
...

Bulletin of the

.

Iranian Mathematical Society

.

ISSN: 1017-060X (Print)

.

ISSN: 1735-8515 (Online)

.

Vol. 40 (2014), No. 1, pp. 41–53

.

Title:

.

A matrix LSQR algorithm for solv-
ing constrained linear operator equations

.

Author(s):

.

M. Hajarian

.

Published by Iranian Mathematical Society

.

http://bims.ims.ir



Bull. Iranian Math. Soc.
Vol. 40 (2014), No. 1, pp. 41–53
Online ISSN: 1735-8515

A MATRIX LSQR ALGORITHM FOR SOLVING

CONSTRAINED LINEAR OPERATOR EQUATIONS

M. HAJARIAN

(Communicated by Abbas Salemi)

Abstract. In this work, an iterative method based on a matrix
form of LSQR algorithm is constructed for solving the linear opera-
tor equation A(X) = B and the minimum Frobenius norm residual
problem ||A(X)−B||F where X ∈ S := {X ∈ Rn×n | X = G(X)},
F is the linear operator from Rn×n onto Rr×s, G is a linear self-
conjugate involution operator and B ∈ Rr×s. Numerical examples
are given to verify the efficiency of the constructed method.
Keywords: Iterative method, LSQRmethod, linear operator equa-
tion.
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1. Introduction

Throughout this paper, we use AT , tr(A) and R(A) to denote the
transpose, the trace and the column space of the matrix A, respectively.
We define an inner product as ⟨A,B⟩ = tr(BTA), then the norm of
a matrix A generated by this inner product is Frobenius norm and is
denoted by ⟨A,A⟩ = ||A||2F . If u is a vector, its euclidean norm is

||u||2 =
√

⟨u, u⟩ =
√
uTu. For A = (a1, a2, ..., an) ∈ Rm×n, where ai

denotes the i-th column of A, we represent by vec(A) = (aT1 , a
T
2 , ..., a

T
n )

T

vector expanded by columns of A. I stands for the identity operator on
Rn×n. Once an inner product is defined, then for any linear operator
F from Rn×n onto Rr×s, there is another operator called the adjoint of
F , written Fadj . What defines the adjoint is that for any two matrices
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X ∈ Rn×n and Y ∈ Rr×s

⟨F(X), Y ⟩ = ⟨X,Fadj(Y )⟩.

For example, it is easy to see that if F : X → AX +XB, then Fadj can
be denoted as: Fadj : Y → ATY +Y BT . S denotes the set of constrained
matrices X ∈ Rn×n defined by X = G(X) where G is a self-conjugate
involution operator from Rn×n onto Rn×n, i.e. G = Gadj and G2 = I.
Let P be some real symmetric orthogonal n × n matrix. If A = PAP
(A = −PAP ) then A is called generalized centro-symmetric matrix (gen-
eralized central anti-symmetric) with respect to P . CSRn×n

P (CASRn×n
P )

denotes the set of order n generalized centro-symmetric (generalized
central anti-symmetric) matrices with respect to P ∈ SORn×n. It is
worth noting that the set of constrained matrices S includes symmetric,
skew-symmetric, centro-symmetric, central anti-symmetric generalized
reflexive and generalized anti-reflexive matrices as special cases [1].

The linear matrix equations (including the Sylvester and Lyapunov
matrix equations as special cases) play an important role in mathe-
matics, physics and engineering. For example, the Lyapunov matrix
equation

(1.1) AX −XAT = C,

plays an important role in the solution of Riccati matrix equations [21],
stability analysis [22], H∞ optimal control [15] and model reduction
[26, 29]. Solutions to the Sylvester matrix equation

(1.2) AX −XC = B,

can be used to parameterize the feedback gains in pole assignment prob-
lem for linear systems [37]. The Stein matrix equation

(1.3) X = AXB + C,

is important in stability analysis and controller design in control theory.
Also the Stein matrix equation can be applied for solving the Sylvester
matrix (1.2). The generalized Sylvester matrix equation

(1.4) AX − EXF = C,

can be used to achieve pole assignment, robust pole assignment and ob-
server design for descriptor linear systems [14]. Due to wide applications
of solutions to the Sylvester and Lyapunov matrix equations, the prob-
lem of searching for analytical and numerical solutions to these matrix
equations has been well investigated in the literature [36, 31, 32, 33, 34,
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25, 12, 25]. In [23], an iterative algorithm was constructed for solving
linear matrix equation

(1.5) AXB = C,

over generalized centro-symmetric matrixX. In [20], an iterative method
was proposed to solve (1.5) over skew-symmetric matrix X. For when
the Sylvester matrix equation (1.2) has a unique solution, Hu and Cheng
[19] provided a closed form solution which was expressed as a polynomial
of known matrices. In [40], Zhou et al. proposed the iterative solution
to the Stein matrix equation (1.3). By applying the conjugate gradient
method, Wang et al. [30] proposed two iterative algorithms to solve the
matrix equation

(1.6) AXB + CXTD = E.

