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Abstract. We propose to use a mathematical method based on
stochastic comparisons of Markov chains in order to derive perfor-
mance indice bounds. The main goal of this paper is to investigate
various monotonicity properties of a single server retrial queue with
first-come-first-served (FCFS) orbit and general retrial times using
the stochastic ordering techniques.
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1. Introduction

Retrial queueing systems are such systems in which arrivals who find
the server busy join the retrial queue to try again for their requests
or leave the service area immediately. Apart from theoretical interest,
these systems have been extensively studied due to their wide applicabil-
ity. They have been successfully applied in telephone switching systems,
telecommunication networks and computers competing to gain service
from a central processing unit. Moreover, retrial queues are also used
as mathematical models for several computer systems: Packet switching
networks, shared bus local area networks operating under the carrier-
sense multiple access protocol and collision avoidance star local area
networks, etc. There is an extensive literature on retrial queues, see
[1, 2, 9, 12, 17, 31] and references therein.
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There is a special type of retrial systems called FCFS retrial queues
that was named by Farahmand [10], that is, if a customer finds the server
busy, he may join the tail of a retrial queue in accordance with an FCFS
discipline. The customer at the head of the retrial queue would then try
again to enter the system some time, competing with new customers. In
[18] there were introduced retrial systems with strict FCFS policy where
all entering customers join a general queue, but there is a restriction on
the starting moments of service. Lakatos [18] investigates the number
of customers, Koba [15] the waiting time in the system.

Retrial queueing systems with general service times and non-
exponential retrial times have also received considerable attention during
the last decade. An important characteristic of the general retrial time
policy is that we always obtain analytical solutions in terms of closed-
form expressions. The named policy arises naturally in problems where
the server is required to search for customers [22], that is, this policy
is related to many service systems where, after each service completion,
the processor will spend a random amount of time in order to find the
next item to be processed. The first investigation on the M/G/1 retrial
queue with general retrial times is due to Kapyrin [13], who assumed
that each customer in the orbit generates a stream of repeated attempts
that are independent of the number of customers in the orbit and the
state of the server. However, this methodology was found to be incorrect
by Falin [8]. Subsequently, Yang et al. [30] have developed an approx-
imation method to obtain the steady state performance for the model
of Kapyrin. Later, Gómez-Corral [11] discussed extensively an M/G/1
retrial queue with FCFS discipline and general retrial times. In recent
years, several retrial models with general retrial times have been ana-
lyzed, details of which may be found in [1, 3, 7, 20, 16, 28, 29].

Because of complexity of retrial queueing models, analytic results are
generally difficult to obtain. In contrast, there are a great number of nu-
merical and approximation methods which are of practical importance.
That is, the approximation of a stochastic model, either by a simpler
model or by a model with simple constituent components, might lead
to convenient bounds and approximations for some particular and de-
sired characteristics of the model. Such circumstances suggest seeking
qualitative properties of the real model, that is, the manner in which
the model is affected by the changes in its parameters. It is by means
of qualitative properties that bounds can be obtained mathematically
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and approximations can be made rigorously [25]. One important ap-
proach is monotonicity which can be investigated using the stochastic
comparison method based on the general theory of stochastic orders.
Stochastic comparison methods have been used to produce bounds and
approximations for queue length processes, waiting times and busy pe-
riod distributions in many queueing systems. For the detailed results
and references about the comparison methods and their applications,
see [4, 21, 25]

