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REALIZATION OF A CERTAIN CLASS OF
SEMI-GROUPS AS VALUE SEMI-GROUPS OF

VALUATIONS

M. MOGHADDAM

Communicated by Michel Waldschmidt

Abstract. Given a well-ordered semi-group Γ with a minimal sys-
tem of generators of ordinal type at most ωn1 and of rational rank r,
which satisfies a positivity and increasing condition, we construct a
zero-dimensional valuation centered on the ring of polynomials with
r variables such that the semi-group of the values of the polynomial
ring is equal to Γ. The construction uses a generalization of Favre
and Jonsson’s version of MacLane’s sequence of key-polynomials
[3].

1. Introduction

Recently, the interest for studying the structure of the value semi-
groups of the valuations centered on a noetherian local-ring has in-
creased (see, for example, [2]). Several examples (e.g., plane branches,
irreducible quasi-ordinary hypersurface singularities) suggest that the
structure of these semi-groups contains important information on the
local uniformization process of the valuation. What type of semi-groups
can be realized as the semi-group of values of a noetherian local ring
dominated by a valuation ring? Little is known in this respect. We
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know they are well-ordered of ordinal type < ωh, for some natural num-
ber h ([15], Appendix 3, Proposition 2). Abhyankar’s inequality holds
between numerical invariants of these valuations (see below). And, such
semi-groups have no accumulation point when they are considered as
semi-groups of (Rn, <lex) [2].

Here, we show that given a semi-group Γ of rational rank r, with
a given minimal system of generators which is well-ordered of ordinal
type at most ωn, n ∈ N, which satisfies a positivity and increasing
condition (Definition 2.2 and Theorem 7.1), there is a polynomial ring
R = k[X1, . . . , Xr], where k is an arbitrary field, and a valuation ν,
which is positive on R, such that the value semi-group ν(R \ {0}) is
equal to Γ.

Our basic tool is a generalization of Favre and Jonsson’s version of
MacLane’s sequence of key-polynomials ([3], [7]) for polynomial rings
with arbitrary number of variables. The technique of sequences of key-
polynomials was first invented by MacLane [7], following ideas of Os-
trowski, to produce and describe all the extensions of a discrete rank one
valuation ν of a field K to the extension field L = K(x). He attached
to any extension, say µ, of the valuation ν, a sequence of polynomials
φi(x) of the ring K[x]. By induction, one can produce any extension µ
to L of the valuation ν using valuations constructed by key-polynomials
(augmented valuations). In [13], Vaquié generalized MacLane’s method
to produce all the extensions of an arbitrary valuation of an arbitrary
field K to L. He showed that given such an extension of a valuation,
there may be many ways to produce such countable well-ordered sets
of key-polynomials and augmented valuations. Later, Favre and Jons-
son showed that in the case of d = 1 one can consider a rather simple
sequence of toroidal key-polynomials (SKP), to produce all the pseudo-
valuations centered on the ring k[[X0, X1]]. Using the arithmetic of the
sequence of key-polynomials of the extension µ of the valuation ν, in
[14], Vaquié defined a new invariant, called total jump (saut total). In
the case where L = K[x] and x are algebraic over K, he gives a formula
relating total jump to the classical invariants of the valuation exten-
sions. In [5], the construction of key-polynomials is generalized for the
case where L is an arbitrary algebraic extension of K (not necessarily of
the form K[x]). They give an explicit description of the construction of
key-polynomials of the valuation extension (L, µ) of (K, ν). There are
several constructions in [5] which are analogous to the present work, for
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example the notion of standard monomial and standard expansion cor-
responds to the monomial of adic form and adic expansion, respectively,
in our terminology.

We give a generalization of the sequence of toroidal key-polynomials
of [3] to produce a class of valuations of the field k((X0, . . . , Xd)), where
k is an arbitrary field. Our generalization cannot generate all the valua-
tions centered at k[[X0, . . . , Xd]]. The construction is explicit enough to
describe the value semi-group ν(k[[X0, . . . , Xd]]\{0}). And, in addition,
to realize certain semi-groups as value semi-groups.

Here, we recall the basic definitions associated with valuations.

Definition 1.1. Fix a valuation ν.

• The rank rk(ν) of ν, is the Krull dimension of the valuation ring
Rν .

• The rational rank of ν, r.rk(ν), is the dimension of the vector
space ν(Frac(Rν)∗)⊗Z Q over the field Q.

• The transcendence degree of ν, tr.deg(ν), is the transcendence
degree of the extension of k over residue field of ν, k ⊆ kν := Rν

mν
.

The principal relation between these numerical invariants is given by
Abhyankar’s inequalities:

rk(ν) + tr.deg(ν) ≤ r.rk(ν) + tr.deg(ν) ≤ dimR.

Moreover, if r.rk(ν) + tr.deg(ν) = dimR, then value group is isomorphic
(as a group) to Zr.rk(ν). When rk(ν) + tr.deg(ν) = dimR, then the value
group is isomorphic as an ordered group to Zrk(ν), endowed with the lex.
order.

Let R be an integral domain with field of fractions K and let ν be
a valuation of K such that its valuation ring Rν contains R. In this
case, we say the valuation is centered on the ring R. Let us denote by
Φ the totally ordered value group of the valuation ν. Denote by Φ+ the
semigroup of positive elements of Φ and set Γ = ν(R \ {0}) ⊂ Φ+ ∪ {0};
it is the semigroup of (R, ν). Since Γ generates the group Φ, then it is
cofinal in the ordered set Φ+.

For φ ∈ Φ, set
Pφ(R) = {x ∈ R | ν(x) ≥ φ}

P+
φ (R) = {x ∈ R | ν(x) > φ},

where we agree that 0 ∈ Pφ, for all φ, since its value is larger than any
φ, so that by the properties of valuations, the Pφ are ideals of R. Note
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that
⋂

φ∈Φ+
Pφ = (0) and that if φ is in the negative part Φ− of Φ, then

Pφ(R) = P+
φ (R) = R.

For φ /∈ Γ, Pφ(R) = P+
φ (R). For each non zero element x ∈ R, there

is a unique φ ∈ Γ such that x ∈ Pφ \ P+
φ ; the image of x in the quotient

(grνR)φ = Pφ/P+
φ is the initial form inν(x) of x.

The graded algebra associated with the valuation ν was introduced
in [6, 11] for the very special case of a plane branch (see [4]), and in [10]
in full generality. Later it was extensively used in [12] as a tool to solve
the local-uniformization problem. It is:

grνR =
⊕
φ∈Γ

Pφ(R)/P+
φ (R).

2. The inductive definition of the SKP

From now on, by Φ we mean a totally ordered abelian group of rank
d + 1. The total ordering of Φ is denoted by <. Let ∆0 = (0) ⊂
· · · ⊂ ∆d+1 = Φ be its sequence of isolated subgroups (see [15]). We
define the sequence of pre-values and the sequence of values of positive
type. Associated with a sequence of values of positive type there exists
a sequence of key-polynomials (SKP) which are elements of the power
series ring k(d) = k[[X0, . . . , Xd]]2. First, we need a general lemma on
abelian groups.

Lemma 2.1. Let Ψ be an abelian group, α be an ordinal number and
Γ = {γ0, γ1, . . . , γα} be a well-ordered sequence of elements of Ψ. For any
ordinal i ≤ α, define the subgroups of Ψ, Gi = (γj)j≤i

3, Gi− = (γj)j<i,
ni = [Gi : Gi− ], and set n0 = ∞. Then, for any i ≤ α such that ni 6= ∞,
we have a unique representation,

(2.1) niγi =
∑
j<i

mjγj ,

where 0 ≤ mj < nj, when nj 6= ∞, and mj ∈ Z, when nj = ∞, and
mj = 0 except for a finite number of j. More generally, every element
of Gi− can be written uniquely in the form (2.1).

2For any i ≤ d, we define k(i) = k[[X0, . . . , Xi]] and k(i) = k((X0, . . . , Xi)).
3If a1, . . . , an are elements of a group G, by (a1, . . . , an), we denote the subgroup

generated by these elements and by 〈a1, . . . , an〉, the semigroup generated by them.
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Proof. Let i ≤ α and ni 6= ∞. By definition of ni, we have niγi ∈ Gi− .
Thus, there exists a representation niγi =

∑
j<i pjγj , where pj ∈ Z,

and pj = 0, except for a finite number of j. We define, inductively, a
sequence A : N ′ ⊂ N → {1, . . . , α} of elements of the index set α, as
follows.

Let j0 < i be the greatest ordinal number such that nj0 6= ∞ and
pj0 6= 0. The ordinal j0 exists, since there is only a finite number of non-
zero pj . Set A(0) = j0. Using Euclidean division, write pj0 = qj0nj0+rj0 ,
where 0 ≤ rj0 < nj0 . Substituting this for pj0 , and expanding nj0γj0 in
terms of elements of Gj−0

, we get niγi =
∑

j<j0
p′jγj + rj0γj0 , where

p′j 6= 0, except for a finite number of j. Now, as before, let j1(< j0) be
the first ordinal number such that nj1 6= ∞ and p′j1 6= 0. Set A(1) = j1

and continue as before to obtain niγi =
∑

j<j1
p′′j γj + rj1γj1 + rj0γj0 ,

where 0 ≤ rj < nj . Continue this construction.
Either this construction stops after a finite number of steps, say jk,

and then we have niγi =
∑

j<i mjγj such that mj = 0, except for a finite
number of j, and 0 ≤ mj < nj , when nj 6= ∞. This shows the existence
part of the claim in this case. Or, the construction continues forever,
in which case we get a strictly decreasing sequence A : N → α. But
this is impossible: It suffices to note that A(N) is a subset of α without
least element, which is impossible (as α is well-ordered). Thus, we have
proved the existence part of the claim.

For the uniqueness, if we have two such representations,
niγi =

∑
j<i mjγj =

∑
j<i m

′
jγj , then let j0 be the greatest index such

that mj0 6= m′
j0

(as the number of nonzero mj and m′
j is finite, this

greatest index exists). Suppose mj0 > m′
j0

. Then, (mj0 − m′
j0

)γj0 =∑
j<j0

(m′
j −mj)γj ∈ Gj−0

, which is a contradiction, because 0 ≤ mj0 −
m′

j0
< nj0 . �

Definition 2.2. With the notation of Lemma 2.1, we say the sequence
Γ is of positive type in the group Ψ if for any i, we have all mj ∈ N.

