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Abstract. A consistency criteria is given for a certain class of
finite positive measures on the surfaces of the finite dimensional
unit balls in a real separable Hilbert space. It is proved, through a
Kolmogorov type existence theorem, that the class induces a unique
positive measure on the surface of the unit ball in the Hilbert space.
As an application, this will naturally accomplish the work of Kanter
on the existence and uniqueness of the spectral measures of finite
dimensional stable random vectors to the infinite dimensional ones.
The approach presented here is direct and different from the func-
tional analysis approach in the work of Kuelbs and Linde and the
indirect approach of Tortrat and Dettweiler.
Keywords: Kolmogorove existence theorem, separable Hilbert space,
stable distribution, spectral measure.
MSC(2010): Primary: 60E07; Secondary: 60E10, 46G12.

1. Introduction

In this work we assume that H is a real separable Hilbert space and
η = {Γn, n ≥ 1} is a sequence of finite positive measures, η is defined on
the Borel sets in Sn−1, the surface of the n dimensional unit ball in H.
We provide a consistency criteria for Γ and then establish a Kolmogorov
type extension theorem, showing that η induces a unique positive mea-
sure on the surface of the unit ball in H. The surfaces {Sn−1, n ≥ 1}
do not possess the cylindrical structure which is essential in the classical
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Kolmogorov Extension Theorem. This, perhaps, caused [12] and [3] to
take an indirect approach in defining measures on infinite sectors hav-
ing vertices at origin; of course they treated more general spaces. Our
approach is direct, in the sense that we work with the surfaces directly.
Our extension theorem is not a consequence of the Kolmogorov Exten-
sion Theorem, but it is in its style. The existence and the uniqueness
of the spectral measure of a stable random vector taking values in a
real separable Hilbert space will be an immediate consequence of our
extension theorem, due to the work of [5] which provides the class η.
The approach presented here benefits from utilization of first principles
in measure theory, rather than advanced functional analysis tools as in
[6] and [8], that provide the existence, and to the indirect approach of
A. Tortrat [12] and E. Dettweiler [3], where no clear consistency condi-
tion for γ, as presented here, is presented. Moreover there is no need to
produce and apply Levy representation for stable measures on abstract
spaces, as in [6] and [8]. This work also provides an interesting appli-
cation for the celebrated result of [1] on the tail behavior of the infinite
dimensional stable distributions.

Let us provide some notions and notations below. Let H be a real
separable Hilbert space with a base {ei, i ∈ N}, N is the set of natural
numbers. The inner product and the norm correspondingly are denoted
by < . > and ∥.∥. The Borel field on H, the smallest σ-field containing
open sets in H, is denoted by B. Also let S = {s ∈ H : ||s|| = 1} be
the surface of the unit ball in H, and S denote the Borel field on S;
S = S ∩ B. A random vector in H is a Borel measurable mapping on
a probability space (Ω,F , P ) taking its values in H. If X is a random
vector in H, then µ = P−1X is a finite measure on B which is called the
distribution of X. The characteristic function of X, denoted by ϕX , is
defined to be the Fourier transform of the distribution µ; so for t ∈ H,
ϕX(t) is the expected value of ei<X,t>, given by

ϕX(t) = Eei<X,t> =

∫
H
ei<x,t>dµ(x).

A random vector X, or correspondingly its distribution µ, is said to be
stable if for every k = 1, 2, · · · , µ∗k = Takµ ∗ δbk for some positive con-
stant ak and vector bk in H, where ∗ stands for the convolution of two
distributions on H, µ∗k = µ∗(k−1) ∗ µ, µ∗1 = µ, the δbk is the distribu-
tion with unit mass at bk, and Taµ(B) = µ({(1/a)b, b ∈ B}), a > 0.
Equivalently, X is stable if its characteristic function satisfies [ϕX(t)]k =
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ϕX(akt)e
i<t,bk>, t ∈ H, k = 1, 2, · · · . If µ(B) = µ(−B), B ∈ B, then µ,

and also X, is said to be symmetric. Without loss of generality, as long
as it concerns the existence and the uniqueness of the spectral measures,
we may assume bk = 0, k = 1, 2, · · · . In this case X is called strictly
α-stable. A note will be provided for the general case.

