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Abstract. The global FOM and GMRES algorithms are among
the effective methods to solve Sylvester matrix equations. In this
paper, we study these algorithms in the case that the coefficient
matrices are real symmetric (real symmetric positive definite) and
extract two CG-type algorithms for solving generalized Sylvester
matrix equations. The proposed methods are iterative projection
methods onto matrix Krylov subspaces. Numerical examples are
presented.
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1. Introduction

Consider the generalized Sylvester matrix equations (GSME)

q∑
i=1

AiXBi = C,(1.1)

where Ai ∈ Rn×n; Bi ∈ Rs×s, i = 1, ..., q; C and X ∈ Rn×s.
This kind of matrix equations plays an important role in linear con-

trol and filtering theory for continuous or discrete-time large scale dy-
namical systems and image restoration. Also such problem arise in the
solution of large eigenvalue problems, in boundary value problem and
other problems [2, 3, 4, 7, 10]. As we know, the generalized Sylvester
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matrix equations (1.1) can be written as a big linear system of equations

q∑
i=1

(BT
i ⊗Ai)vec(X) = vec(C),(1.2)

where ⊗ denote the Kronecker product, and for each matrix L = [lij ] ∈
Rn×s, the vector vec(L) is define as follows:

vec(L) = (l11, ..., ln1, l12, ..., ln2, ..., l1s, ..., lns)
T .

Krylov subspace methods such as FOM and GMRES algorithms [9]
could be used to solve linear system (1.2) however, for large problems
this approach can not be applied directly. In [1], A. Bouhamidi and
K. Jbilou presented a global approach for solving matrix equation (1.1)
Their method uses the global generalized minimal residual (GLGMRES)
method [6] which was originally introduced for solving linear systems
with multiple right-hand sides. The conjugate gradient (CG) algorithm
[5] is an extremely effective method to solve symmetric positive definite
(SPD) linear system of equations. This algorithm can be extracted from
the full orthogonalization method (FOM) [8] in the case that the coeffi-
cient matrix is an SPD matrix. Also, the GMRES algorithm [8, 9] results
the conjugate residual (CR) algorithm [8] to solve symmetric linear sys-
tem of equations not necessarily positive definite. It is well known that
conjugate gradient and conjugate residual algorithms are less cost effec-
tive than FOM and GMRES algorithms, respectively. The aim of this
paper is to present two CG-type methods for solving the linear matrix
equations (1.1) in the case that the coefficient matrices are symmetric
or symmetric positive definite.

Throughout this paper, we use the following notations. Let E = Rn×s.
For X and Y two matrices in E, we define the following inner product
(X,Y )F = tr(XTY ) where tr(.) denotes the trace and XT the transpose
of the matrix X. The associated norm denoted by ∥ . ∥F . For V ∈
E, the matrix Krylov subspace Km(A, V ) is the subspace generated by
the vectors (matrices) V,AV, ..., Am−1V. Unless specified, the Frobenius
norm will be used for matrices and vectors. A set of members of E is said
to be F-orthogonal if it is orthogonal with respect to the scaler product
(., .)F .

This paper is organized as follows. In Section 2, we give a brief de-
scription of global-GMRES(GLGMRES) method for solving linear ma-
trix equations. In Section 3, CG-type algorithms for solving generalized
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Sylvester matrix equations are presented. In Section 4 we give some nu-
merical experiments. Finally, Section 5 summarizes the main conclusion
of this paper.

2. A brief description of GLGMRES method for Eq.(1.1)

In this section, we give a brief description of a numerical Krylov
subspace method for solving the generalized Sylvester matrix equations
(1.1). As we know, Eq.(1.1) has a unique solution if and only if the ma-
trix

∑q
i=1(B

T
i ⊗Ai) is nonsingular. Throughout this paper, we suppose

that this condition is verified. Also, we assume that all matrices

Ai, Bi, i = 1, ..., q,

are symmetric.
Let S be the operator from Rn×s onto Rn×s defined as follows:

S(X) =

q∑
i=1

AiXBi.

Thus, by this definition, the generalized Sylvester matrix equations (1.1)
can be expressed as following equivalent form

S(X) = C.(2.1)

The transpose of the operator S with respect to inner product (., .)F is
defined from Rn×s onto Rn×s by

ST (X) =

q∑
i=1

AT
i XBT

i .