This positivity condition implies that for all i, γi is in the positive cone
generated by the previous γ’s. However, the converse of this is not neces-
sarily true. This condition enables us to construct our key-polynomials
as binomials in terms of previous key-polynomials (Definition 2.4).
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Definition 2.3. A sequence (βi,j ∈ Φ)i=0..d,j=1..α̃i
4, where α̃i an ordinal

number and α̃0 = 1, is called a sequence of pre-values if for any i and j
we have,

• βi,j+1 > ni,jβi,j , where ni,j = min{r ∈ N ∪ {∞} : rβi,j ∈
(βi′,j′)(i′,j′)<lex(i,j)}.

• ni,j 6= ∞, for j < α̃i.
• If j is a limit ordinal, then βi,j > βi,j′ , for any j′ < j.

Consider the index set {(i, j)}i=0..d,j=1..α̃i
, ordered by the lex. order-

ing. As, α̃i are ordinals, this is a well ordering. According to Lemma
2.1, when ni,j 6= ∞, there exists a unique representation,

(2.2) ni,jβi,j =
∑

(i′,j′)∈Si,j∪Sc
i′,j′

m
(i,j)
i′,j′ βi′,j′ ,

where m
(i,j)
i′,j′ = 0, except for a finite number of (i′, j′) <lex (i, j), Si,j =

{(i′, j′) | (i′, j′) <lex (i, j), m
(i,j)
i′,j′ > 0}, and Sc

i,j = {(i′, j′) | (i′, j′) <lex

(i, j), m
(i,j)
i′,j′ < 0}. By Lemma 2.1, we have 0 ≤ m

(i,j)
i′,j′ < ni′,j′ if ni′,j′ 6=

∞, and m
(i,j)
i′,j′ ∈ Z if ni′,j′ = ∞. Thus, if (i′, j′) ∈ Sc

i,j then ni′,j′ = ∞
and, by definition of pre-values, we have j′ = α̃i′ .

Let Γ = (βi,j ∈ Φ)i=0..d,j=1..α̃i
, ordered by lex ordering, be a sequence

of pre-values. Let Φd,α̃d
be the group generated by these elements. We

say Γ is a sequence of values if it is of positive type in Φd,α̃d
. This

condition is equivalent to Sc
i,j = ∅, for any i and j.

Definition 2.4. (SKP) Given a sequence of values Γ = (βi,j ∈
Φ)i=0..d,j=1..α̃i

, we associate with Γ a sequence of power series (Ui,j ∈
k(d))i=0..d,j=1..αi

, αi ≤ α̃i. It is called the sequence of key-polynomials
of the sequence of values Γ. It is defined by induction on i. For i = 0,
we set α0 = α̃0 = 1 and U0,1 = X0. Suppose Ui′,j′ and αi′ are defined
for i′ < i. We set Ui,1 = Xi. Suppose Ui,j′ are defined for j′ < j. Then,
we define Ui,j as follows:

(P1) If j is not a limit ordinal, then

(2.3) Ui,j = U
ni,j−1

i,j−1 − θi,j−1

∏
(i′,j′)∈Si,j−1

U
m

(i,j−1)

i′,j′

i′,j′ ,

4By i = 0..d and j = 1..α̃i we mean i = 0, . . . , d and j = 1, . . . , α̃i.
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where θi,j ∈ k∗. This can be written as:

Ui,j = U
ni,j−1

i,j−1 − θi,j−1U
m(i,j−1)

.

(P2) If j is a limit ordinal, then

Ui,j = lim
j′→j

Ui,j′ ∈ k(i−1)[[Xi]].

In Proposition 2.11, we prove that this limit exists in the ring
k(i−1)[Xi]. If this limit is equal to zero, then we set αi = j,
βi,j = ∞, and we stop the construction of the key-polynomials
at this step, for i. Otherwise, we continue to construct Ui,j′ for
j′ > j.

If the construction of the Ui,j continues for every j ≤ α̃i, then we set
αi = α̃i.

We denote an SKP by [Ui,j , βi,j ]i=0..d,j=1..αi
.

Remark 2.5. The following remarks are in order.
(i) Given any sequence of key-polynomials as above, if we consider

the data [Ui,j , βi,j ]i=0,1,j=1..αi , then it is a Γ−SKP for the ring
k[[X0, X1]] in the sense of [3] for the group Γ = Φ.

(ii) The formula of (P1) can be rewritten in the following way:

Ui,j+1 = U
ni,j

i,j − θi,jU
m

(i,j)
0

0 U
m

(i,j)
1

1 · · ·Um
(i,j)
i−1

i−1 (U
m

(i,j)
i,1

i,1 · · ·U
m

(i,j)
i,j−1

i,j−1 ),

where, U
m

(i,j)

i′
i′ =

∏
j′≤αi′

U
m

(i,j)

i′,j′

i′,j′ , for i′ = 0..i− 1.
(iii) For a fixed i, when αi is a limit ordinal:

– If there exists an infinite number of j such that ni,j > 1,
then we have,

∗ degXi
(Ui,j) →∞ (j → αi).

∗ We have Ui,αi = limj→αi Ui,j = 0 ( Lemma 2.10.(ii)).
– Otherwise, (we denote this case by writing Ui,αi 6= 0), we

have,
∗ ni,j = 1, except for a finite number of ordinals j.
∗ There is some ordinal j0 such that degXi

(Ui,αi) =
degXi

(Ui,j) and ni,j = 1, for all j > j0.
(iv) For any limit ordinal j < αi, there are only finitely many j′ < j

such that ni,j′ > 1: Suppose the contrary, and let j < α be an
ordinal such that there is an infinitely many j′ < j such that
ni,j′ > 1. The argument of the proof of Lemma 2.10(ii) shows
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that Ui,j = 0. Thus, by construction of SKP, we must have
j = αi, which is a contradiction.

(v) Given an SKP and d′ ≤ d− 1, we have (Ui,j ∈ k(d′))i=0..d′,j=1..αi
.

Moreover, the data [Ui,j , βi,j ]i=0..d′,j=1..αi
is an SKP for the se-

quence of values Γ′ = (βi,j ∈ Φ)i=0..d′,j=1..α̃i
.

Definition 2.6. Let [Ui,j , βi,j ]i=0..d,j=1..αi
be an SKP. We define the

semigroups Γi,j and the groups Φi,j , for i = 0, . . . , d, j = 1, . . . , αi, as
follows:

Γi,j = 〈βi′,j′〉(i′,j′)≤lex(i,j),

Φi,j = (Γi,j),

Φ∗i,j = Φi,j ⊗Z Q.

Definition 2.7. Consider a power series ring A = k(i). The order
of an element M =

∑
m cmXm of this ring is ordA(M) = ord(M) =

minm,cm 6=0
{
∑i

q=0 mq}.

Let [Ui,j , βi,j ]i=0..d,j=1..αi
be an SKP. Fix an i ≤ d. Consider the

abelian ordered group Φi,αi . This group is order isomorphic to a sub-
group of the ordered group (Rn, <lex), for some large enough n (see [1],
Proposition 2.10).

Let us fix such an embedding and suppose αi is a limit ordinal.
Consider the first index t ≤ d, such that #{(βi,j)t}1≤j<αi = ∞. The
index t is independent of the choice of an ordered embedding of Φi,αi into
Rn; it is called the effective component for i . Notice that this t exists,
since otherwise, we have #{(βi,j)t}1≤j<αi,t=1..n < ∞. On the other
hand, we have βi,1 <lex βi,2 <lex · · · <lex βi,αi . But this is impossible
when all the components of the βi come from a finite set. Thus, t is well-
defined. In [2], it is shown that well-ordered semi-groups of ordinal type
≤ ωh, h ∈ N, have no accumulation points in Rn, in Euclidean topology.
We show that the semi-groups of positive type have a stronger property:
The effective component of any sequence of the elements of the semi-
group tends to infinity (Lemma 2.9, and Lemma 7.3)

Proposition 2.8. With the notation of the last paragraph, we have:
(i) There exists j(i), 1 ≤ j(i) < αi, such that the first (t − 1) com-

ponents of βi,j are the same (componentwise), for j ≥ j(i); i.e.,
(βi,j)t′ = (βi,j′)t′, for j, j′ ≥ j(i) and t′ < t.
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(ii) For j > j′ > j(i), we have (βi,j)t ≥ (βi,j′)t.
(iii) If Ui,αi = 0 then:

(1) t = min{t′| 1 ≤ t′ ≤ n, ∃j < αi : (βi,j)t′ 6= 0}.
(2) (βi,j)t′ = 0, for any j < αi and t′ < t.
(3) (βi,j)t → +∞ (j → αi).

Proof. (i) is a direct consequence of the definition. For (ii), by def-
inition of the SKP, we have βi,j >lex βi,j′ . On the other hand, by
(i), the first t − 1 components of βi,j and βi,j′ are the same. Thus,
(βi,j)t ≥ (βi,j′)t.

For (iii), set t1 = min{t′| 1 ≤ t′ ≤ n, ∃j < αi : (βi,j)t′ 6= 0}. By
definition of t1, we have (βi,j)t′ = 0, for any j < αi and t′ < t1. So,
t1 ≤ t. From the definition of the SKP, we deduce that βi,j+1 >lex

(
∏

j0≤j′≤j ni,j′)βi,j0 . We choose j0 such that (βi,j0)t1 6= 0 (note that
necessarily (βi,j0)t1 > 0). As Ui,αi = 0, there is an infinite number of
j > j0 such that ni,j > 1 (j → αi). This shows that (βi,j)t1 → ∞ (j →
αi). Thus, t = t1. �

Lemma 2.9. Let [Ui,j , βi,j ]i=0..d,j=1..αi
be an SKP. Fix an i ≤ d and

let t be the effective component for i. If αi is a limit ordinal, then
(βi,j)t → +∞ (j → αi).

Proof. If Ui,αi = 0, then the claim is the content of Proposition 2.8
(iii). Assume Ui,αi 6= 0. Then, by definition of Ui,αi 6= 0, there exists j0

such that ni,j = 1 for j > j0. Notice that in this case there is a finite
number of j (in general) such that ni,j 6= 1 (by definition of Ui,αi 6= 0).
And we have, (βi,j)t =

∑
(i′,j′)∈Si,j

m
(i,j)
i′,j′ (βi′,j′)t, for j > j0. Define,

Ci = {(i′, j′) ∈ Si,j , max{j0, j(i)} ≤ j < αi, (βi′,j′)t 6= 0}.