There is a significant body of literature on monotonicity results in
retrial queues. Khalil and Falin [14] consider some monotonicity prop-
erties of M/G/1 retrial queues with exponential retrial times relative to
strong stochastic ordering, convex ordering and Laplace ordering. Liang
[19] shows that if the hazard rate function of the retrial time distribution
is decreasing, then stochastically longer service time or less servers will
result in more customers in the system. Boualem et al. [5] investigate
some monotonicity properties of an M/G/1 queue with constant retrial
policy in which the server operates under a general exhaustive service
and multiple vacation policy relative to strong stochastic ordering and
convex ordering. These results imply in particular simple insensitive
bounds for the stationary queue length distribution. Taleb and Aissani
[27] show that if the distribution of the retrial time is close to the expo-
nential distribution in Laplace transform, then the exponential bound
is closer to the exact value than the deterministic bound. Otherwise,
the deterministic bound is better. More recently, Boualem et al. [6] use
the tools of a qualitative analysis to investigate various monotonicity
properties for an M/G/1 retrial queue with classical retrial policy and
Bernoulli feedback. The obtained results allow us to place in a promi-
nent position the insensitive bounds for both the stationary distribution
and the conditional distribution of the stationary queue of the consid-
ered model.

In this paper, we study monotonicity property similar to that of [5], for
an M/G/1 queue with general service times and non-exponential retrial
time distribution under FCFS orbit discipline. The performance charac-
teristics of such a system are available in Gómez-Corral [11]. We prove
the monotonicity of the transition operator of the embedded Markov
chain relative to strong stochastic ordering and convex ordering. We
obtain comparability conditions for the distribution of the number of
customers in the system. Bounds are derived for the mean character-
istics of the busy period, number of customers served during a busy
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period, number of orbit busy periods and waiting times. Our approach
is quite different from those in [11, 30].

The rest of the paper is organized as follows. In the next Section,
we describe the considered queueing model. In Section 3, we introduce
some pertinent definitions and notions, and present some lemmas that
will be used to prove the main results of this paper. Section 4 focusses
on monotonicity of the transition operator of the embedded Markov
chain and gives comparability conditions of two transition operators.
Stochastic bounds for the stationary number of customers in the system
are discussed in Section 5. In Section 6, we provide bounds for the mean
characteristics of the busy period and waiting time.

2. Description of the queueing model

We consider a single server retrial queue without waiting space. Pri-
mary customers arrive in a Poisson process with rate λ. If the server is
free, the primary customer is served immediately and leaves the system
after service completion. Otherwise, the customer leaves the service
area and enters the retrial group in accordance with an FCFS disci-
pline. To this end, we assume that only the customer at the head of
the orbit is allowed for access to the server. If the server is busy upon
retrial, the customer joins the orbit again. Such a process is repeated
until the customer finds the server idle and gets the requested service
at the time of a retrial. Successive inter-retrial times of any customer
follow an arbitrary law with common probability distribution function
A(x), Laplace-Stieltjes transform LA(s) and first moment α1. The ser-
vice times are independently and identically distributed with probability
distribution function B(x), Laplace-Stieltjes transform LB(s) and first
two moments β1, β2.
We suppose that inter-arrival times, retrial times and service times are
mutually independent.

The state of the system can be described by means of the process
{(C(t), N(t), ξ0(t), ξ1(t)), t ≥ 0}, where C(t) denotes the server state (0
or 1 according to the server is free or busy, respectively) and N(t) is the
number of customers in the orbit at time t. If C(t) = 0 and N(t) > 0,
then ξ0(t) represents the elapsed retrial time. If C(t) = 1, then ξ1(t)
corresponds to the elapsed service time of the customer being served.

Let τn be the time of the nth departure and Qn = N(τn) be the num-
ber of customers in the orbit just after the time τn. The sequence of



187 Boualem, Djellab and Aı̈ssani

random variables {Qn, n ≥ 1} forms an embedded Markov chain for our
queueing system which is irreducible and aperiodic on the state-space
N. Its fundamental equation is defined by

(2.1) Qn+1 = Qn + vn+1 − δQn+1 ,

where vn+1 is the number of primary customers arriving at the system
during the service time which ends at τn+1. Its distribution is given by
kj = P (vn+1 = j) =

∫∞
0 (λx)j(j!)−1e−λxdB(x), j ≥ 0, with generating

function k(z) =
∑
j≥0

kjz
j = LB(λ(1− z)).