In [7, 8, 9, 10, 11], the gradient based iterative algorithms to solve sev-
eral linear matrix equations were introduced by using the hierarchical
identification principle. In order to guarantee the convergence of the
proposed methods in [5, 8, 11, 35, 9, 10], we need to choose an appro-
priate convergence factor. In general, such a convergence factor can
be obtained by some complex computation. Recently Zhou et al. [39]
studied the solvability, existence of unique solution, closed-form solu-
tion and numerical solution of matrix equation X = Af(X)B + C with
f(X) = XT , f(X) = X and f(X) = XH . Gu and Xue [16] proposed a
hierarchical identification method (SSHI) for solving Lyapunov matrix
equations. Recently by extending the conjugate gradient least square
(CGLS) approach, Dehghan and Hajarian proposed some efficient algo-
rithms for solving several linear matrix equations [2, 3, 4, 6].
It is obvious that the various linear matrix equations such as (1.1)-(1.6)
can be rewritten as

(1.7) A(X) = B,

where A denotes the linear operator. For example, the Sylvester matrix
equation is equivalent to Equation (1.2), if we define the operator A as:
A : X → AX −XC.
In this work, an iterative method based on a matrix form of the LSQR
algorithm is introduced to solve the linear operator equation (1.7) and
the minimum Frobenius norm residual problem

(1.8) ||A(X)−B||F ,
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where A is the linear operators from Rn×n onto Rr×s, B ∈ Rr×s and
X ∈ S := {X ∈ Rn×n | X = G(X)}.

The rest of this paper is organized as follows. In Section 2, first
we recall the LSQR algorithm and then by extending this algorithm we
derive an efficient algorithm for solving the linear operator equation (1.7)
and the minimum Frobenius norm residual problem (1.8). Section 3 gives
some numerical results to illustrate the effectiveness of the algorithm
derived. Also we give some conclusions in Section 4 to end this article.

2. Main results

In this sections, we first recall the LSQR algorithm [27, 28] for solving
the linear systems

(2.1) Mx = f,

and least-squares problem

(2.2) ||Mx− f ||2.

Then by extending the LSQR algorithm, we obtain an iterative method
to solve the linear operator equation (1.7) and the minimum Frobenius
norm residual problem (1.8).
Based on the bidiagonalization procedure of Golub and Kahan [17], the
LSQR algorithm can be summarized as follows:

LSQR algorithm
(1) Initialization.
x0 = 0, β1u1 = f , α1v1 = MTu1, w1 = v1, ϕ1 = β1, ρ1 = α1.
(2) Iteration. For i = 1, 2, ..., until the stopping criteria have been met.
(a) βi+1ui+1 = Mvi − αiui,
(b) αi+1vi+1 = MTui+1 − βi+1vi,

(c) ρi = (ρ2i + β2
i+1)

1/2,
(d) ci = ρi/ρi,
(e) si = βi+1/ρi,
(f) θi+1 = siαi+1,
(g) ρi = −ciαi+1,
(h) ϕi = ciϕi,
(i) ϕi+1 = siϕi,
(j) xi = xi−1 + (ϕi/ρi)wi,
(k) wi+1 = vi+1 − (ϕi+1/ρi)wi ,
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(l) Check the stopping criteria.

In the above algorithm, the scalars αi ≥ 0 and βi ≥ 0 are chosen to
make ||vi||2 = ||ui||2 = 1. Also the sequence {xi ∈ R(MT )} gener-
ated by the LSQR algorithm converges to the unique minimum l2-norm
solution (the unique minimum l2-norm least squares solution) of the lin-
ear systems (2.1) (the least-squares problem (2.2)). Furthermore the
bidiagonalization procedure of Golub and Kahan has finite termination
property, the LSQR algorithm still keeps the finite termination property
if exact arithmetic were used. Hence if we consider β1u1 = f −Mx0 in-
stead of β1u1 = f ( 0 ̸= x0 ̸∈ R(MT )) in the LSQR algorithm, then the
sequence {xi ̸∈ R(MT )} generated by the LSQR algorithm converges
to a solution (a least-squares solution) of the linear systems (2.1) (the
least-squares problem (2.2)) (for more details see [27, 28]).