If #Ci = ∞, then there exists some i0 < i and an infinite number
of j′ such that (i0, j′) ∈ Ci, and so we can speak of j′ → ∞. For such
(i0, j′) (which are infinite in number), we have ni0,j′ > 1, and hence αi0

is a limit ordinal and Ui0,αi0
= 0. Let t′ be the effective component for

i0. By definition of Ci, there is at least one j′ such that (βi0,j′)t 6= 0.
But Ui0,αi0

= 0, and thus by Proposition 2.8(iii)(2), we have t′ = t. As
(βi0,j′)t →∞ (j′ →∞), we have (βi,j)t →∞ (j → αi).

If #Ci < ∞, then the (βi,j)t are elements of the discrete lattice L ⊂ R,
generated by the finite set of generators {(βi′,j′)t| (i′, j′) ∈ Ci}. Thus,
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as any bounded region of R contains only a finite number of elements of
the lattice L, the sequence (βi,j)t (j → αi) cannot be contained in any
bounded region of R. On the other hand, by Proposition 2.8(ii), this
sequence is increasing, and so it goes to +∞. �

Lemma 2.10. Consider an SKP [Ui,j , βi,j ]i=0..d,j=1..αi
. Suppose αi is a

limit ordinal. Then, we have the following:

(i) For any n ∈ N and i < d, there exists an ordinal j
(i)
n such that

ordk(i−1)[Xi]
(Um(i,j)

) > n, for any j > j
(i)
n .

(ii) If Ui,αi = 0, then one can choose the above j
(i)
n such that in

addition, ordk(i−1)[Xi]
(Ui,j) > n, for any j > j

(i)
n .

Proof. Suppose both (i) and (ii) are proved for any n′ and i′ < i, and
also for n′ ≤ n and i, and notice the result holds for n = 0. We prove
them for n+1 and i. Suppose t is the effective component for i. For any
vector V ∈ Rn, we define |V | to be its tth component; i.e., |V | = (V )t.
Let

M∗ = max{{|βi′,j′ | : (i′, j′) ∈ Si,j , j′ ≤ j
(i′)
n+1 if i′ < i, j′ ≤ j(i)

n if i′ = i}.

Notice that the cardinality of this set is finite, and so M∗ is well-defined.
(i):
By Lemma 2.9, we have |βi,j | → +∞ (j → αi). Hence, there exists

j
(i)
n+1 such that |βi,j | > (n + 1)M∗, for j ≥ j

(i)
n+1. The claim is that the

number j
(i)
n+1 works. We can assume j(i) < j

(i)
n (see Proposition 2.8(ii)).

Suppose j > j
(i)
n+1.

If there exists at least one (i, j′) ∈ Si,j such that j′ ≥ j
(i)
n then we are

done. Indeed, if m
(i,j)
i,j′ > 1, since ordk(i−1)[Xi]

(Ui,j′) > n (by induction

assumption for (ii), in the case n), then ordk(i−1)[Xi]
(Um(i,j)

) > nm
(i,j)
i,j′ >

n + 1. If m
(i,j)
i,j′ = 1, since |βi,j′ | < |βi,j | (because ni,j′ > 1 and βi,j >lex

ni,j′βi,j′ , and |.| preserves ordering for j′′ > j(i) ), then there should be
at least another element (i′′, j′′) ∈ Si,j . But, ordk(i−1)[Xi]

(Ui′′,j′′) ≥ 1.

Therefore, we have
ordk(i−1)[Xi]

(Um(i,j)
) > ordk(i−1)[Xi]

(Ui,j′) + ordk(i−1)[Xi]
(Ui′′,j′′) > n + 1.

If there exists some (i′, j′) ∈ Si,j such that i′ < i and j′ > j
(i′)
n+1, then

clearly we are done.
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It remains the case that for all (i′, j′) ∈ Si,j :

• If i′ < i, then j′ < j
(i′)
n+1.

• If i′ = i, then j′ < j
(i)
n .

By definition of M∗ and conditions above, we have |βi′,j′ | < M∗, for any
(i′, j′) ∈ Si,j . Hence,

|β
i,j

(i)
n+1

| ≤ |βi,j | ≤ ni,j |βi,j | =
∑

(i′,j′)∈Si,j

m
(i,j)
i′,j′ |βi′,j′ | < (

∑
(i′,j′)∈Si,j

m
(i,j)
i′,j′ )M

∗,

where the first inequality holds, because |.| preserves ordering for j′ ≥
j
(i)
n > j(i) (Proposition 2.8(ii)).

But, by definition of M∗, we have |β
i,j

(i)
n+1

| > (n + 1)M∗. Thus,

n + 1 <
∑

(i′,j′)∈Si,j
m

(i,j)
i′,j′ . Finally,

ordk(i−1)[Xi]
(Um(i,j)

) ≥
∑

(i′,j′)∈Si,j

m
(i,j)
i′,j′ > n + 1.

(ii):
As (i) holds for n+1 and using the induction assumption, we can find

j
(i)
n+1 such that ord(Ui,j) > n, and ord(Um(i,j)

) > n + 1, for j > j
(i)
n+1.

If this j
(i)
n+1 does not work for (ii), then find the first j0 > j

(i)
n+1 such

that ni,j0 6= 1 (as Ui,αi = 0, this j0 exists) and set j
(i)
n+1 := j0. It is

straightforward to check that this new j
(i)
n+1 works also for (ii). �

Proposition 2.11. Fix an SKP [Ui,j , βi,j ]i=0..d,j=1..αi
. Then, for any

(i, j), we have Ui,j ∈ k(i−1)[Xi].

Proof. The proof is by induction on i and j. For i = 0, it is obvious.
Suppose it is valid for indices less than i, and prove it for i. When j
is not a limit ordinal, formula (P1) represents Ui,j as a polynomial in
terms of previous U ’s and the claim is obvious in this case by induction
on j.

It remains the case when j is a limit ordinal. We can assume that
j = αi (considering the SKP [Ui′,j′ , βi′,j′ ]i′=0..j′,j′=1..α′

i′
, where α′i′ = αi′

for i′ < i and α′i = j). We must show that limj′→αi
Ui,j′ ∈ k(i−1)[Xi].

If there is an infinite number of j such that ni,j > 1, then by Lemma
2.10(ii), we have Ui,αi = 0 ∈ k(i−1)[Xi]. Thus, we can assume ni,j = 1,
except for a finite number of j. Then, by Lemma 2.10(i), we have
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ordk(i−1)[Xi]
(Um(i,j)

) → ∞ (j → αi). By Remark 2.5(iii), we have

degXi
(Um(i,j)

) is bounded. Hence, ordk(i−1)(Um(i,j)
) → ∞ (j → αi).

Using this fact and the equality Ui,j+1 − Ui,j = −θi,jU
m(i,j)

, for j ≥ j0

(where ni,j = 1, for j ≥ j0), we have,

lim
j→αi

Ui,j = U
ni,j0
i,j0

−
∑

j,j0≤j<αi

θi,jU
m(i,j) ∈ k(i−1)[Xi].

�

Remark 2.12. The proof of the proposition shows that for any two
ordinals j′ < j′′ such that ni,j = 1, for j′ < j < j′′, we have Ui,j′′ =
limj→j′′ Ui,j = U

ni,j′

i,j′ −
∑

j,j′≤j<j′′ θi,jU
m(i,j)

.

Example 2.13. Consider the ring k[X0, X1, X2] and the group Φ =
Z3 with reverse lexicographical order. Consider the valuation ν cen-
tered on this ring defined by the SKP (U0,1, U1,1, (U2,j)ω2

j=1) and β0,1 =
(1, 0, 0), β1,1 = (0, 1, 0), β2,ωn+j = (j, n + 2, 0), for n ∈ N, 0 < j < ω and
β2,ω2 = (0, 0, 1). Here, we have the relations,

U2,ωn+j+1 = U2,ωn+j − U j
0,1U

n+2
1,1 .

In this example, we have n2,j = 1, for any 1 < j < ω2. We see that
we cannot continue to define U2,ω2+1 : The reason is that (β2,ωn)2 =
n + 2 → ∞ (n → ∞) and therefore necessarily β2,ω2 /∈ Z2 ⊕ {0}.
Thus, as β0,1, β1,1 ∈ Z2 ⊕{0}, there does not exist any relation between
β2,ω2 , β0,1, β1,1 and we are forced to stop at this step.

Example 2.14. Consider the ring k[X0, X1, X2] and the group Φ = Q
with the usual order ≤ . Consider the valuation ν centered on this ring
by the SKP, (U0,1, (U1,j)ω

j=1, (U2,j)ω
j=1, βi,j), which is defined as follows:

Let {pi}∞i=1 be an increasing sequence of prime numbers. Define β0,1 = 1,
β1,1 = 1

p1
, β1,j = mj + 1

pj
, for j ≥ 2, where m2 = 1 and mj+1 = pjmj +1,

and β2,j = β1,j , for j ≥ 1. Then, after setting θi,j = 1, we have U1,j+1 =
U

pj

1,j − U
mj+1

0,1 and U2,j+1 = U2,j − U1,j .
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3. Adic expansions

Suppose an SKP [Ui,j , βi,j ]i=0..d,j=1..αi
is given. In this section, we

show that any element f of the power series ring k(d) has a unique expan-
sion in terms of key-polynomials. We give an algorithm for computing
this expansion. The algorithm is based on the notion of acceptable vec-
tors α′ ≤ α associated with the SKP. Any acceptable vector determines
an SKP [Ui,j , βi,j ]i=0..d,j=1..α′i

. We define the notion of (U)α′ − adic ex-
pansion, and show how one can get (U)α′′−adic expansions for α′′ ≥ α′,
using (U)α′ − adic expansion. In the next section, we use the adic ex-
pansion of the elements to define a valuation, associated with a given
SKP.

Lemma 3.1. Fix an SKP [Ui,j , βi,j ]i=0..d,j=1..αi
. When Ui,j 6= 0, it is of

the form,

Ui,j = X
di,j

i + ai,j,di,j−1X
di,j−1
i + · · ·+ ai,j,0,

where ai,j,j′ ∈ k(i−1) is so that the constant term of ai,j,j′ is zero. More-
over, when j is not a limit ordinal, we have di,j = ni,j−1di,j−1, for
1 ≤ j < αi. If j is a limit ordinal, then there exists an ordinal j0 < j,
which is not a limit ordinal and for any j′ such that j0 ≤ j′ ≤ j, we
have di,j′ = di,j0 = ni,j0−1di,j0−1.