Every x in H admits the series representation x =
∑∞

i=1 < x, ei > ei.
We refer to xi1,··· ,in = (< x, ei1 >, ..., < x, ein >) as a finite dimensional
sub-vector of x. For a simplicity in notations, x1,··· ,n is denoted by
xn. It easily follows that if X is a stable random vector in H with
constants ak, k = 1, 2, · · · , then each finite dimensional sub-vector of
X is a finite dimensional stable random vector with the same ak, k =
1, 2, · · · . Consequently, ak = k1/α, [4]. The parameter α is called the
index. The converse is also true; If finite dimensional sub-vectors are
stable with the same index, then the random vector will be stable with
the same index. The characteristic function of Xi1,··· ,in is identified
from ϕX through ϕXi1,··· ,in

(t) = ϕX(t′i1,··· ,in), t ∈ Rn, where t′i1,··· ,in ∈
H has all of its coordinates zero except the i1-th,· · · , in-th that are
the same as those of t respectively. The continuity of the norm and
the Bounded Convergence Theorem imply that ϕX is also identified by
the characteristic functions of the finite dimensional sub-vectors. Since
Xn ≡ X1,··· ,n is a strictly α stable random vector in Rn, with bkn = 0,

ϕXn(t) = e
−

∫
Sn−1

|s·t|αdΓn(s)+iC(α,Γn,t)
t ∈ ℜn,(1.1)

C(α,Γn, t) =

{
tan(πα2 )

∫
Sn−1

(t · s)|t · s|α−1Γn(ds) α ̸= 1
2
π

∫
Sn−1

(t · s) ln |t · s|Γn(ds) α = 1,

where Γn is a finite measure on Sn−1 = {s = (s1, · · · , sn) ∈ Rn : |s|2 =
n∑

i=1
s2i = 1} and s · t = s1t1 + · · ·+ sntn. The characterization (1.1) was

first proved by Levy [7], see also [10]. Kanter proved that the measure Γ
is indeed unique [5]. We will intensively use (1.1) and Kanter’s result in
our approach for the generalization to the real separable Hilbert spaces.

2. The Existence and the Uniqueness

Let X be a random vector in a real separable Hilbert space H. Sup-
pose Sn−1, Γn, Xn, n ≥ 1, are as in (1.1). It easily follows from the
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uniqueness of Γn that

Γk(Bk) =

∫
T−1
n,k(Bk)

|sk|αdΓn(s), Bk ∈ Sk(2.1)

where Tn,k : Sn−1 − On,k −→ Sk−1, such that On,k = {s = (s1, ..., sn) ∈

Sn−1| |sk| = (
k∑

i=1
s2i )

1/2 = 0} and Tn,k(s) =
sk
|sk| , 1 ≤ k ≤ n, [9].

Let S = {s ∈ H : ||s|| = 1} be the surface of the unit ball in H,
and On = {s ∈ S : |sn| = 0}. Define the Tn : S − On −→ Sn−1 by
Tn(s) =

sn
|sn| . Clearly Tn is continuous on its domain. On the other hand

On is a Borel measurable set in S. Thus it follows that T−1
n (Bn) is a

Borel measurable set in S for every Bn ∈ Sn−1. It is also a closed set
in S whenever Bn is closed in Sn−1. Thus clearly σ(F0) ⊆ S, where
F0 =

∪∞
n=1 T

−1
n (Sn−1). The following lemma shows that the converse is

also true.

Lemma 2.1. The σ-field S coincides with the σ-field generated by F0,
S = σ(F0).

Proof. Let B be a compact set in S and Bn be a compact set in Sn−1.

First we prove that there is a k for which B =
∞∩
n=k

T−1
n (Tn(B)). First

of all there is k for which Tn(B), n ≥ k, is well defined. Otherwise
B∩On ̸= ∅, n = 1, 2, · · · . Let sn ∈ B∩On, then {sn} will be a bounded
sequence in B, having a convergence subsequence {sni} that converges
to an s ∈ B, ∥s∥ = 1. But sk = limi→∞ sni

k = 0, k = 1, 2, · · · which will
be a contradiction. Next we show that Tn(B) is indeed a closed set in
Sn−1. This can be furnished by showing that Tn(B) contains its limit
points. If Tn(s

ν) converges to an sn ∈ Sn−1, ν → ∞, then sν will have
a convergence subsequence converging to an s ∈ B. Thus continuity
of Tn will imply that sn = Tn(s). These two observations imply that
∞∩
n=k

T−1
n (Tn(B)) is measurable in S and B ⊆

∞∩
n=k

T−1
n (Tn(B)). We will

show the converse of the inclusion is also true.

Let s ∈
∞∩
n=k

T−1
n (Tn(B)), then Tn(s) ∈ Tn(B), n ≥ k. It follows that

there exists a sequence {xn} ∈ B such that Tn(s) = Tn(x
n), n ≥ k;

which implies sn
|sn| =

xn
n

|xn
n|
. Since {xn} is a bounded sequence, it contains

a convergent subsequence {xnk}. Let xni be a bounded subsequence of
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xn that converges to an x in B. Thus

sni

|sni |
=

xni
ni

|xni
ni |

→ x, ni → ∞.