In the rest of this section, we introduce a matrix the LSQR iterative
algorithm based on the LSQR algorithm for solving (1.7) and (1.8). First
we present the following useful lemma.

Lemma 2.1. [18] Let A : Rn×n → Rr×s be a given linear operator.

Then there exists a unique matrix T ∈ Rrs×n2
, such that vec(A(X)) =

Tvec(X) and vec(Aadj(Y )) = T Tvec(Y ) for all X ∈ Rn×n and Y ∈ Rr×s.

We can easily prove that the linear operator equation (1.7) has the
solution X ∈ S if and only if the pair of linear operator equations

(2.3)

{
A(X) = B,
A(G(X)) = B,

is consistent. From Lemma 2.1, there exist the matrices T and N such
that vec(A(X)) = Tvec(X) and vec(G(X)) = Nvec(X) for X ∈ Rn×n.
Hence the pair of linear operator equations (2.3) is equivalent to the
following pair of linear equations:

(2.4)

{
Tvec(X) = vec(B),
TNvec(X) = vec(B),

i.e.

(2.5)

(
T
TN

)
vec(X) =

(
vec(B)
vec(B)

)
.

This implies that the system of matrix equations (2.3) can be trans-
formed into the linear systems (2.1) with the coefficient matrix M and
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vector f as

(2.6) M =

(
T
TN

)
and f =

(
vec(B)
vec(B)

)
.

It is obvious that the size of the system (2.1) with parameters (2.6) is
large. However, iterative methods consume more computer time and
memory once the size of the system is large. To overcome this com-
plication, we extend the LSQR algorithm for solving the system (2.1)
with parameters (2.6). Now by considering the linear systems (2.1) with
parameters (2.6), we rewrite the vectors ui, vi, pi, hi, wi, Avi, A

T pi and
ATui of the LSQR algorithm in the matrix forms. We can write

(2.7) β1u1 = f → β1u1 =

(
vec(B)
vec(B)

)
,

(2.8) α1v1 = MTu1 → α1v1 =

(
T
TN

)T

u1 =
(
T T NTT T

)
u1,

(2.9) βi+1ui+1 = Mvi − αiui → βi+1ui+1 =

(
T
TN

)
vi − αiui,

(2.10)

αi+1vi+1 = MTui+1 − βi+1vi → αi+1vi+1 =
(
T T NTT T

)
ui+1 − βi+1vi.

By considering the above equations, we define

(2.11) xi = vec(Xi) and ui =

(
vec(Ui)
vec(Ui)

)
,

(2.12) vi = vec(Vi), and wi = vec(Wi),

where Xi, Vi,Wi ∈ Rn×n and Ui ∈ Rr×s. Hence we have

(2.13) β1U1 = B, α1V1 = [Aadj(U1) + GAadj(U1)],

(2.14) βi+1Ui+1 = A(Vi)− αiUi,

(2.15) αi+1Vi+1 = Aadj(Ui+1) + GAadj(Ui+1)− βi+1Vi.

By using (2.13)-(2.15), the matrix form of LSQR algorithm can be pre-
sented as:
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Algorithm 2.2. Matrix LSQR iterative algorithm
(1) Initialization. Set the initial matrix X0 = 0. Calculate
β1U1 = B, β1 =

√
2||B||F , α1V1 = [Aadj(U1) + GAadj(U1)],

α1 = ||Aadj(U1) + GAadj(U1)||F , W1 = V1, ϕ1 = β1, ρ1 = α1

(2) Iteration. For i = 1, 2, ..., until the stopping criteria have been met.
(a) βi+1Ui+1 = A(Vi)− αiUi, βi+1 =

√
2||A(Vi)− αiUi||F ,

(b) αi+1Vi+1 = Aadj(Ui+1)+GAadj(Ui+1)−βi+1Vi, αi+1Vi+1 = ||Aadj(Ui+1)+
GAadj(Ui+1)− βi+1Vi||F ,
(c) ρi = (ρ2i + β2

i+1)
1/2,

(d) ci = ρi/ρi,
(e) si = βi+1/ρi,
(f) θi+1 = siαi+1,
(g) ρi+1 = −ciαi+1,

(h) ϕi = ciϕi,
(i) ϕi+1 = siϕi,
(j) Xi = Xi−1 + (ϕi/ρi)Wi,
(k) Wi+1 = Vi+1 − (θi+1/ρi)Wi,
(l) Check the stopping criteria.

In the above algorithm, the stopping criteria may be chosen as√
||A(Xi)−B||F < ε where ε is a small positive number.