Proof. The proofs are all by induction. We prove the last part. By
definition of the SKP, it is clear that for any j′ = 1, . . . , j − 1, we have
m

(i,j)
i,j′ ∈ Si,j , and so we have 0 ≤ m

(i,j)
i,j′ < ni,j′ . By induction, we have

ni,j′ = di,j′+1/di,j′ . Hence, m
(i,j)
i,j′ + 1 ≤ di,j′+1/di,j′ . So, we have,

j−1∑
j′=1

m
(i,j)
i,j′ di,j′ ≤

j−1∑
j′=1

(
di,j′+1

di,j′
− 1)di,j′ = di,j − 1 < ni,jdi,j .

Hence, degXi
(Ui,j+1) = ni,jdi,j . For the last claim, we note that when j

is a limit ordinal, there exists a j0 such that for any j′, j0 ≤ j′ ≤ j, we
have ni,j′ = 1. �
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Lemma 3.2. For any SKP [Ui,j , βi,j ]i=0..d,j=1..αi
, if Ui,j 6= 0, then we

have,

degXi
(Ui,j) > degXi

(
∏
j′<j

U
pi,j′

i,j′ ),

when 0 ≤ pi,j′ < ni,j′ . In other words,
∑

j′<j pi,j′di,j′ < di,j . Notice that
pi,j′ = 0, except for a finite number of j′.

Definition 3.3. Fix an SKP [Ui,j , βi,j ]i=0..d,j=1..αi
. We say that a vec-

tor (α′0, . . . , α
′
d) such that α′i ≤ αi is an acceptable vector if for any

i = 0, . . . , d and any j = 1, . . . , α′i, and for any (i′, j′) ∈ Si,j we have,
(i′, j′) ≤lex (i′, αi′) for i′ < i, and (i′, j′) <lex (i, j), when i′ = i.
This means that in the equation (P1), defining Ui,j in terms of the
U with smaller indices, one needs only indices from α′, not necessarily
all of α. Notice that an acceptable vector α′ determines an SKP; i.e.,
[Ui,j , βi,j ]i=0..d,j=1..α′i

is an SKP.

Given an SKP [Ui,j , βi,j ]i=0..d,j=1..αi
, the vector α is an acceptable

vector. Moreover, the vector (1, . . . , 1) ∈ Nd is an acceptable vector for
an arbitrary SKP.

Definition 3.4. Given any SKP and any acceptable α′, we define the
new SKP by this acceptable vector and construct the power series ring
k((α′,i)) = k[[(Ui′,j′)i′≤i,j′<α′i,ni′,j′ 6=1, (Ui′,α′

i′
)i′≤i]] ⊆ k(d). We have k(i) =

k((α,i)).

Given an SKP [Ui,j , βi,j ]i=0..d,j=1..αi
, and an acceptable vector α′ =

(α′0, . . . , α
′
d), we want to expand an arbitrary element f ∈ k(d) in terms

of U ’s as an element of the power series ring k((α′,d)).

Definition 3.5. (adic expansions) Fix an SKP [Ui,j , βi,j ]i=0..d,j=1..αi
.

Let α′ be an acceptable vector for this SKP. For an element f ∈ k(d),
consider the expansion f =

∑
I(J) cI(J)U

I(J) ∈ k((α′,d)), where I(J) ∈
N1 × · · · × Nα′i × · · · × Nα′d , and cI(J) ∈ k. This expansion is called the
(U)α′ − adic expansion of f, when for every monomial U I(J) we have
0 ≤ I(J)i,j < ni,j , for any 0 ≤ j < α′i and i = 0, . . . , d. Notice that
I(J)i,j = 0, except for a finite number of j.
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Definition 3.6. Fix an SKP [Ui,j , βi,j ]i=0..d,j=1..αi
, and let α′ be an

acceptable vector. For any monomial M(U) = Ua ∈ k((α′,d)), we define,

Vdeg(M) = (degX0
(Ua0

0 ),degX1
(Ua1

1 ), . . . ,degXd
(Uad

d )) ∈ Nd.

Definition 3.7. Fix an SKP [Ui,j , βi,j ]i=0..d,j=1..αi
, and let α′ be an

acceptable vector. Let M(U) = cUa be a monomial of the ring k((α′,d)).
We say that it is a monomial of adic form if it satisfies the conditions of
monomials of Definition 3.5.

Lemma 3.8. Fix an SKP [Ui,j , βi,j ]i=0..d,j=1..αi
, and let α′ be an ac-

ceptable vector. Let M(U) = cUa ∈ k((α′,d)) be a monomial of adic form
with respect to this SKP. Then, Vdeg(M) determines the vector a.

Proof. This is a simple consequence of Lemma 3.2. If we set n =
degXi

(Uai
i ), then we have ai,α′i

= [ n
di,α′

i

]. Suppose by induction we ob-

tained ai,α′i
, . . . ,ai,j+1. Then, we have, ai,j = [

n−
∑α′i

j′=j+1
ai,j′ .di,j′

di,j
]. Note

that if ai,j 6= 0, then for any j′ < j such that di,j = di,j′ , we have
ai,j′ = 0. This shows that in the case that α′i is infinite ordinal type the
number of nonzero entries of a computed inductively above, is finite. �

Corollary 3.9. Fix an SKP [Ui,j , βi,j ]i=0..d,j=1..αi
. Let α′ be an accept-

able vector. For any two different monomials M and M ′ of the power
series ring k((α′,d)), we say M < M ′ if

Vdeg(M) <lex Vdeg(M ′).

This is a well ordering on the set of monomials of k((α,d)) of adic form.

The following proposition shows that the adic expansions are well
defined elements of the ring k((α,d)) and they are unique and it gives an
algorithm to compute them.

Proposition 3.10. (Algorithm for getting adic expansions) Fix
an SKP [Ui,j , βi,j ]i=0..d,j=1..αi

. Let α′ and α′′ be two acceptable vectors
for this SKP such that α′ < α′′, with respect to the partial product order
of Zd+1. Let f ∈ k(d) and suppose we know its (U)α′ − adic expansion.
In order to obtain its (U)α′′ − adic expansion, we do the following:
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Starting from (U)α′ − adic expansion of f, for any monomial M(U)
in the expansion, and for any i = 0, . . . , d and j < α′′i , do the following
replacements, and iterate this process on the resulting expansion as far
as possible.

• If ni,j+1 > 1, then replace any occurrence of U
ni,j

i,j in M(U) by

Ui,j+1 + θi,jU
m(i,j)

(cf. (P1) of Definition 2.4).
• If ni,j+1 = 1, then let j + 1 < j0 ≤ α′′i be the first ordinal such

that ni,j0 > 1 or j0 = α′′i and replace any occurrence of U
ni,j

i,j in
M(U) by

U
ni,j

i,j = Ui,j0 +
∑

j≤j′<j0

θi,j′U
m(i,j′)

,

(cf. Remark 2.12).

The resulting expansion is equal to the (U)α′′ − adic expansion of the
element f. Moreover, this expansion is unique.

Proof. For any element of k((α,d)), we define Mn to be those monomials
with ord = n. By Lemma 2.10, we know that #Mn is finite. We do
the replacements of the algorithm (staring from α′ − adic expansion of
f) in the nth step only on the monomials of

⋃
n′≤nMn′ of the current

expansion. Using Lemma 6.6 of [8], this process terminates after finitely
many steps. In this step, all the monomials of

⋃
n′≤nMn′ of the current

expansion are of α′′−adic form. Moreover, there exists a number m(n) <
n, where m(n) →∞ (n →∞), such that in the process of replacements
on the monomials of

⋃
n′≤nMn′ , the monomials of

⋃
m′≤m(n)Mm′ do

not change (Lemma 2.10). Doing this process, as n → ∞, we get an
expansion, which satisfies all the properties of α′′−adic expansion. Thus,
we obtain a (U)α′′ − adic expansion of f .

Now, we prove that this expansion is unique. Suppose an element
f ∈ k(d) has two different adic expansions, f =

∑
I(J) cI(J)U

I(J) =∑
I′′(J ′′) c′′I′′(J ′′)U

I′′(J ′′). Assume by induction on d that the claim is valid

for the power series ring R⊗kk
(d−1), where R = k[[(Ud,j)j<αd,nd,j 6=1, Ud,αd

]]
is considered to be the coefficient ring. Consider f as an element of
the ring R ⊗k k(d−1). The two adic expansions of f give two adic ex-
pansion of f ∈ R ⊗k k(d−1) as follows. Setting U = (U(d−1), Ud) and
I(J) = (I(J)(d−1), I(J)d), we have,
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f =
∑

I(J)(d−1)
(
∑

I′(J′)d,I(J)(d−1)=I′(J′)(d−1)
cI′(J′)U

I′(J′)d
d )U

I(J)(d−1)
(d−1)

=
∑

I′′(J′′)(d−1)
(
∑

I′(J′)d,I′′(J′′)(d−1)=I′(J′)(d−1)
c′′I′(J′)U

I′(J′)d
d )U

I′′(J′′)(d−1)
(d−1) .

By the induction hypothesis, these two adic expansions are the same.
Suppose M be the least monomial of this expansion, with respect to
the ordering of Corollary 3.9, which refers to the indices I0(J0) and
I ′′0 (J ′′0 ) (respectively). Then, equating the coefficient of M in two adic
expansions, we have,

g =
∑

I′(J ′)d,I0(J0)(d−1)=I′(J ′)(d−1)
cI′(J ′)U

I′(J ′)d

d

=
∑

I′(J ′)d,I′′0 (J ′′0 )(d−1)=I′(J ′)(d−1)
c′′I′(J ′)U

I′(J ′)d

d .

Write g |X0=0,...,Xd−1=0=
∑

α∈Z cαXα
d . Let α0 be the first α such

that cα 6= 0. Then, by Lemma 3.1 and 3.8, there is a unique mono-
mial in either of the expansions g (M and M ′, respectively) such that
Vdeg(M) = Vdeg(M ′) = α (here, Vdeg(M) = degXd

(M)). Hence,
M = M ′. Thus, the least monomials of two expansions of g (with
respect to the ordering of Corollary 3.9) are equal. Subtracting this
monomial from two representations, and iterating the last procedure we
deduce that these two expansions are the same and we are done (an
argument similar to the last part works for the start of the induction,
d = 1). �

Remark 3.11. Given an SKP [Ui,j , βi,j ]i=0..d,j=1..αi
, and an element

f ∈ k(d), in order to obtain its (U)α − adic expansion, we can use the
algorithm of Proposition 3.10 for the acceptable vectors α′ = (1, . . . , 1)
and α′′ = α. Notice that in this case, the (U)α′−adic expansion of every
element f ∈ k(d) is itself.

