
1W1A

∗
1 +W ∗

1A1A
†
1 + LA1W2,

where U1, U2, V1, V2,W1,W2 are arbitrary matrices over C with appro-
priate sizes..

Now we present the fundamental theorem of this paper.

Theorem 3.2. Let A1, B1, C1, D1, A2, C2, A3, C3, A4, B4, C4, E1, F1,M
and Q be the same as in Theorem 2.6. Set

α = E†
1F1 + F ∗

1 (E
†
1)

∗ − E†
1E1F

∗
1 (E

†
1)

∗ + LE1M
†Q(M †)∗LE1 ,

B = B4LA3 , C = A4LE1LM , D = LE1A
∗
4,

A = C4 −A4αA
∗
4 −B4A

†
3C3 − (B4A

†
3C3)

∗, G = RBC,

H = DRB, E = RBARB, P = RGH
∗, N = G∗LH , S = H∗LP .

Then the following statements are equivalent:
(a) System (1.8) is consistent.
(b) The equalities in (2.1), (2.4) hold, and

RPRGE = 0, RGERG = 0, LHELH = 0.

(c) The equalities in (2.2) and (2.5) hold, and

r


C4 B4 A4 C∗

3

B∗
4 0 0 A∗

3

C3 A3 0 0
F1A

∗
4 0 E1 0

 = r

B4 A4

0 E1

A3 0

+ r

[
B4

A3

]
,

r


C4 B4 A4 C∗

3 0 1
2A4F

∗
1

B∗
4 0 0 A∗

3 0 0
A∗

4 0 0 0 A∗
2 E∗

1

C3 A3 0 0 0 0
0 0 A2 0 −C2 −1

2A2F
∗
1

1
2F1A

∗
4 0 E1 0 −1

2F1A
∗
2 0

 = 2r


A4 B4

A2 0
E1 0
0 A3

 ,

r


C4 B4 A4 C∗

3
1
2A4F

∗
1

B∗
4 0 0 A∗

3 0
A∗

4 0 0 0 E∗
1

C3 A3 0 0 0
1
2F1A

∗
4 0 E1 0 0

 = 2r

A4 B4

E1 0
0 A3

 .
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In this case, the general solution to system (1.8) can be expressed as

X =E†
1F1 + F ∗

1 (E
†
1)

∗ − E†
1E1F

∗
1 (E

†
1)

∗ + LE1M
†Q(M †)∗LE1+

LE1LMV LE1 + (LE1LMV LE1)
∗,

Y = A†
3C3 + LA3U,

where

V =
1

2
[G†EH† −G†H∗P †EH† −G†S(H†)∗EN †G∗H† +G†E(P †)∗

+ (N †)∗EH†S†S] + LGV1 + V2RH + U1LSLP +RNU∗
2LP

−G†SU2RNG∗H†,

U =B†[A− CY D − (CY D)∗]− 1

2
B†[A− CV D − (CV D)∗]BB†

−B†W1B
∗ +W ∗

1BB† + LBW2,

where U1, U2, V1, V2,W1,W2 are arbitrary matrices over C with appro-
priate sizes.

Proof. (b) ⇐⇒ (c): Clearly, (2.1) ⇐⇒ (2.2), (2.4) ⇐⇒ (2.5). By Lemma
2.3 and the block Gaussion elimination, we obtain

RPRGE = 0 ⇐⇒ r(RPRGE) = 0

⇐⇒ r

[
A C D∗ B
B∗ 0 0 0

]
= r

[
C D∗ B

]
+ r(B)

⇐⇒r


C4 B4 A4 C∗

3

B∗
4 0 0 A∗

3

C3 A3 0 0
F1A

∗
4 0 E1 0

− 2r(A3)− r(E1)

= r

B4 A4

0 E1

A3 0

+ r

[
B4

A3

]
− 2r(A3)− r(E1)

⇐⇒ r


C4 B4 A4 C∗

3

B∗
4 0 0 A∗

3

C3 A3 0 0
F1A

∗
4 0 E1 0

 = r

B4 A4

0 E1

A3 0

+ r

[
B4

A3

]
.
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Similarly, we can get

RGERG = 0 ⇐⇒r


C4 B4 A4 C∗

3 0 1
2A4F

∗
1

B∗
4 0 0 A∗

3 0 0
A∗

4 0 0 0 A∗
2 E∗

1

C3 A3 0 0 0 0
0 0 A2 0 −C2 −1

2A2F
∗
1

1
2F1A

∗
4 0 E1 0 −1

2F1A
∗
2 0



= 2r


A4 B4

A2 0
E1 0
0 A3

 ,

LHELH = 0 ⇐⇒ r


C4 B4 A4 C∗

3
1
2A4F

∗
1

B∗
4 0 0 A∗

3 0
A∗

4 0 0 0 E∗
1

C3 A3 0 0 0
1
2F1A

∗
4 0 E1 0 0

 = 2r

A4 B4

E1 0
0 A3

 .