Thus S is a real symmetric (real symmetric positive definite) operator
if and only if all matrices Ai, Bi, i = 1, ..., q, are real symmetric (real
symmetric positive definite). Let V in Rn×s be a rectangular matrix,
as we see in [6], the global Arnoldi process construct an F-orthonormal
basis V1, V2, ..., Vm, of matrix Krylov subspace

Km(S, V ) = {V, S(V ), ..., Sm−1(V )},

i.e.

(Vi, Vj)F = δij , i, j = 1, ...,m,

where δij denotes the classical Kronecker symbol and Si(V ) is defined
recursively as

Si(V ) = S(Si−1(V )).
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It is clear that, each U in Km(S, V ) can be written by the following
formula

U =

m−1∑
i=0

αiS
i(V ),

where αi, i = 0, 1, ...,m − 1 are scalars. The modified global Arnoldi
algorithm for constructing an F-orthogonal basis V1, V2, ..., Vm, of the
Krylov subspace Km(S, V ) is as follows:

Algorithm 1. Modified global Arnoldi algorithm.
1- Choose a nonzero matrix V ∈ Rn×s. Set V1 = V/ ∥ V ∥F .
2- For j = 1, ...,m do:
Ṽ = S(Vj),
for i=1,...,j, do
hi,j = (Vi, Ṽ )F ,

Ṽ = Ṽ − hijVi,
enddo
hj+1,j =∥ Ṽ ∥F ,
Vj+1 = Ṽ /hj+1,j

Enddo.

Let us collect the matrices Vi constructed by the Algorithm 1 in the
n × ms and n × (m + 1)s orthonormal matrices Wm = [V1, V2, ..., Vm]
and Wm+1 = [Wm, Vm+1] and also we denote by Hm the upper m ×m
Hessenberg matrix whose entries are the scalars hij and the (m+1)×m
matrix H̄m is the same as Hm except for an additional row whose only
nonzero element is hm+1,m in the (m+1,m) position. In this paper, we
use the notation ∗ for the following product:

Wk ∗ α =

k∑
i=1

αiVi,

where α = (α1, α2, ..., αk)
T is a vector in Rk and, by same way, we set

Wk ∗Hk = [Wk ∗H
(1)
k ,Wk ∗H

(2)
k , ...,Wk ∗H

(k)
k ],

where H
(j)
k denote the jth column of the matrix Hk. From Algorithm 1

we have following proposition [1]:

Proposition 2.1. The following relations are satisfied:
1.[S(V1), ..., S(Vm)] = Wm(Hm ⊗ Is) + Em+1, where
Em+1 = hm+1,m[0n×s, ..., 0n×s, Vm+1].
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2.[S(V1), ..., S(Vm)] = Wm+1(H̄m ⊗ Is).

3.For any M ∈ R(m+1)×s, we have ∥ Wm+1(M ⊗ Is) ∥F=∥ M ∥F .

Let X0 be an initial n× s matrix guess to the solution X of equation
(1.1) and R0 = C − S(X0) its associated residual. At the mth iterate
of GLGMRES algorithm, a correction Zm is determined in the matrix
Krylov subspace Km = Km(S,R0) such that the new residual is F-
orthogonal to Km, i.e.,

Xm −X0 = Zm ∈ Km(S,R0),

Rm = C − S(Zm) ⊥F Km(S, S(R0)),

where

Km(S, S(R0)) = span{S(R0), S
2(R0), ..., S

m(R0)}.
Therefore, Xm can be obtained as a solution of the following minimiza-
tion problem:

minX−X0∈Km(S,R0) ∥ C − S(X) ∥F .

Any approximate solution Xm of the equation (1.1) in X0 +Km can be
written as

Xm = X0 +Wm ∗ ym,

where ym ∈ Rm is the solution of the following small least squares prob-
lem

miny∈Rm ∥∥ R0 ∥F e1 − H̄my ∥2,(2.2)

and e1 is the first unit vector in Rm+1. By consideration the QR decom-
position of H̄m, we have:

R̄m = QmH̄m,

where R̄m is upper triangular and Qm is unitary. Thus, at step m, the
residual Rm produced by the GLGMRES for for equation (1.1) has the
following properties [1]:

Rm = γm+1Wm+1(Q
T
mem+1 ⊗ Is)(2.3)

and

∥ Rm ∥F=| γm+1 |,(2.4)

where γm+1 is the last component of the vector gm =∥ R0 ∥F Qme1 and
em+1 is the last unit vector in Rm+1.