We also use the notation of (α′)− adic expansion. When there is no
stress on the specific acceptable vector α′ or it is understood, we will
talk about Ud − adic or adic expansion.

4. Valuations associated with the SKP

Here, we show that with any SKP one can associate a valuation ν of
the field k((X0, . . . , Xd)) centered on the ring k[[X0, . . . , Xd]].

Definition 4.1. Let [Ui,j , βi,j ] be an SKP. For an acceptable vector α′,
we define a map,

να′ : k(d)\{0} → Φ,



78 Moghaddam

by:
• If M is any monomial M(U) with (U)α′ − adic expansion M =

c.Up, where c ∈ k, then

να′(M) =
d∑

i=0

α′i∑
j=0

pi,jβi,j .

• If f ∈ k(d) has the (U)α′ − adic expansion f =
∑

I(J) cI(J)U
I(J),

then
να′(f) = minI(J){να′(U I(J))}.

For any SKP, we denote the mapping of Definition 4.1 by να = val[Ui,j , βi,j ].
We will see that this mapping is a valuation (Theorem 4.7).

Definition 4.2. Let [Ui,j , βi,j ] be an SKP, f ∈ k(d) be an arbitrary
element and let (α′) be an acceptable vector for this SKP. The initial
form of f with respect to να′ is defined as:

inνα′ (f) =
∑
I(J0)

cI(J0)U
I(J0),

where f =
∑

I(J) cI(J)U
I(J) is the (U)α′−adic expansion of f and I(J0)

ranges over those indices with minimal να′−value.

Definition 4.3. Let [Ui,j , βi,j ]i=0..d,j=1..αi
be an SKP and consider the

power series ring k((α,d)). For any monomial M(U) = Ua ∈ k((α,d)), we
define the vectors of the powers,

VP(M(U)) = (ad,αd
,ad−1,αd−1

, . . . ,a0,α0) ∈ Nd+1.

Lemma 4.4. Fix an SKP and suppose that α′ is an acceptable vector for
this SKP. Let f ∈ k(d) and suppose inνα′ (f) =

∑
I(J) cI(J)U

I(J). Then,
the vectors of the powers VP(M) of the monomials M of inνα′ (f) are
all different.

Proof. Let cU I(J) and c′U I′(J ′) be two monomials of inνα′ (f) with equal
vectors of the powers. We show that for any j = 1, . . . , α′d, the powers
of the Ud,j in the two monomials are the same. Indeed, let j′ < α′d
be the greatest index such that I(J)d,j′ 6= I ′(J ′)d,j′ . Note that this
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maximum index exists. We assume I(J)d,j′ > I ′(J ′)d,j′ . By equating
the να′−values of the two monomials,

(I(J)d,j′ − I ′(J ′)d,j′)βd,j′ =
∑

(i′′,j′′)<lex(d,j′)

−(I(J)i′′,j′′ − I ′(J ′)i′′,j′′)βi′′,j′′ .

But the right hand side is in the group (βi′′,j′′)(i′′,j′′)<lex(d,j′), which is
clearly a contradiction, because 0 < I(J)d,j′ − I ′(J ′)d,j′ < nd,j′ . Giving
similar arguments for i < d, we deduce that the two monomials are the
same. �

Corollary 4.5. Fix an SKP and suppose Ui,αi = 0, for i = 1..d. For an
arbitrary 0 6= f ∈ k(d), the initial inνα(f) consists of just one monomial
of adic form.

Lemma 4.6. Fix an SKP [Ui,j , βi,j ] and let α′ be an acceptable vector.
For any arbitrary monomial M(U) ∈ k((α′,d)), where M = c.Ua, we have:

(i) The initial form of M in its (U)α′ − adic expansion is just one
monomial M ′ = c′Ua′ . In other words, we have inνα′ (M) = M ′.

(ii) We have a′d,α′d
= ad,α′d

.

(iii) For any two monomials M and M ′ of the power series ring
k((α′,d)) with equal να′−values, if VP(M) <lex VP(M ′) then
VP(inνα′ (M)) <lex VP(inνα′ (M

′)).

Proof. For the first claim, let Ui,j be a factor of M with power greater
than ni,j . Replace U

ni,j

i,j by its expression from the algorithm in propo-
sition 3.10 for getting adic expansion. The claim is that after one such
replacement there exists just one monomial with minimal να′−value. We
prove the claim for the replacements of the first type of the algorithm
for getting adic expansion. For the second type, the argument is similar.
After a replacement of type one, we get two monomials with different
να′−values:

M = M

U
ni,j
i,j

(Ui,j+1 + θi,jU
m(i,j)

)

= c
Ua.Ui,j+1

U
ni,j

i,j︸ ︷︷ ︸ + cθi,j
UaUm(i,j)

U
ni,j

i,j︸ ︷︷ ︸ .

M2 M1
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Then, να′(M2) > να′(M1) = να′(M). Therefore, we have inνα′ (M) =
inνα′ (M1). We do the same for M1. Finally, we get a monomial M ′

whose adic expansion is itself, and this proves (i).
For the proof of part (ii), we notice the that the proof of the first part

shows the following general fact:
For the monomial M(U), a replacement on U

ni,j

i,j cannot affect the power
of Ui′,j′ , for (i′, j′) >lex. (i, j), of the unique monomial with minimal
value of the expansion generated after replacement.

For the proof of (iii), suppose M = Ua and M ′ = Ua′ . Let d′ ≤ d
be the first index such that ad′,α′

d′
< a′d′,α′

d′
. Then, by Lemma 4.4, we

have ai,j = a′i,j , for i = d′ + 1, . . . , d and j = 1, . . . , αi. Thus, the
algorithm given in proposition 3.10 for getting adic expansion for these
two monomials for such i and j can be chosen the same. Hence, without
loss of generality we can assume that ai,j < ni,j and a′i,j < ni,j , for
i = d′ + 1, . . . , d and j < αi. Then because ad′,α′

d′
< a′d′,α′

d′
, by part (ii)

we are done. �

Theorem 4.7. Given any SKP [Ui,j , βi,j ], for any acceptable vector
α′, the mapping να′ : k(d)\{0} → Φ extends in an obvious way to a
k−valuation of the field of power series k((X0, . . . , Xd)). Moreover, for
any two acceptable vectors α′ and α′′ such that α′ ≤ α′′ and for any
f ∈ k(d), we have να′(f) ≤ να′′(f).

Proof. The extension to the field k((X0, . . . , Xd)) is a trivial task. We
need only to prove that given any f, g ∈ k(d)\{0}, we have να′(f +
g) ≥ min{να′(f), να′(g)} and να′(f.g) = να′(f) + να′(g). The first one
is a direct consequence of the definition and the uniqueness of the adic
expansions. For the second equality, let in(f) =

∑
I(J) cI(J)U

I(J) and
in(g) =

∑
I′(J ′) c′I′(J ′)U

I′(J ′). Let M = cI(J0)U
I(J0) (respectively M ′ =

cI′(J ′0)U
I′(J ′0)) be the unique (Lemma 4.4) monomial of the expansion of

in(f) (respectively in(g)) with minimal vector of powers, with respect to
the lex. order. Then, by Lemma 4.6 (iii), we see that in(M.M ′) = M ′′ is
the unique monomial of in(f.g), with minimal vector of the powers. But,
να′(M ′′) = να′(M) + να′(M ′) = να′(f) + να′(g). By the definition of the
mapping να′ , we have να′(M ′′) = να′(f.g). For the last part, we note that
in the algorithm in proposition 3.10 for getting α′′ − adic expansion of
an element from its α′−adic expansion, at every step in the substitution
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we replace a monomial with two new monomials with values equal to or
greater than the original monomial. �

Corollary 4.8. Given an SKP [Ui,j , βi,j ]i=0..d,j=1..αi
, all the Ui,j are

irreducible elements of the power series ring k(i−1)[Xi].

Proof. We prove the claim for Ud,j . Consider the vector (α′), defined
by α′i = αi, for 0 ≤ i < d, and α′d = j. This is an acceptable vector. In
this proof, all the adic expansions are (U)α′−adic expansions. We give a
proof by contradiction. Assume that Ud,j is reducible and Ud,j = f.g, for
some non-unit elements f, g ∈ k(d−1)[Xd]. As the α′ − adic expansion of
Ud,j is itself, we have in(Ud,j) = Ud,j . We can compute this initial in the
other way, using initials of f and g. This gives us Ud,j = in(in(f).in(g)).

On the other hand, βd,j = να′(Ud,j) = να′(f) + να′(g). Thus, the
monomials of in(f) and in(g) do not have a factor Ud,j . By Lemma 4.6
(ii), this shows that the monomials in(in(f).in(g)) do not have a factor
Ud,j , which is a contradiction. �

Remark 4.9. One should note that in the definition of the SKP for
the ring k[[X0, . . . , Xd]], the ordering of the variables plays an impor-
tant role. In other words, changing the coordinates of the rings (even
with a permutation) may change totally the system of the SKP as-
sociated with the valuation, or even they may not exist. This phe-
nomenon can be seen even in dimension two; for example, consider
the valuation ν centered on the ring k[X0, X1]; defined by the SKP,
[(U0,1, U1,1, U1,2, U1,3), (2, 3, 9, 10)], where, we have U1,2 = U2

1,1−U3
0,1, U1,3 =

U1,2 − U3
0,1U1,1. Note that the last two equations are given to us (up

to the knowledge of the corresponding θ’s ) as soon as the sequence
of β’s (2, 3, 9) is known. Now, changing the order of the coordinates,
we consider the same ring as k[Y0, Y1] with Y0 = X1, Y1 = X0. The
same valuation is given by the following SKP’s in the new coordinate
ν = val[(V0,1, V1,1, V1,2, V1,3), (3, 2, 9, 10)], where the SKP are as follows:

V1,2 = V 3
1,1 − V 2

0,1, V1,3 = V1,2 + V 3
0,1.

The relation between two SKP’s is as follows:

V0,1 = U1,1, V1,1 = U0,1, V1,2 = −U1,2.

For V1,3 we have,
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V1,3 = V1,2 + V 3
0,1

= −U1,2 + U3
1,1 = −U1,2 + (U3

0,1 + U1,2)U1,1 = −U1,3 + U1,1U1,2.

As this example shows, the explicit relation between the U and the
V is not, in general, trivial.