The Bernoulli random variable δQn+1 is equal to 1 or 0 depending on
whether the customer, who leaves the system at time τn+1, proceeds
from the orbit or otherwise.
From Gómez-Corral [11], we have that the necessary and sufficient con-
dition for ergodicity of this chain is λβ1 < LA(λ).
The transition probabilities of the chain {Qn, n ≥ 1} are defined in the
following manner

pnm = (1− LA(λ))km−n + LA(λ)km−n+1, for n ̸= 0 and m ≥ 0,

p0m = km, for m ≥ 0.

This model has been studied by Gómez-Corral [11] (the steady state
distribution of the server state and the orbit length, the waiting time
distribution, the busy period, and other related quantities). Although
the performance characteristics of such a system were obtained, they
are cumbersome (they include integrals of Laplace transform, solutions
of functional equations, etc.) and are not very exploitable from the
application point of view (performance evaluation, ... ). It is why we
use, in the rest of this paper, the general theory of stochastic ordering
[25] to study monotonicity properties of the considered model relative to
the strong stochastic ordering, increasing convex ordering and Laplace
ordering.

3. Preliminary results

3.1. Stochastic orders and ageing notions. Stochastic ordering is
useful for studying internal changes of performance due to parameter
variations, to compare distinct systems, to approximate a system by a
simpler one, and to obtain upper and lower bounds for the main perfor-
mance measures of systems.
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First, let us recall some stochastic orders and ageing notions which
are most pertinent to the main results to be developed in this paper.

Definition 3.1. For two random variables X and Y with densities f
and g and cumulative distribution functions F and G, respectively, let
F = 1 − F and G = 1 − G be the survival functions. X is said to be
smaller than Y in:

(a): Usual stochastic order (denoted by X ≤st Y ) if and only if
F (x) ≤ G(x), ∀x ≥ 0.

(b): Increasing convex ordering (denoted by X ≤icx Y ) if and only

if
+∞∫
x

F (u)d(u) ≤
+∞∫
x

G(u)d(u), ∀x ≥ 0.

(c): Laplace order (denoted by X ≤L Y ) if and only if
+∞∫
0

e−sxdF (x) ≥
+∞∫
0

e−sxdG(x), ∀s ≥ 0.

If the random variables of interest are of discrete type and ω = (ωn)n≥0,
ν = (νn)n≥0 are the corresponding distributions, then the above defini-
tions can be given in the following form:

(a): ω ≤st ν iff ωm =
∑

n≥m ωn ≤ νm =
∑

n≥m νn, for all m.

(b): ω ≤icx ν iff ωm =
∑

n≥m

∑
k≥n ωk ≤ νm =

∑
n≥m

∑
k≥n νk,

for all m.
(c): ω ≤L ν iff

∑
n≥0 ωnz

n ≥
∑

n≥0 νnz
n, for all z ∈ [0, 1].

For a comprehensive discussion on these stochastic orders and their
applications, one may refer to [23, 24, 25, 26].

Definition 3.2. Let X be a positive random variable with distribution
function F and mean m.

(a): The distribution F is HNBUE (Harmonically New Better than
Used in Expectation) if

+∞∫
x

F (y)dy ≤ m e−
x
m , for all x ≥ 0.

(b): F belongs to the L class if

+∞∫
0

e−sy dF (y) ≤ 1

ms+ 1
, for all s ≥ 0.
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If these latter inequalities are reversed, we obtain the HNWUE (Har-
monically New Worse than Used in Expectation) and L classes of dis-
tributions.

(a): F is HNBUE (HNWUE) iff F ≤icx (≥icx)F
∗,

(b): F is L (L) iff F ≥L (≤L) F
∗,

where F ∗ is the exponential distribution function with the same mean as
F .

3.2. Some useful lemmas. This subsection presents several useful
lemmas which will be used later in establishing the main results in Sec-
tion 4.

Consider two M/G/1 retrial queues with non-exponential retrial

times with parameters λ(i) and B(i), i = 1, 2. Let k
(i)
j =∫ +∞

0
(λ(i)x)j

j! e−λ(i)xdB(i)(x) be the distribution of the number of primary

calls which arrive during the service time of a call in the ith system.