Thus, the restated GLGMRES algorithm for solving generalized Sylvester
matrix equations (1.1) can be summarized as follows:
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Algorithm 2. Restarted global generalized minimal residual algorithm
(GLGMRES) for Eq.(1.1).
1. Choose an initial approximate solution X0 and a tolerance ϵ.
2. Compute R0 = C − S(X0), β =∥ R0 ∥F and V1 = R0/β.
3. If ∥ R0 ∥F< ϵ then exit.
4. For j = 1, ...,m apply Algorithm 1 to compute the F- orthonormal
basis V1, V2, ..., Vm of Km(S,R0).
5. Determine ym the minimizer of the least square problem (2.2).
6. Compute Xm = X0 +Wm(ym ⊗ Is).
7. Compute the residual Rm and ∥ Rm ∥F using relations (2.3) and
(2.4).
8. If ∥ Rm ∥F< ϵ stop; else set X0 = Xm, β =∥ R0 ∥F ,V1 = R0/β and
Go to 4.

3. CG-type methods for solving Eq.(1.1)

In this section we present two CG-type numerical Krylov subspace
algorithms for solving linear matrix equation (1.1) . These algorithms
are extracted from global full orthogonalization (GLFOM) and global
generalized minimal residual (GLGMRES) methods. First, we state the
following proposition .

Proposition 3.1. Assume that the global Arnoldi method is applied
to a real symmetric operator S. Then the matrix Hm generated by the
algorithm is tridiagonal and symmetric.

Proof. As we know, the matrix Hm is a Hessenberg matrix and its ele-
ments are

hij = tr(V T
i S(Vj)).

On the other hand, we have

hji = tr(V T
j S(Vi)) = tr(V T

i S(Vj)) = hij .

Hence, the matrix Hm is tridiagonal and symmetric. □

Thus, the matrix Hm can be written as follows:

Hm =


α1 β2
β2 α2 β2

βm−1 αm−1 βm
βm αm

 .
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This leads the following form of Algorithm 1, namely the global Lanczos
algorithm.

Algorithm 3. Global Lanczos algorithm.
1- Choose a matrix V ∈ Rn×s such that ∥ V ∥F= 1. Set β1 = 0, V0 = 0.
2- For j = 1, ...,m do:
Wj = S(Vj)− βjVj−1 (If j = 0 set β1 = 0, V0 = 0).
αj = tr(V T

j Wj).
Wj = Wj − αjVj.
βj+1 =∥ Wj ∥F . If βj+1 = 0 then stop.
Vj+1 = Wj/βj+1.
Enddo.

By using the global Lanczos and FOM algorithms we can drive a new
algorithm for solving symmetric linear matrix equations (2.1).

Algorithm 4. A new algorithm for solving Eq.(2.1).
1. Choose an initial approximate solution X0 and a tolerance ϵ.
2. Compute R0 = C − S(X0), β =∥ R0 ∥F and V1 = R0/β.
3. If ∥ R0 ∥F< ϵ then exit.
4. For j=1,...,m apply Algorithm 3 to compute the F- orthonormal basis

V1, V2, ..., Vm of Km(S,R0).
5. Set Hm = tridiag(βi, αi, βi+1) and Wm = [V1, ..., Vm].
6. Compute ym = H−1

m (β1e1) and Xm = X0 +Wm ∗ ym.

Now, let Ai, Bi, i = 1, ..., q, are real real symmetric positive definite
matrices. Thus the matrix Hm has LU factorization of the form Hm =
LmUm which can be as follows:

Hm = LmUm =


1
λ2 1

λ3 1

λm 1




η1 β2
η2 β3

ηm−1 βm
ηm

 .

Hence, the approximate solution Xm is given by

Xm = X0 +Wm ∗ (U−1
m L−1

m βe1) = X0 + (Wm ∗ U−1
m ) ∗ (L−1

m βe1).

By letting

Qm = Wm ∗ U−1
m ,

and

zm = L−1
m βe1,
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we have
Xm = X0 +Qm ∗ zm,

where
Qm = [P1, ..., Pm].