5. Euclidean expansion and other properties of the SKP

Here, we give another expansion in the ring k(d−1)[Xd], associated with
an SKP of the power series ring k[[X0, . . . , Xd]] (k(i) := k((X0, . . . , Xi))).
We show that the valuation ν associated with this SKP, can be defined
using this new expansion, plus the knowledge of the valuation ν on
the field k(d−1). Moreover, we show that the Euclidean expansion can
be obtained directly from the adic expansion. This is interesting in
practice, because adic expansion is defined only with substitutions, while
Euclidean expansion is defined using divisions.

Definition 5.1. (Euclidean expansion) Fix an SKP [Ui,j , βi,j ], where
i = 0..d and j = 1..αi. For any j = 1, . . . , αd, we define the acceptable
vector α(j) = (α0, . . . , αd−1, j). Let f ∈ k(d−1)[Xd], and consider the
expansion f =

∑
J cJUJ

d ∈ k(d−1)[Ud] such that 0 ≤ Jj′ < nd,j′ , for any
0 ≤ j′ < j. This is called the jth Euclidean expansion of f .

Proposition 5.2. (Algorithm for getting Euclidean expansion)
With the notations of Definition 5.1, do the following:

Consider the greatest index j0 such that degXd
(f) > dd,j0. Divide f

by Ud,j0 in the ring k(d−1)[Xd] to obtain f = qUd,j0 + r, where q, r ∈
k(d−1)[Xd] and degXd

(r) < dd,j0. Iterate the same procedure for q as far
as possible to obtain f =

∑
t ftU

t
d,j0

, where degXd
(ft) < dd,j0. Iterate the

same procedure for each of the ft and the greatest index j′, j′ < j0, such
that dd,j′ < dd,j0. Continue as far as possible. This process terminates
after finitely many steps. The resulting expansion is equal to the jth
Euclidean expansion of f . Moreover, the Euclidean expansion is unique.

Proof. As the Ud which appear in the process are among the elements
of the finite set {Ud,j′/ nd,j′ 6= 1, and degXd

(f) > dd,j′}, the process
stops after finitely many steps. We show that the resulting expansion
is the jth Euclidean expansion of f . Let UJ

d be a monomial generated
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in the algorithm above. It is sufficient to show that this monomial is of
Euclidean form. Indeed, let j′ be the greatest index less than j such that
Jj′ ≥ nd,j . This means that degXd

(UJ1
d,1 · · ·U

Jj′

d,j′) ≥ dd,j′+1, and we must
divide it (in the monomial in the procedure above) by Ud,j′+1, which is
a contradiction.

The uniqueness of Euclidean expansion comes from the fact that (by
Lemma 3.8) the degXd

(UJ
d ) of a monomial of Euclidean form deter-

mines the vector J . Therefore, there is a unique vector J0 such that
degXd

(UJ0
d ) = degXd

(f). This monomial (plus its coefficient) is com-
mon in all the possible Euclidean expansions of f . Subtracting this
monomial from f , then by induction on the degree of f we are done. �

Lemma 5.3. Fix an SKP [Ui,j , βi,j ]i=0..d,j=1..αi
, and let f be an element

in the ring of power series k[[X0, . . . , Xd]]. The jth Euclidean expansion
of f can be obtained using the (α(j)) − adic expansion of it as follows.
Let f =

∑
I(J) cI(J)U

I(J) be the (α(j))− adic expansion of f . Then, the
Euclidean expansion of f is equal to:

∑
J ′

(
∑

I(J),I(J)d=J ′

cI(J)
U I(J)

UJ ′
d

)UJ ′
d .

Proof. It is clear that the above expansion satisfies all the properties
of the jth Euclidean expansion of f . Thus, by uniqueness, it is the
Euclidean expansion of f . �

Remark 5.4. Using Lemma 5.3, we extend the notion of Euclidean
expansion to the power series ring k(d). An expansion of f ∈ k(d) of
the form f =

∑
J cJUJ

d ∈ k(d−1)[[Ud]], which satisfies the conditions
of Definition 5.1, is called the Euclidean expansion of f . Lemma 5.3
shows that such an expansion can be obtained using adic expansion of
f . An argument, similar to the proof of Proposition 3.10, shows that
this expansion is unique.

Proposition 5.5. Fix an SKP [Ui,j , βi,j ]i=0..d,j=1..αi
, and let ν be the

k−valuation of the field k(d) associated with it. Set ν = ν |k(d−1)
. The

valuation ν (as a valuation of the field k(d−1)(Xd)) can be defined using
the data [ν, (Ud,j)

αd
j=1, (βd,j)

αd
j=1] as follows. For any f ∈ k(d−1)[Xd], let
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f =
∑

J fJUJ
d be its αdth Euclidean expansion. Then,

ν(f) = minJ{ν(fJ) + βd.J}.

Proof. Lemma 5.3 shows that the equation of the proposition is just
another way of writing ν(f), which is originally the minimum of the
values of the monomials in the adic expansion of f . �

Remark 5.6. With the notations of Proposition 5.5, write f =
∑

t ftU
t
d,j ,

with degXd
(ft) < dd,j . Then, with a similar argument, we have,

ν(f) = min
t
{ν(ft) + tβd,j}.

Definition 5.7. Fix an SKP [Ui,j , βi,j ]i=0..d,j=1..αi
. We consider the set

of acceptable vectors α(j) = (α0, . . . , αd−1, j), for j = 1, . . . , αd.

For any f ∈ k(d−1)[Xd], and any α(j), we define,

δα(j)(f) = max{` : ` is power of Ud,j in the monomials of in
να(j) (f)}.

Remark 5.8. Let u ∈ k(d−1) and f ∈ k(d−1)[Xd]. Then, δα(j)(f) =
δα(j)(uf).

Lemma 5.9. For any f, g ∈ k(d−1)[Xd], we have,

δα(j)(f.g) = δα(j)(f) + δα(j)(g).

Proof. First, we find u, v ∈ k(d−1) such that uf, vg ∈ k(d−1)[Xd]. This
is always possible. By Remark 5.6, it suffices to prove the lemma for uf
and vg; i.e., we can assume f, g ∈ k(d−1)[Xd]. Lemma 4.4 shows that
there are unique monomials fJUJ

d and gJ ′U
J ′
d of in(f) and in(g) (re-

spectively) that have maximal Ud,j power. Write Euclidean expansion
of in(f.g) using the product in(f).in(g) and the algorithm in proposi-
tion 3.10 for getting adic expansion. We see in(f).in(g) has a unique
monomial with Ud,j−degree equal δα(j)(f) + δα(j)(g); i.e., fJgJ ′U

JUJ ′ .
Now, Lemma 4.6 (ii) shows that after getting adic expansion from this
product, the Ud,j−powers of the monomials do not change, which proves
the equality. �

The following lemma is an adaptation of the results of [3] to our
situation.
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Lemma 5.10. Fix an SKP [Ui,j , βi,j ], and let α(j) be defined as in Def-
inition 5.7. Then:

(i) For f ∈ k(d−1)[Xd], we have δα(j)(f) = 0 if and only if inν
α(j)

(f)
is a unit in grν

α(j)
k(d−1)[Xd].

(ii) If f, g ∈ k(d−1)[Xd] then there exist Q,R ∈ k(d−1)[Xd] such that
inν

α(j)
(f) = inν

α(j)
(Qg + R) in grν

α(j)
k(d−1)[Xd] and δα(j)(R) <

δα(j)(g).
(iii) The polynomials inν

α(j)
(U

d,α
(j)
j

) and inν
α(j)

(U
d,α

(j)
j+1

) are irreducible

in grν
α(j)

k(d−1)[Xd].
(iv) If j′ < j, then inν

α(j)
(Ud,j′) is a unit in grν

α(j)
k(d−1)[Xd].

(v) If f =
∑

t ftU
t
d,j , with degXd

(ft) < dd,j and δα(j)(f) < nd,j, then
inν

α(j)
(f) = inν

α(j)
(ftU

t
d,j) in grν

α(j)
k(d−1)[Xd], for some t < nd,j .

Proof. Throughout the proof, we fix the expansion f =
∑

t ftU
t
d,j , with

degXd
(ft) < dd,j .

(i). If δα(j)(f) = 0, then inν
α(j)

(f) = inν
α(j)

(f0) in grν
α(j)

k(d−1)[Xd]. As
Ud,j is irreducible and degXd

(f0) < dd,j , the polynomial Ud,j is prime
with f0. Hence, we can find A,B ∈ k(d−1)[Xd], degXd

(A),degXd
(B) <

dd,j , so that Af0 = 1−BUd,j . Then, να(j)(Af0) = να(j)(1) < να(j)(BUd,j).
Therefore, inν

α(j)
(Af0) = 1 in grν

α(j)
k(d−1)[Xd]. So, inν

α(j)
(f0), and

hence inν
α(j)

(f) is a unit in grν
α(j)

k(d−1)[Xd]. Conversely, if inν
α(j)

(f) is
unit, say inν

α(j)
(Af) = 1 in grν

α(j)
k(d−1)[Xd] for some A ∈ k(d−1)[Xd],

then δα(j)(f) + δα(j)(A) = δα(j)(1) = 0 and so δα(j)(f) = 0.
(ii). Write g =

∑
t gtU

t
d,j . It suffices to prove the claim, when gt = 0 for

t > M := δα(j)(g) and using (i) we may assume gM = 1. As degXd
(gt) <

dd,j , for t ≤ M , we have degXd
(g) = Mdd,j . Euclidean division in

k(d−1)[Xd] yields Q,R1 ∈ k(d−1)[Xd] with degXd
(R1) < degXd

(g) so that
f = Qg + R1. Write R1 =

∑
t RtU

t
d,j , set N := δα(j)(R1) and R :=∑

t≤N RtU
t
d,j . Then, inν

α(j)
(f) = inν

α(j)
(Qg + R) in grν

α(j)
k(d−1)[Xd],

and
degXd

(R) = degXd
(RN ) + Ndd,j < Mdd,j = degXd

(f).
Hence, N < M , and we are done.
(iii). We have δα(j)(Ud,j) = 1 and so if inν

α(j)
(Ud,j) = fg in

grν
α(j)

k(d−1)[Xd], then δν
α(j)

(f) = 0 or δα(j)(g) = 0. Hence, by (i),
inν

α(j)
(f) or inν

α(j)
(g) is a unit in grν

α(j)
k(d−1)[Xd].
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For Ud,j+1, we have Ud,j+1 = U
nd,j

d,j − θd,jU
m(d,j)

. Let inν
α(j)

(Ud,j+1) =
inν

α(j)
(fg) in grν

α(j)
k(d−1)[Xd], with 0 < δα(j)(f), δα(j) < nd,j . By (v),

we can write f = ftU
t
d,j , g = gt′U

t′
d,j . Then, Ud,j+1 = ftgt′U

nd,j

d,j so (1 −
ftgt′)U

nd,j

d,j = θd,jU
m(d,j)

. As Ud,j is irreducible and Um(d,j)
is a unit, we

have inν
α(j)

(ftgt′) = 1 in grν
α(j)

k(d−1)[Xd]. But then, inν
α(j)

(Um(d,j)
) = 0

in grν
α(j)

k(d−1)[Xd], which is absurd. So, we can assume δα(j)(f) = nd,j

and δα(j) = 0. Hence, g is a unit.
(iv). By (i) it suffices to show that δα(j)(Ud,j′) = 0. If dd,j′ < dd,j , then
this is obvious. If dd,j′ = dd,j , then Ud,j′ = (Ud,j′ − Ud,j) + Ud,j , where
degXd

(Ud,j′ − Ud,j) < dd,j . Now, να(j)(Ud,j′) = βd,j′ < βd,j = να(j)(Ud,j),
and so να(j)(Ud,j′ − Ud,j) < να(j)(Ud,j) and δα(j)(U ′j) = 0.