(a) ⇐⇒ (b): We separate the equations in system (1.8) into three
groups

A3Y = C3,(3.1)

A1X = C1, XB1 = D1, A2XA∗
2 = C2, X = X∗,(3.2)

B4Y + (B4Y )∗ +A4XA∗
4 = C4.(3.3)

It follows from Lemma 2.1 and 2.2 that equation (3.1) and system (3.2)
are consistent if and only if the equalities in (2.1) and (2.4) hold, respec-
tively. The general solutions to equation (3.1) and system (3.2) can be
expressed as (2.3) and (2.6), respectively. Substituting (2.3) and (2.6)
into (3.3) gives

BU + (BU)∗ + CV D + (CV D)∗ = A.(3.4)

Hence, the system (1.8) is consistent if and only if equations (3.1), (3.2)
and (3.4) are consistent, respectively. By Lemma 3.1, we know that
equation (3.4) is consistent if and only if

RPRGE = 0, RGERG = 0, LHELH = 0.

In this case, the general solution to equation is (3.4).
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In Theorem 3.2, if A3 and B4 vanish, then we obtain the general
Hermitian solution to (1.7).

Corollary 3.3. Let A1, B1, C1, D1, A2, A4, C2 = C∗
2 , and C4 = C∗

4 be
given, and let E1, F1,M,Q, α be the same as in Theorem 3.2. Put

B = A4LE1LM , C = LE1A
∗
4, A = C4 −A4αA

∗
4, P = RBC

∗, N = B∗LC ,

S = C∗LP . Then the following statements are equivalent:
(a) System (1.7) has a Hermitian solution.
(b) The equalities in (2.4) hold and

RPRBA = 0, RBARB = 0, LCALC = 0.

(c) The equalities in (2.5) hold and

r

[
C4 A4

F1A
∗
4 E1

]
= r

[
A4

E1

]
,

r


C4 A4 0 1

2A4F
∗
1

A∗
4 0 A∗

2 E∗
1

0 A2 −C2 −1
2A2F

∗
1

1
2F1A

∗
4 E1 −1

2F1A
∗
2 0

 = 2r

A4

A2

E1

 ,

r

 C4 A4
1
2A4F

∗
1

A∗
4 0 E∗

1
1
2F1A

∗
4 E1 0

 = 2r

[
A4

E1

]
.

In this case, the general Hermitian solution of system (1.7) can be
expressed as

X =E†
1F1 + F ∗

1 (E
†
1)

∗ − E†
1E1F

∗
1 (E

†
1)

∗

+ LE1M
†Q(M †)∗LE1 + LE1LMV LE1 + (LE1LMV LE1)

∗,

where

V =
1

2
[B†AC† +B†A(P †)∗ + (N †)∗AC†S†S −B†C∗P †AC† −B†S(C†)∗

AN †B∗C†] + LBU1 + U2RC + U3LSLP +RNU∗
4LP −B†SU4RNB∗C†,

and U1, U2, U3, U4 are arbitrary matrices over C with appropriate sizes.

Remark 3.4. Wang and Wu [16] derived the solvability conditions and
the expression of the general Hermitian solution to (1.7) for adjointable
operators between Hilbert C∗-modules. We give some new necessary and
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sufficient conditions for the solvability to the system (1.7). Our expres-
sion of the Hermitian solution is also true for Hilbert C∗-modules, which
has different form compared to the expression in [16].

4. Conclusion

In this paper, we have derived the extremal ranks and inertias of the
matrix function (1.2) subject to (1.6) and (1.9). Using the results in
(1.2), we have characterized the relations between the Hermitian part of
the solution to the matrix equation A3Y = C3 and the Hermitian solu-
tion to the system of matrix equations A1X = C1, XB1 = D1, A2XA∗

2 =
C2. Moreover, we have established some necessary and sufficient condi-
tions for the existence of the general solution to (1.8). The expression
of such a solution to (1.8) has also been given when its solvability con-
ditions are satisfied. As a special case of the system (1.8), we have
given some new solvability conditions for the system (1.7) and a new
expression of the general solution to (1.7), which extend the main result
in [16].
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