It is easily seen that
Qm ∗ Um = Wm,

Thus,
βmPm−1 + ηmPm = Vm,

or

Pm =
1

ηm
[Vm − βmPm−1].(3.1)

On the other hand from the LU-factorization of Hm, we have

λm =
βm
ηm−1

,

ηm = αm − λmβm.

Now, by letting
zm = [zm−1 ζm]T ,

we have
ζm = −λmζm−1.

Therefore we can conclude that

Xm = Xm−1 + ζmPm,

where Pm is defined by (3.1). This gives the global D-Lanczos algorithm
for solving Eq.(1.1) .

Algorithm 5. Global D-Lanczos algorithm for solving Eq.(1.1).
1. Choose an initial approximate solution X0.
2. Compute R0 = C − S(X0), ζ1 = β =∥ R0 ∥F and set V1 = R0/β.
3. For m = 1, 2, ..., until convergence do:
4. Compute W = S(Vm)− βmVm−1 and set αm = (W,Vm)F .

5. If m > 1 then compute λm = βm

ηm−1
and ζm = −λmζm−1.

6. ηm = αm − λmβm.
7. Pm = η−1

m [Vm − βmPm−1].
8. Xm = Xm−1 + ζmPm,
9. If Xm has convergent then stop.
10.W = W − αmVm.
11.βm+1 =∥ W ∥F , Vm+1 = W/βm+1.
12.Enddo.
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Proposition 3.2. Let Rm = C − S(Xm), m = 0, 1, ..., be the residual
matrices and Pm, m = 0, 1, ..., be the auxiliary matrices produced by the
global D-Lanczos algorithm. Then,
1. Each residual matrix Rm is such that Rm = σmVm+1 where σm is
a certain scaler. As a result the residual matrices are F-orthogonal to
each other.
2. The the auxiliary matrices Pm are S-conjugate set with respect to
inner product (., .)F , i.e., (S(Pi), Pj)F = 0 for i ̸= j.

Proof. It is obvious that the algorithms 4 and 5 are equivalent. Hence
the first part of the proposition immediate consequence of the relation
(2.3).
For the second part, let [δ1j , ..., δjj , 0, ..., 0]

T be the jth column of U−1
m ,

then we have

Pj =

j∑
k=1

δkjVk.

Therefore,

(S(Pi), Pj)F = (S(
i∑

l=1

δliVl),

j∑
k=1

δkjVk)F =
i∑

l=1

j∑
k=1

δliδkj(S(Vl), Vk)F .

Since (S(Vl), Vk)F = 0, for l ̸= k we conclude that (S(Pi), Pj)F = 0, for
i ̸= j. □

By using this proposition we can obtain the GLCG algorithm. From
the global D-Lanczos algorithm we have

Xj+1 = Xj + αjPj .

Therefore the residual matrix must satisfy the following recurrence

Rj+1 = Rj + αjS(Pj).(3.2)

From the F-orthogonality of R,
js we get

(Rj − αjS(Pj), Rj)F = 0

and as a result

αj =
(Rj , Rj)F

(S(Pj), Rj)F
.(3.3)

Also, it is known that the next search direction Pj+1 is a linear combi-
nation of Rj+1 and Pj , i.e.,

Pj+1 = Rj+1 + βjPj .
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Since S(Pj) is F-orthogonal to Pj−1, thus, from the above relation we
have

(S(Pj), Rj)F = (S(Pj), Pj−1 − βjPj−1)F = (S(Pj), Pj)F .

Hence the relation (3.3) becomes

αj =
(Rj , Rj)F

(S(Pj), Pj)F
.

From the F-orthogonality of Pj+1 to APj yields

βj = −(Rj+1, S(Pj))F
(Pj , S(Pj))F

.

From the equation (3.2) we get

S(Pj) = −−1

αj
(Rj+1 −Rj),

and hence

βj = − 1

αj

(Rj+1, Rj+1 −Rj)F
(S(Pj), Pj)F

=
(Rj+1, Rj+1)F
(Rj , Rj)F

.