(v). Suppose να(j)(ftU
t
d,j) = να(j)(ft′U

t′
d,j), where t ≤ t′ < nd,j . Then,

(t′ − t)βd,j = να(j−1)(ft) − να(j−1)(ft′). Hence, nd,j | t′ − t and thus
t′ = t. �

Proposition 5.11. The graded algebra grνα
k(d−1)[Xd] is a Euclidean

domain.

Proof. Lemma 5.10 (ii) proves the claim. �

Theorem 5.12. Fix an SKP [Ui,j , βi,j ]i=0..d,j=1..αi
, and let ν be its as-

sociated valuation. Consider 0 6= f ∈ k[[X1, . . . , Xd]]. Then, initial form
of f has a unique decomposition of the form:

(i) If Ud,αd
6= 0 and nd,αd

= ∞, then,

f = f̃UJ
d , in grνk(d−1)[Xd],

where f̃ ∈ k(d−1) and 0 ≤ Jj < nd,j , for 1 ≤ j < αd.
(ii) If Ud,αd

6= 0 and nd,αd
6= ∞, then,

f = p(T )U Ĵ
d , in grνk(d),

where p(T ) ∈ k(d−1)[T ] and 0 ≤ Jj < nd,j , for 1 ≤ j ≤ αd, and
T = U

nd,αd
d,αd

U−m(d,αd)
. Moreover, all the coefficients of p(T ) have

the same ν−value.
(iii) If Ud,αd

= 0, then,

f = f̃UJ
d , in grνk(d−1)[Xd],
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where 0 ≤ Jj < nd,j , for 1 ≤ j ≤ αd, and Jj = 0, except for a
finite number of j.

Proof. (i). Suppose f =
∑

J fJUJ
d is the Euclidean expansion of f

(Remark 5.4), where fJ ∈ k(d−1), and 0 ≤ Jj < nd,j for j < αd . We
claim that for any two J and J ′, we have ν(fJUJ

d ) 6= ν(fJ ′U
J ′
d ). Indeed,

if we have equality, consider the greatest index j0 such that Jj0 6= J ′j0 .

We have (J ′j0−Jj0)βd,j0 = ν(fJ)−ν(fJ ′)+
∑

j < j0(Jj−J ′j)βd,j . Then, as
j0 < αd (because nd,αd

= ∞), we have nd,j0 | Jj0 − J ′j0 . Thus, Jj0 = J ′j0 ,
which is absurd.
(ii). We show that any monomial fJUJ

d of the Euclidean expansion of
in(f) is of the form f̂JT rαd U Ĵ

d , in grνk
(d), for a fixed Ĵ such that 0 ≤

Ĵj < nd,j , for any j.
Fix J, and make the Euclidean division Jαd

= rαd
nd,αd

+ Ĵαd
, 0 ≤ Ĵαd

<

nd,αd
, and write fJUJ

d = fJU
Ĵαd
d,αd

T rαd Ua
d , with a := J + rαd

.m
(d,αd)
d . As

U
nd,j

d,j = θd,j(U
m

(d,j)
<d−1

<d−1 )Um
(d,j)
d

d , in grνk(d−1)[Xd],

making the Euclidean division aj = rjnd,j + Ĵj , (with 0 ≤ Ĵj < nd,j) for

the greatest index j such that aj 6= 0, we get
∏

j′≤j U
aj′

d,j′ = U
Ĵj

d,j

∏
j′<j U

a′
j′

d,j′

with a′j′ ∈ N. We finally get, by induction, a representation,

fJUJ
d = f̂JT rαd U Ĵ

d ,

where 0 ≤ Ĵj < nd,j , for any j. As ν(T ) = 0, with an argument similar
to the final part of case (i), one can argue to show that Ĵ is the same
for all the J . Clearly, the coefficients of p has the same ν−value.
(iii). This is similar to (i). �

Corollary 5.13. Let ν be a valuation as above.

(i) If Ud,αd
6= 0 and nd,αd

6= ∞, then the only irreducible element of
the graded ring grνk(d−1)[Xd] is Ud,αd

.
(ii) Assume that k is an algebraically closed field and suppose that

Ud,αd
6= 0, nd,αd

< ∞ and that the following additional condition
is satisfied: For every two monomials U I , UJ ∈ k(d−1) of adic

form, we have U I = UJ , whenever ν(U I) = ν(UJ). Then, the
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irreducible elements of grνk(d−1)[Xd] are of the form U
nd,αd
d,αd

−
θUm(d,αd)

, for some θ ∈ k.
(iii) If Ud,αd

= 0, then grνk(d−1)[Xd] is a field.

Proof. (i). Assume f ∈ grνk(d−1)[Xd] is irreducible. By Theorem
5.12(i), f = f̃UJ

d . But Ud,j is a unit for j < αd (by Lemma 5.10 (iv)),
and so Ud,αd

is the only irreducible element in grνk(d−1)[Xd] (Lemma
5.10, (iii)).
(ii). We use Theorem 5.12(ii). There, we construct a polynomial p(T ) ∈
k(d−1)[T ]. As we are working in the graded ring, we can replace the
coefficients of p with their initials, which by assumption is a unique
monomial U I0 ∈ k(d−1). Thus, P (T ) = U I0p′(T ), where p′(T ) ∈ k[T ].
Factorizing p′(T ) =

∏
(T − θl), modulo unit factors, we get,

f = U I0U
Ĵαd

−Lnd,αd
d,αd

∏
l

(U
nd,αd
d,αd

− θlU
m(d,αd)

),

where L = deg(p). On the other hand, Lemma 5.10 (iii) shows that all
the elements of the form U

nd,αd
d,αd

−θlU
m(d,αd)

are irreducible in the graded
ring grνk(d−1)[Xd]. Thus, the decomposition above is the decomposition
of f into prime factors in grνk(d−1)[Xd].
(iii). It is a result of Theorem 5.12(iii) and Lemma 5.10 (iv). �

Remark 5.14. Consider a valuation ν as above. The strong condition
of Corollary 5.13 (ii) is satisfied if and only if for any i = 0, . . . , d − 1,
either we have Ui,αi = 0 or Ui,αi 6= 0, and ni,αi = ∞.

Theorem 5.15. (Homogeneous decomposition) Let ν be a valu-
ation associated with an SKP. Consider the ring R = k((α,d)) and the
restriction of ν to it. Every element f ∈ R has a unique decomposition
of the form,

f = p(Ti1 , . . . , Tid1
)UJ , in grνRν ,

where d1 ≤ d + 1 and A = {i1, . . . , id1}, for any i ∈ A, ni,αi 6= ∞
and Ti = U

ni,αi
i,αi

U−m(i,αi) . And 0 ≤ Ji′,j < ni′,j , for 1 ≤ j ≤ αi′ . And
p(V1, . . . , Vd1) ∈ k[V1, . . . , Vd1 ].

Proof. Use a simple induction on d, using Theorem 5.12. For example, if
Ud,αd

6= 0 and nd,αd
6= 0, then f = p(Td)U

Jd
d , in grνk(d−1)[Xd], where the
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coefficients of p(Td) =
∑

l pjT
l
d have the same ν-value. By the induction

hypothesis, we have pl = ql(Ti1 , . . . , Ti
dl

)UJ l

d−1, in grνRν , where dl ≤ d.
Now, all the pl have the same ν-value and thus the vectors J l are the
same for any l (similar argument as proof of Theorem 5.12(ii)). We
denote this vector by Jd−1. Hence, we have f = (

∑
l pj)U

Jd−1

d−1 UJd
d and

we are done. �

Theorem 5.16. Fix an SKP [Ui,j , βi,j ]i=0..d,j=1..αi
, such that αd ≥ ω.

Suppose there exists an infinite sequence of ordinals s1 < · · · < sω = αd

such that nd,sj
> 1, for any j < ω. Consider the acceptable vectors α(sj)

(see Definition 5.7). For any f ∈ k(d−1)[[Xd]], there exists j∗ ∈ N such
that for any j ≥ j∗, we have,

ν
α(sj)(f) = ν

α(sj∗ )(f).

Thus, the limit limj→ω ν
α(sj) is well-defined and is equal to να(sω) = ν.

Proof. Multiplying f by a suitable factor u ∈ k(d−1), we can assume
f ∈ k(d). By assumptions, we have Ud,αd

= 0. Thus, by Corollary 4.5,
we have inνα(f) = cJUJ

d , cJ ∈ k(d−1). Suppose j∗ is the maximum index
such that Jsj∗ 6= 0. Then by the algorithm in proposition 3.10 for getting
adic expansion, this j∗ satisfies the conclusion of the Theorem. �

6. SKP-valuations and numerical invariants

One way to classify valuations is through their numerical invariants.
Here, we show how the arithmetic of the SKP’s of an SKP-valuation
determines the numerical invariants of the associated valuation on the
field k(d).

We define the notion of pseudo-SKP. It allows us to avoid ordinal
numbers greater than ω for αi.