Lemma 3.3. If λ(1) ≤ λ(2) and B(1) ≤s B(2), then {k(1)n } ≤s {k(2)n },
where ≤s is one of the symbols ≤st or ≤icx.

Proof. By definition,

k
(i)
n =

∑
j≥n

k
(i)
j =

+∞∫
0

∑
j≥n

(λ(i)x)j

j!
e−λ(i)xdB(i)(x), i = 1, 2,

k
(i)

n =
∑
j≥n

k
(i)
j =

+∞∫
0

∑
j≥n

∑
l≥j

(λ(i)x)l

l!
e−λ(i)xdB(i)(x), i = 1, 2.

To prove that {k(1)n } ≤s {k(2)n }, we have to establish the usual numerical
inequalities

k
(1)
n =

∑
m≥n

k(1)m ≤ k
(2)
n , (for ≤s=≤st),

k
(1)

n =
∑
m≥n

k
(1)
m ≤ k

(2)

n , (for ≤s=≤ icx).

The rest of the proof is known in the more general setting of a random
summation. □

Lemma 3.4. If λ(1) ≤ λ(2) and B(1) ≤L B(2), then {k(1)n } ≤L {k(2)n }.



Stochastic bounds for a single server queue 190

Proof. We have

k(i)(z) =
∑
n≥0

k(i)n zn = LB(i)(λ(i)(1− z)), i = 1, 2,

where k(1)(z) and k(2)(z) are, respectively, the corresponding distribu-
tions of the number of new arrivals in the two systems during a service
time.
Let λ(1) ≤ λ(2) and B(1) ≤L B(2). To prove that {k(1)n } ≤L {k(2)n }, we
have to establish that

LB(1)(λ(1)(1− z)) ≥ LB(2)(λ(2)(1− z)).(3.1)

The inequality B(1) ≤L B(2) implies that LB(1)(s) ≥ LB(2)(s) for all
s ≥ 0.
In particular, for s = λ(1)(1− z) we have

LB(1)(λ(1)(1− z)) ≥ LB(2)(λ(1)(1− z)).(3.2)

Since any Laplace transform is a decreasing function, λ(1) ≤ λ(2) implies
that

LB(2)(λ(1)(1− z)) ≥ LB(2)(λ(2)(1− z)).(3.3)

By transitivity, (3.2) and (3.3) give (3.1). □

4. Monotonicity properties of the embedded Markov chain

Let T be the transition operator of our embedded Markov chain
{Qn, n ≥ 1} which associates to every distribution ω = {ωm}m≥0 a
distribution Tω = {νm}m≥0 such that νm =

∑
n≥0

ωnpnm (where pnm are

the one-step transition probabilities of the considered chain).

Theorem 4.1. The transition operator T is monotone with respect to
the orders ≤st and ≤icx.

Proof. The transition operator T is monotone with respect to ≤st iff

(4.1) pnm − pn−1m ≥ 0, ∀ n, m,

and is monotone with respect to ≤icx iff

(4.2) pn−1m + pn+1m − 2pnm ≥ 0, ∀ n, m.
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Here, pnm =
∞∑

l=m

pnl and pnm =
∞∑

l=m

pnl.

To prove inequalities (4.1) and (4.2), we have

pnm = (1− LA(λ))km−n + LA(λ)km−n+1

= (1− LA(λ))km−n + km−n+1,

pnm = (1− LA(λ))km−n + km−n+1.

Thus

pnm − pn−1m = (1− LA(λ))km−n + LA(λ)km−n+1 ≥ 0,

pn−1m + pn+1m − 2pnm = (1− LA(λ))km−n−1 + LA(λ)km−n ≥ 0.

Hence, we obtain the stated result. □
Proposition 4.2. If at time t = 0 the system was empty, then the
number of customers in the orbit would form a monotonically increasing
sequence with respect to the orders ≤st and ≤icx.