Thus, we can conclude the global conjugate gradient (GLCG) algorithm
for solving generalized Sylvester matrix equations (1.1) as follows:

Algorithm 6. Global conjugate gradient (GLCG) algorithm for solving
Eq.(1.1).
1. Choose an initial approximate solution X0.
2. Compute R0 = C − S(X0) and set P0 = R0.
3. For j = 1, 2, ..., until convergence do:
4. αj = (Rj , Rj)F /(S(Pj), Pj)F .
5. Xj+1 = Xj + αjPj .
6. Rj+1 = Rj − αjS(Pj).
7. βj = (Rj+1, Rj+1)F /(Rj , Rj)F .
8. Pj+1 = Rj+1 + βjPj .
9. Enddo.

On the other hand, if the coefficient matrices

Ai, Bi, i = 1, ..., q,

are symmetric, we can extract the global conjugate residual (GLCR)
algorithm from the GLGMRES method. In this case, we have

(S(Pi), S(Pj))F = 0, i ̸= j,
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and

(S(Ri), Rj)F = 0, i ̸= j.

Also, we can conclude the global conjugate residual (GLCR) algorithm
for solving generalized Sylvester matrix equations (1.1) as follows:

Algorithm 7. Global conjugate residual (GLCR) algorithm for solving
Eq.(1.1).
1. Choose an initial approximate solution X0.
2. Compute R0 = C − S(X0) and set P0 = R0.
3. For j = 1, 2, ..., until convergence do:
4. αj = (Rj , S(Rj))F /(S(Pj), S(Pj))F .
5. Xj+1 = Xj + αjPj .
6. Rj+1 = Rj − αjS(Pj).
7. βj = (Rj+1, S(Rj+1))F /(Rj , S(Rj))F .
8. Pj+1 = Rj+1 + βjPj .
9. S(Pj+1) = S(Rj+1) + βjS(Pj).
10.Enddo.

4. Numerical experiments

In this section, we present the results of numerical experiments. Com-
putations were carried out using MATLAB 6.5 codes on a personal com-
puter Pentium 3-800EB MHs. The tests were stopped as soon as

∥
∑2

i=1AiXkBi − C ∥F
∥ C ∥F

≤ 10−5,

or the maximum number of iterations reached to 1000. For all the ex-
periments, the initial guess was X0 = 0. The matrix C is defined so that
a true solution of equation (1.1) is the matrix of all one. For the global
conjugate gradient(GLCG) algorithm, we used the real symmetric pos-
itive definite matrices
Ai = [(2−i−1)In+diag(1, 2, ..., n)+UT

n ]+[(2−i−1)In+diag(1, 2, ..., n)+
UT
n ]

T , and

Bi = [Is + 2−iUs] + [Is + 2−iUs]
T ,

where i = 1, 2, Un and Us are the n× n and s× s matrices respectively
with unit entries below the diagonal and all other entries zero. For the
global conjugate residual(GLCR) algorithm, we used the real symmetric
matrices

Ai = tridiag(1+i/n, 2, 1+i/n) and Bi = tridiag(−1−i/n,−2,−1−i/n),
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Table 1. Number of iterations and CPU times.

n Method s = 200 s = 300 s = 400 s = 500

2000 GLFOM 3(18.61) 4(40.52) 4(65.51) 6(115.2)
GLCG 3(9.751) 3(15.53) 4(21.22) 4(28.22)

2500 GLFOM 4(38.21) 4(60.31) 7(152.1) 8(229.3)
GLCG 3(14.72) 3(22.84) 4(31.71) 5(41.42)

Table 2. Number of iterations and CPU times.

n Method s = 200 s = 300 s = 400 s = 500

2000 GLGMRES 15(101) 14(150) 13(196) 13(258)
GLCR 14(55) 12(85) 11(117) 11(150)

2500 GLGMRES 15(153) 13(224) 13(290) 13(379)
GLCR 12(82) 12(119) 12(170) 10(216)

where i = 1, 2. The results are reported in Table 1 and Table 2 with
different values of n, s, i.e., n = 2000, 2500, s = 200, 300, 400, 500,
and m = 2.

5. Conclusion

In this paper, we have extracted the global conjugate gradient (GLCG)
and global conjugate residual (GLCR) algorithms from the global full or-
thogonalization and generalized minimal residual algorithms for solving
generalized Sylvester matrix equations, respectively. The experiments
presented in this paper show that the solution of generalized Sylvester
matrix equations can be obtained with high accuracy by using GLCG
and GLCR algorithms. Table 1 and Table 2 show that the number of
iterations and CPU times of GLCG and GLCR algorithms are less than
GLFOM and GLGMRES algorithms respectively.
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