On the other hand |sni | → 1, ni → ∞. Thus s = x; and we have proved

that B =
∞∩
n=k

T−1
n (Tn(B)). This immediately implies that S = σ(F0)

and the proof is complete. □
The following theorem is the main result of this article. It is an ex-

tension theorem for positive finite measures satisfying the consistency
condition (2.1).

Theorem 2.2. Assume that S, Sn−1 and Tn are as in Lemma 2.1, and
Γn, finite positive measures on Sn−1, n ≥ 1, respectively. Suppose that
Γn, n ≥ 1 satisfy (2.1) and

sup
n

Γn(Sn−1) < ∞.(2.2)

Then there is a unique finite positive measure Γ on S satisfying

Γn(Bn) =

∫
T−1
n (Bn)

|sn|αdΓ(s), Bn ∈ Sn−1, n ≥ 1.(2.3)

Proof. Define

Γ∗
n(T

−1
n (Bn)) = Γn(Bn), Bn ∈ Sn−1.(2.4)

Then clearly Γ∗
n is a finite Borel measure on T−1

n (Sn−1). Now define

Γ(T−1
n (Bn)) =

∫
T−1
n (Bn)

|sn|−αdΓ∗
n(s), Bn ∈ Sn−1.(2.5)

We will show that the Γ possesses the following properties:
(i) Γ is a well defined finite measure on F0;
(ii) Γ can be uniquely extended to a finite measure on S;
(iii) The extension Γ satisfies (2.3), and is the only one.

First we note that Tk = Tn,kTn and that Γ∗
nT

−1
n and Γn agree on Sn−1

embedded in S. Also by equations (2.4) and (2.5),

Γk(Bk) =

∫
T−1
k (Bk)

|sk|αdΓ(s), k < n,Bk ∈ Sk.

Now define

γn(T
−1
n,k(Bk)) =

∫
T−1
n,k(Bk)

|sk|αdΓn(s),
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and

γ(T−1
k (Bk)) =

∫
T−1
k (Bk)

|sk|αdΓ(s).

It follows from (2.1) that γn(T
−1
n,k(Bk)) = γ(T−1

k (Bk)) = γ(T−1
n (T−1

n,k(Bk)))

and hence γn = γT−1
n on T−1

n,k(Sk). Then for each k < n,

Γn(T
−1
n,k(Bk)) =

∫
T−1
n,k(Bk)

|sk|−αdγn(s)

=

∫
T−1
n,k(Bk)

|sk|−αdγT−1
n (s)

=

∫
T−1
n (T−1

n,k(Bk))
(|sn|/|sk|)αdγ(s)

=

∫
T−1
k (Bk)

|sn|αdΓ(s).

But Fatou’s lemma implies that

lim inf
n

Γn(T
−1
n,k(Bk)) ≥

∫
T−1
k (Bk)

lim inf
n

|sn|αdΓ(s) = Γ(T−1
k (Bk)).

Therefore Γ is finite on F0. Also

Γ∗
k(T

−1
k (B′

k)) = Γk(B
′
k)

=

∫
T−1
n,k(B

′
k)
|sk|αdΓn(s)

=

∫
T−1
n,k(B

′
k)
|sk|αdΓ∗

nT
−1
n (s)

=

∫
T−1
n (T−1

n,k(B
′
k))

| sk
|sn|

|αdΓ∗
n(s)

=

∫
T−1
k (B′

k)

|sk|α

|sn|α
dΓ∗

n(s),

where the third equality follows from the change of variable Tn(s) =
sn

|sn| .

Thus dΓ∗
k(s) =

|sk|α
|sn|αdΓ

∗
n(s) on T−1

k (Sk−1), k ≤ n.
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For (i) suppose T−1
n (Bn) = T−1

k (B′
k), k < n. Then

Γ(T−1
k (B′

k)) =

∫
T−1
k (B′

k)
|sk|−αdΓ∗

k(s)

=

∫
T−1
n (Bn)

|sn|−αdΓ∗
n(s)

= Γ(T−1
n (Bn)),

giving that Γ is well defined on F0. Also T−1
k = T−1

n T−1
n,k implies that

T−1
k (Sk−1) ⊆ T−1

n (Sn−1), k ≤ n; which in turn implies that Γ is finitely
additive on F0. The class F0 should be enlarged to become a field. This
can be done by adding the sets S and On, n = 1, 2, · · · to it. The
set function Γ can be extended to the new class, say F00. Indeed since
S = ∪nT