Proof. If ω(0) = (1, 0, 0, ...) is the initial probability vector, then

ω(1) = Tω(0) = (k0, k1, k2, k3, ...), ω
(0)
k =

{
1, if k = 0,
0, if k ̸= 0,

ω
(1)
k =

{
1, if k = 0,∑
i≥k

ki, if k ̸= 0, ω
(0)
n =

{
1, if n = 0,
0, if n ̸= 0,

and ω(0) ≤s ω
(1),

where ≤s is one of the symbols ≤st or ≤icx.
By induction and using the monotonicity of T, we show that ω(n) ≤s

ω(n+1). Thus Qn ≤s Qn+1. □
Remark 4.3. The operator T is not monotone with respect to the order
≤L.
Indeed, for ω(1) = (1, 0, 0, ...), ω(2) = (0, 1, 0, ...), we have ω(1) ≤L ω(2)

but Tω(1) ≰L Tω(2).

In the following two theorems, we give comparability conditions of
two transition operators. To this end, we consider two M/G/1 retrial

queues with non-exponential retrial times with parameters λ(1), A(1),
B(1) and λ(2), A(2), B(2), respectively. Let T1 and T2 be the transition
operators of the corresponding embedded Markov chains.

Theorem 4.4. If λ(1) ≤ λ(2), B(1) ≤s B(2) and A(1) ≤L A(2), then
T1 ≤s T

2, i.e. for any distribution ω, we have T1ω ≤s T
2ω, where ≤s

is one of the symbols ≤st or ≤icx.
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Proof. From Stoyan [25], we have to show the following numerical in-

equalities for the one-step transition probabilities p
(1)
nm, p

(2)
nm:

p(1)nm ≤ p(2)nm, ∀n, m, (for ≤s=≤st),(4.3)

p
(1)
nm ≤ p

(2)
nm, ∀n, m, ( for ≤s=≤icx).(4.4)

To prove inequality (4.3), we have

p(1)nm = (1− LA(1)(λ(1)))k
(1)
m−n + k

(1)
m−n+1.

Since λ(1) ≤ λ(2) and A(1) ≤L A(2), then LA(1)(λ(1)) ≥ LA(2)(λ(2)) and

p(1)nm ≤ (1− LA(2)(λ(2)))k
(1)
m−n + k

(1)
m−n+1.

Moreover, we have

(1− LA(2)(λ
(2)))k

(1)
m−n + k

(1)
m−n+1 = (1− LA(2)(λ

(2)))k
(1)
m−n + LA(2)(λ

(2))k
(1)
m−n+1.

By Lemma 3.3 (for ≤s=≤st), we have k
(1)
n ≤ k

(2)
n , ∀n ≥ 0.

Finally, we get:

p(1)nm ≤ (1− LA(2)(λ(2)))k
(2)
m−n + LA(2)(λ(2))k

(2)
m−n+1 = p(2)nm.

Following the above technique and using Lemma 3.3 ( for ≤s=≤icx),
we establish inequality (4.4). □
Theorem 4.5. If λ(1) ≤ λ(2), B(1) ≤L B(2) and A(1) ≤L A(2), then
T1 ≤L T2.

Proof. Let ω = (ωm) be a distribution and Tω = ν = (νm), where

νm =
∑
n≥0

ωnpnm = ω0km +
∑
n≥1

ωnpnm, for all m ≥ 0.

Let k(z) =
∑
n≥0

knz
n and ω(z) =

∑
n≥0

ωnz
n be the generating functions of

(kn) and (ωn), respectively.
The generating function of ν is given by

G(z) =
∑
m≥0

νmzm =
∑
m≥0

∑
n≥0

ωnpnmzm =
∑
m≥0

[ω0km +
∑
n≥1

ωnpnm]zm

= ω0k(z) +
∑
n≥1

ωn

∑
m≥0

[(1− LA(λ))km−n + LA(λ)km−n+1] z
m

= k(z)

[
ω0 + (1− LA(λ))(ω(z)− ω0) +

1

z
LA(λ)(ω(z)− ω0)