3. Numerical reports

In this section, two numerical examples are performed to demon-
strate the effectiveness of Algorithm 2.2. Computations were done on a
PC Pentium IV using MATLAB 7.10.

Example 3.1. Consider the Sylvester matrix equation

(3.1) AX +XB = C,

with the following parameters:

A =


−510.1366 −75.4476 −60.9278 −40.1649 −5.7312
−22.8827 −515.1221 −78.4018 −92.6115 −34.9339
−60.0774 −1.8319 −539.2496 −90.7735 −80.5035
−48.1123 −81.3193 −73.0825 −474.1854 −0.9763
−88.2386 −44.0256 −17.4503 −88.4713 −428.5259

 ,
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B =


−385.7209 −69.0919 −49.1587 −65.3625 −71.9842
−67.5401 −429.1864 −89.0771 −33.8551 −30.6197
−29.9737 −85.1411 −403.3219 −28.6829 −83.0111
−53.6257 −84.5119 −63.8461 −350.4928 −56.2392
−14.9364 −58.7627 −80.9795 −52.8738 −431.5161

 ,

C = 106 ×


0.9262 0.1658 0.2283 0.1229 0.1091
0.1184 1.0036 0.1922 0.2830 0.0848
0.2214 0.1262 1.0456 0.1337 0.3242
0.1199 0.3109 0.1598 0.8027 0.0715
0.2497 0.1253 0.1367 0.1499 0.7565

 .

For these matrices, the generalized centro-symmetric solution of the
Sylvester matrix equation (3.1) is

X∗ = 103 ×


−1.0203 0 −0.1219 0 −0.0115

0 −1.0302 0 −0.1852 0
−0.1202 0 −1.0785 0 −0.1610

0 −0.1626 0 −0.9484 0
−0.1765 0 −0.0349 0 −0.8571

 ,

where

P =


−1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 −1

 .

By applying Algorithm 2.2 with X0 = 0, we obtain the sequence {Xi}.
The convergence behaviors of Algorithm 2.2 is displayed in Figure 1
where

ri = log10 ||C −AXi −XiB||F ,

and

δi = log10
||Xi −X∗||F

||X∗||F
.

It is obvious that both ri and δi decrease, and converge to zero as i
increases. The obtained results demonstrate the efficiency of Algorithm
2.2.

Example 3.2. In this example we consider the linear matrix equation

(3.2) AX +XTB = C,
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Figure 1. The relative error of solution and the resid-
ual for Examples 3.1
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with the following parameters:

A =


−202.7372 68.5887 55.3889 36.5136 5.2102
20.8025 −296.1286 71.2743 84.1923 31.7581
54.6158 1.6653 −234.3006 82.5214 73.1850
43.7384 73.9266 66.4387 −267.2290 0.8875
80.2169 40.0233 15.8640 80.4285 −274.5687

 ,

B =


−39.2168 53.7382 38.2345 50.8375 55.9877
52.5312 −44.5422 69.2822 26.3317 23.8153
23.3129 66.2209 43.8361 22.3089 64.5642
41.7089 65.7314 49.6581 10.9383 43.7416
11.6172 45.7043 62.9840 41.1241 −47.5799

 ,

C = 104 ×


1.9250 −1.3174 2.4552 −1.4035 1.2612
−2.4154 3.3302 −1.6999 2.0085 0.3480
1.8480 −1.8115 2.2958 0.5853 1.4943
−1.6516 2.5759 −0.5273 1.7031 −1.5197
1.7065 −1.0747 2.1178 −1.1508 1.3903

 .

For the above matrices, the generalized central anti-symmetric solution
of the matrix equation (3.2) is

X∗ =


0 107.4764 0 101.6750 0

105.0624 0 138.5645 0 47.6307
0 132.4418 0 44.6178 0

83.4178 0 99.3162 0 87.4832
0 91.4087 0 82.2482 0

 .
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Figure 2. The relative error of solution and the resid-
ual for Examples 3.2
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By using Algorithm 2.2 with X0 = 0, we obtain results shown in Figure
2 where

ri = log10 ||C −AXi −XT
i B||F .

The results demonstrate that Algorithm 2.2 is quite efficient.

4. Concluding remarks

Linear matrix equations have numerous applications in control
and system theory. Based on the LSQR algorithm, we have derived
Algorithm 2.2 for solving the linear operator equation (1.7) and the
minimum Frobenius norm residual problem (1.8). It is worth noting
that Algorithm 2.2 are very simple and neat and they do not need to
choose an appropriate convergence factor. The numerical results have
shown that Algorithm 2.2 obtains results which are efficient and effective
in practice.
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