−1
n (Sn−1), and {T−1

n (Sn−1)} is increasing, we define Γ on S to
be

Γ(S) = lim
n→+∞

Γ(T−1
n (Sn−1)),

which, because of (2.2), is finite. Also for n = 1, 2, · · · , let Γ(On) =
Γ(S) − Γ(T−1

n (Sn−1)). Thus we have established a finitely additive set
function on the field F00 of cylinders in S. A classical argument as in
the proof of the Kolmogorov Existence Theorem, [2] page 490, will imply
that Γ is indeed countably additive on F00.
For (ii), since by Lemma 2.1, S = σ(F0) and F00 is a field, the classical
extension theorem implies that Γ has a unique extension on S. Part (iii)
follows from the fact that Γ(ds) = |sn|−αΓ∗

n(ds) on T−1
n (Bn). The proof

of the theorem is complete. □

Theorem 2.3. Let X be an α-stable random vector on a real separable
Hilbert space H for which bk = 0, k = 1, 2, · · · , then there exists a unique
finite Borel measure Γ on S = {s ∈ H : ∥s∥ = 1} such that

ϕX(t) = e−
∫
S |<s,t>|αdΓ(s)+iC(α,Γ,t), t ∈ H;(2.6)

C(α,Γ, t) =

{
tan(πα2

∫
S < t, s > | < t, s > |α−1Γ(ds) α ̸= 1

2
π

∫
S < t, s > ln | < t, s > |Γ(ds) α = 1,

the measure Γ is called the spectral measure of the α-stable random vector
X and is unique for 0 < α < 2.

Proof. The proof rests on Theorem 2.2. The condition (2.2) is satisfied
due to the tail behavior of the distribution ofX established in [1]. Indeed
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for every n ≥ 1,

Γn(Sn−1) = (Cα)
−1 lim

t→∞
tαP (∥Xn∥ > t) < (Cα)

−1 sup
t

tαP (∥X∥ > t) < ∞,

where Cα = (
∫∞
0 x−α sinx dx)−1; For the equality see [11], page 197.

The formula (2.6) follows from the facts that

ϕX(t) = lim
n

e
−

∫
Sn−1

|<tn,sn>|αdΓn(sn)+iCn(α,Γn,tn)
, t ∈ H,∫

Sn−1

| < tn, sn > |αdΓn(sn) =

∫
S
| < T

′
n(t), s > |αdΓ(s),

and

Cn(α,Γn, tn) = C(α,Γ, T ′
n(t)),

where T ′
n(t) = (tn, 0, 0, ...).

The uniqueness of Γ for X follows from the uniqueness of spectral
measures for stable random vectors in Rn, and Theorem 2.2. The proof
is complete. □

Remark 2.4. A modification will be needed in Theorem 2.2 if the con-
dition bk = 0, k = 1, 2, · · · is not satisfied. Indeed let X be an α-stable
random vector in H, then the characteristic function of the random vec-
tor Xn is given by

ϕXn(t) = e
−

∫
Sn−1

|s·t|αdΓn(s)+iCn(α,Γn,t)+it.γn
t ∈ Rn,

where γn ∈ Rn. The construction of the spectral measure in Theo-
rem 2.2 provides an α-stable random vector Y on H with ϕYn(t) =
e−it·γnϕXn(t), t ∈ Rn, n = 1, 2, · · · . So it follows that for every k =
1, 2, · · · ,

ϕYn(t) =
[
ϕYn(k

1
α t)

]1/k
= e−ik−1+1/αγn·t

[
ϕXn(k

1
α t)

]1/k
= e−ik−1+1/αγn·t−ik−1bk·tϕXn(t)

= e
−ik−1+1/αγn·t−ik−1bk·t−

∫
Sn−1

|s·t|αdΓn(s)+iCn(α,Γn,t)+it.γn

= e−ik−1+1/αγn·t−ik−1bkn·t+it.γnϕYn(t), t ∈ Rn.

Therefore it follows that for a fixed k, bkn = (k − k1/α)γn, n = 1, 2, · · · .
Thus bk = (k − k1/α)γ, k = 1, 2, · · · , for a γ ∈ H. Consequently
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ϕX(t) = ei<γ,t>ϕY (t), t ∈ H, giving that

ϕX(t) = ei<γ,t>−
∫
S |<s,t>|αdΓ(s)+iC(α,Γ,t), t ∈ H.

Also if A is a bounded linear operator from X onto a real separable
Hilbert space K, then AX will be an α-stable random vector in K, and
it follows from the uniqueness of the spectral measure that

ΓAX(E) =

∫
T−1
H,K(E)

∥As∥αKΓX(ds), E ∈ B(SK),

where SH and SK are the surfaces of the unit balls in H and K respec-
tively, TH,K : SH → SK , T (s) = ∥As∥−1

K As; moreover γAX = AγX .
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