]
= ω0k(z) +

k(z)

z
(ω(z)− ω0)(z + (1− z)LA(λ)).
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If the conditions of Theorem 4.5 are fulfilled, then k(1)(z) ≥ k(2)(z) by

Lemma 3.4 and (1−z)LA(1)(λ(1)) ≥ (1−z)LA(2)(λ(2)), ∀ z ∈ [0, 1]. Hence

G(1)(z) ≥ G(2)(z). □

5. Stochastic bounds for the stationary distribution

Assume that we have two M/G/1 retrial queues with non-exponential

retrial times with parameters λ(1), A(1), B(1) and λ(2), A(2), B(2), respec-

tively, and let π
(1)
n , π

(2)
n be the corresponding stationary distributions of

the number of customers in the two systems.

Theorem 5.1. If λ(1) ≤ λ(2), B(1) ≤s B(2) and A(1) ≤L A(2), then

{π(1)
n } ≤s {π(2)

n }, where ≤s is one of the symbols ≤st or ≤icx.

Proof. The generating function of the number of customers in the system
at an arbitrary time point coincides with the generating function of the
embedded Markov chain at departure epochs, which can be obtained
from the following Kolmogorov equations for the stationary probabilities
πj = P (Qn = j), j ≥ 0:

πj = π0kj + (1− δ0j)(1− LA(λ))

j∑
n=1

πnkj−n + LA(λ)

j+1∑
n=1

πnkj−n+1, j ≥ 0,

where δ0j denotes Kronecker’s delta.
Since the corresponding embedded Markov chain is ergodic, the sta-
tionary distribution coincides with the limit distribution [11]. Using
Theorems 4.1 and 4.4 which state that Ti are monotone with respect
to the order ≤s and T1 ≤s T2, we have by induction T1,nω ≤s T2,nω
for any distribution ω, where Ti,n = Ti(Ti,n−1ω). Taking the limit, we
obtain the stated result. □
Theorem 5.2. If in the M/G/1 retrial queue with general retrial times
the service time distribution B(x) is HNBUE and the retrial time distri-
bution is of class L, then {πn} ≤icx {π∗

n}, where {π∗
n} is the stationary

distribution of the number of customers in the M/M/1 retrial queue
with exponential retrial times with the same parameters as those of the
M/G/1 retrial queue with general retrial times.

Proof. Consider an auxiliary M/M/1 retrial queue with the same arrival
rate λ, mean retrial time α1 and mean service time β1, as those of the
M/G/1 retrial queue with general retrial times, but with exponentially

distributed retrial times A∗(x) = 1− e−x/α1 and service times B∗(x) =

1 − e−x/β1 for x > 0. If B(x) is HNBUE and A(x) is of class L, then
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B(x) ≤icx B∗(x) and A(x) ≤L A∗(x). Therefore, by using Theorem 5.1,
we deduce the statement of this Theorem. □
Remark 5.3. Theorem 5.2 implies that the mean number of customers
in the system in steady state satisfies the following inequality

E(N) ≤ λ[λβ2 + 2(1− λβ1)β1](1 + λα1)

2[1− λβ1(1 + λα1)]
.

6. Application: Bounds for the mean characteristics of the
model

In this section, we show how the obtained theoretical results can be
used. We are interested in a system busy period and the orbit busy
period. These characteristics can be defined as follows: A system busy
period is defined as the period that starts at an epoch when an arriving
customer finds an empty system and ends at the next departure epoch
at which the system is empty. In the same time, the orbit busy period is
the interval of time from the epoch when a primary customer arrives and
finds the server busy and the orbit idle, until the next epoch at which
a repeated attempt finds the server idle and the orbit becomes empty.
Thus, we have the following characteristics: the length of a system busy
period L, the number of service completions occurring during (0, L] I
and the number of orbit busy periods which take place in (0, L] Nb.
Another important characteristic is the waiting time W .

For the considered model, under the condition λβ1 < LA(λ), we have
[11]:

E(L) =
β1

LA(λ)− λβ1
, E(I) =

LA(λ)

LA(λ)− λβ1
,

E(Nb) =
1− LB(λ)

LB(λ)
and E(W ) =

λβ2 + 2β1(1− LA(λ))

2(LA(λ)− λβ1)
.

Suppose once more that we have two M/G/1 retrial queues with non-

exponential retrial times with parameters λ(1), A(1), B(1) and λ(2), A(2),

B(2), respectively. Let L(i), I(i), N
(i)
b andW (i) be the busy period length,

the number of customers served during a busy period, the number of
orbit busy periods which take place in (0, L(i)] and the waiting time,
respectively, in the ith system, i = 1, 2.

Theorem 6.1. If λ(1) ≤ λ(2), B(1) ≤s B
(2) and A(1) ≤L A(2), then

E(L(1)) ≤ E(L(2)) and E(I(1)) ≤ E(I(2)),
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where ≤s is one of the symbols ≤st, ≤icx, ≤L.

Proof. The quantities E(L) and E(I) are increasing with respect to λ
and β1, and decreasing with respect to LA(.). Under conditions of The-
orem 6.1, we obtain the desired inequalities. Recall that X ≤s Y implies
E(Xn) ≤ E(Y n) for all n. □
Theorem 6.2. For any M/G/1 retrial queue,

E(L) ≤ β1
e−λα1 − λβ1

and E(I) ≤ e−λα1

e−λα1 − λβ1
.

If A and B are of class L, then

E(L) ≥ β1(1 + λα1)

1− λβ1(1 + λα1)
and E(I) ≥ 1

1− λβ1(1 + λα1)
.

Proof. Consider auxiliary M/D/1 and M/M/1 retrial queues with the
same arrival rate λ, mean service times β1 and mean retrial times α1. A
is a Dirac distribution at α1 for theM/D/1 system, and is an exponential
distribution for theM/M/1 system. Using the above theorem, we obtain
the stated results. □
Theorem 6.3. If λ(1) ≤ λ(2), B(1) ≤st B

(2) and A(1) ≤L A(2), then

E(N
(1)
b ) ≤ E(N

(2)
b ) and E(W (1)) ≤ E(W (2)).

Proof. The quantities E(Nb) and E(W ) are increasing with respect to
λ, β1 and β2, decreasing with respect to LB(.) and LA(.). Under the
conditions of Theorem 6.3, we obtain the desired inequalities. Recall
that X ≤st Y implies E(Xn) ≤ E(Y n) for all n. □
Theorem 6.4. For any M/G/1 retrial queue,

(6.1) E(Nb) ≤ eλβ1 − 1,

(6.2) E(W ) ≤ λβ2 + 2β1(1− e−λα1)

2(e−λα1 − λβ1)
.

If A and B are of class L, then
(6.3) E(Nb) ≥ λβ1,

(6.4)
λβ2(1 + λα1) + 2λβ1α1

2(1− λβ1(1 + λα1))
≤ E(W ) ≤ 2λβ2

1 + 2β1(1− e−λα1)

2(e−λα1 − λβ1)
.

Proof. The proof is similar to that of Theorem 6.2. Recall that if B is
of class L, then β2 ≤ 2β2

1 . □
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Remark 6.5. Inequality (6.2) gives an upper bound for the mean waiting
time when the retrial time and service time distributions are unknown,
but we have partial information about the first two moments. For the
second inequality (6.4), we use the partial information about the ageing
class of the retrial time and service time distributions.

7. Conclusion

In this paper, we present a qualitative analysis to establish insensitive
bounds for some performance measures of a single-server retrial queue
with generally distributed inter-retrial times by using the monotonicity
approach relative to the theory of stochastic orderings. Our method is
quite different from those in Gómez-Corral [11] and Yang et al. [30], in
the sense that our approach provides from the fact that we can come
to a compromise between the role of these qualitative bounds and the
complexity of resolution of some complicated systems where some pa-
rameters are not perfectly known.
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