Definition 6.1. For an SKP [Ui,j , βi,j ]i=0..d,j=1..αi
, a pseudo-SKP is a

subset of U and β which comes from dropping an arbitrary number
of Ui,j ’s (and associated βi,j ’s) for j < αi such that ni,j = 1. With
any SKP, a minimal pseudo-SKP is associated which is obtained by
dropping all the Ui,j for j < αi such that ni,j = 1. This minimal
associated pseudo-SKP is unique. We denote this minimal pseudo-SKP
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by [Ui,j , βi,j ]i=0..d,j=1..α′i
, where α′i ≤ ω (using the same notation as the

SKP).

Proposition 6.2. Fix an SKP [Ui,j , βi,j ]i=0..d,j=1..αi
, and let ν be the as-

sociated k− valuation. Let [Ui,j , βi,j ]i=0..d,j=1..α′i
be its minimal pseudo-

SKP. The valuation ν can be defined using the data [Ui,j , βi,j ]i=0..d,j=1..α′i
.

Proof. To define the valuation ν, it is sufficient to know the adic ex-
pansion of elements. Moreover, in the adic expansion of an element, the
Ui,j with ni,j = 1 cannot appear. Thus, the adic expansion of every
element is defined using only the minimal pseudo-SKP associated with
ν. �

The following lemma computes the rank and rational rank and value
semigroup of an SKP valuation in terms of the arithmetic of the SKP.

Lemma 6.3. Consider a k−valuation centered on the ring k(d) such
that ν = val[Ui,j , βi,j ]i=0..d,j=1..αi

. Let ν = ν |k(d−1)
. By Remark 2.5(v),

the data [Ui,j , βi,j ]i=0..d−1,j=1..αi
is an SKP.

(i) We have, ν = val[Ui,j , βi,j ]i=0..d−1,j=1..αi
.

(i) We have rk(ν)−rk(ν) ∈ {0, 1}. More precisely, rk(ν) = rk(ν)+1
if and only if βd,αd

/∈ ∆ (∆ is the smallest isolated subgroup of
Φ such that Φ∗d−1,αd−1

⊂ ∆), and rk(ν) = rk(ν) iff βd,αd
∈ ∆.

(ii) We have, r.rk(ν) − r.rk(ν) ∈ {0, 1}. More precisely, r.rk(ν) =
r.rk(ν)+1 if and only if βd,αd

/∈ Φ∗d−1,αd−1
, and r.rk(ν) = r.rk(ν)

if and only if βd,αd
∈ Φ∗d−1,αd−1

.

(iii) The semigroup ν(k(d) \ {0}) is equal to Γd,αd
.

Proof. We only prove (i). It is the consequence of the fact that for
any f ∈ k(d−1), the adic expansions of f with respect to the two SKP’s
[Ui,j , βi,j ]i=0..d,j=1..αi

and [Ui,j , βi,j ]i=0..d−1,j=1..αi
are the same. �

Theorem 6.4. Consider a k−valuation centered on the ring of power
series k[[X0, X1, X2]], ν, which is defined by an SKP; in other words, let
ν = val[Ui,j , βi,j ]i=0,1,2,j=1..αi . Moreover, we suppose β0,1 ∈ ∆1. Then,
we can compute the numerical invariants of this valuation using the
arithmetic of its minimal pseudo-SKP. This is summarized in Table 1.
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Arithmetic of minimal pseudo-SKP of the valuation ν rk r.rk tr.deg

(I) α′
1 < ∞, α′

2 < ∞ βi,j ∈ Qβ0,1 1 1 2

(II)1
(II)2

α′
1 < ∞, α′

2 < ∞
α′

1 < ∞, α′
2 < ∞

βi,j ∈ ∆1, β1,α′1
∈ Qβ0,1, β2,α′2

∈ ∆1\Qβ0,1

βi,j ∈ ∆1, β1,α′1
∈ ∆1\Qβ0,1, β2,α′2

∈ Qβ0,1
1 2 1

(III)1
(III)2

α′
1 = ∞, α′

2 < ∞
α′

1 < ∞, α′
2 = ∞

βi,j ∈ Qβ0,1

βi,j ∈ Qβ0,1
1 1 1

(IV) α′
1 < ∞, α′

2 < ∞ β1,α′1
∈ ∆1\Qβ0,1, β2,α′2

∈ ∆1\(β0,1, β1,α′1
)⊗Q 1 3 0

(V)1
(V)2

α′
1 = ∞, α′

2 < ∞
α′

1 < ∞, α′
2 = ∞

β2,α′2
∈ ∆1\Qβ0,1

β1,α′1
∈ ∆1\Qβ0,1

1 2 0

(VI) α′
1 < ∞, α′

2 < ∞ max{βi,α′i
} ∈ ∆2\∆1, β1,α′1

∈ (β0,1, β2,α′2
)⊗Q 2 2 1

(VII)1
(VII)2

α′
1 < ∞, α′

2 < ∞
α′

1 < ∞, α′
2 < ∞

β1,α′1
∈ ∆2\∆1, β2,α′2

∈ Φ\∆2

β2,α′2
∈ ∆2\∆1, β1,α′1

∈ Φ\∆2
3 3 0

(VIII)1
(VIII)2

α′
1 = ∞, α′

2 < ∞
α′

1 < ∞, α′
2 = ∞

β2,α′2
∈ ∆2\∆1

β1,α′1
∈ ∆2\∆1

2 2 0

(IX) α′
1 < ∞, α′

2 < ∞ max{βi,α′i
} ∈ ∆2\∆1, β1,α′1

∈ ∆2\(β0,1, β2,α′2
)⊗Q 2 3 0

(X) α′
1 = ∞, α′

2 = ∞ 1 1 0

Table 1. Numerical invariants via arithmetic of SKP of
the valuation

Proof. The computation of the rank and the rational-rank is a simple
task. The only nontrivial task is the computation of the transcendence
degree or the dimension of valuation. It is a direct calculation using
Theorem 5.15. For example, in the case (I), pick f, g ∈ k(d−1) with
ν(f) = ν(g). Then, by Theorem 5.15, we have in(f) = p(T1, T2)UJ

and in(g) = q(T1, T2)UJ ′ . Using the properties of J and J ′ in the theo-
rem, we see that J = J ′. Thus, f/g = p(T1, T2)/q(T1, T2). This shows
kν = Rν/mν = k(T1, T2). We show that T1 and T2 are algebraically
independent in kν . If T2 is algebraic over k(T1), then there is a poly-
nomial 0 6= p(T ) ∈ k(T1)[T ] such that p = p(T2) =

∑
i ciT

i
2 = 0 in kν .

Regarding T1 and T2 as elements of Rν , we have p(T2) =
∑

i ciT
i
2 ∈ mν .

Note that T1 =
U

n1,α1
1,α1
Um. and T2 =

U
n2,α2
2,α2
Um . Multiplying p with a suitable

power of Um.+m, say n, we can assume that Un(m.+m)p ∈ k((α,2)). The
condition p ∈ mν implies that the cancelation should occur between ini-
tail monomials of monomials of Un(m.+m)p in the course of getting the
adic expansion. We show that this is impossible.
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Write p =
∑

i,j ri,jT
i
1T

j
2 , ri,j ∈ k. Then, we have,

Un(m.+m)p =
∑
i,j

ri,jU
n[i,j]U i

1,α1
U j

2,α2
.

By Lemma 4.6(ii), no cancelation can occur between initial monomials of
monomials of Un(m.+m)p with different j’s (notice that index (2, α2) does
not occur in Um[i,j]). It remains to show that no cancelation can occur
for a sum of the form qj =

∑
i ri,jU

n[i,j]U i
1,α1

U j
2,α2

. Notice that the power
of the U2,α2 , are the same for different monomials of q and the power
of the U1,α1 are different for any two monomial of q. Now, the proof of
Lemma 4.6(ii), shows that in the course of getting the adic expansion of
the monomials of q, the powers of U1,α1 in the initial monomials remain
diffrent, for any two monomial of q. Thus, no cancelation can occur
between the initial monomials of q. �

7. Realization of a certain class of semi-groups as value
semi-groups of polynomial rings

Here, we give a result on the realization of a semi-group as the semi-
group of values which takes a valuation on a polynomial ring.

Theorem 7.1. Let Γ be a semigroup of an ordered abelian group (Ψ, <),
given by a minimal system of generators {γj}j≤α ⊆ Ψ+, where α =
ωn + j, for n, j ∈ N. Suppose Γ is of positive type (Definition 2.2), and
γj+1 > njγj, when nj 6= ∞. Set G = (Γ) and d = r.rk(G). Then, there
exists a zero-dimensional valuation ν of the field k(X1, . . . , Xd), centered
on the polynomial ring R = k[X1, . . . , Xd], such that its value-semigroup
is equal to Γ.

Proof. Consider the semigroup Γ with the minimal systems of genera-
tors {γj′}j′≤α, and suppose α = ωn + j∗, j∗ ∈ N. We give new names
(st

t′) to the indices of those γ’s which are rationally independent from
the previous ones (by Proposition 7.3, this includes all the indices which
are limit ordinals; i.e., for t = 1..n, we have nωt = ∞; see Lemma 2.1
for definition of n): For t = 1..n+1, let ft ∈ N be the number of j′ such
that ω(t − 1) ≤ j′ < ωt and nj′ = ∞, and then set st

t′ := j′, when j′ is
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the t′th such j′, for t′ = 1..ft . Then, we have,

{γj′}j′≤α = {γst
t′+j}t=1..n+1,t′=1..ft,j=0..jt,t′

,

where jt,t′ is the number of indices j′ such that γst
t′
≤ γj′ < γst

t′+1
.

Then, by Proposition 7.3, we have r.rk(G) = f1 + · · ·+ fn+1.
We define new indices it,t′ which will be the indices of the variables

of the polynomial ring: For t = 1..n + 1 and t′ = 1..ft set it,t′ :=
f0 + · · · + ft−1 + t′, where, by convention, f0 = 0. The total number d
of the it,t′ which have been defined is equal to:

d = f1 + · · ·+ fn+1 = r.rk(G).

It is straightforward to check that the sequence,

{βit,t′ ,j := γst
t′+j−1}it,t′=1..d,j=1..jt,t′ ,

is a sequence of values (note the index i starts from 1). The key-
polynomials of the SKP associated with this sequence of values are el-
ements of the ring R = k[X1, . . . , Xd]. The valuation ν associated with
this SKP has value semi-group Γ.

Notice that we have r.rk(ν) = dimR = d. Hence, we are in the case
of equality of Abhyankar’s inequality r.rk(ν) + tr.deg(ν) ≤ dimR = d.
Thus, the valuation ν is zero-dimensional. Moreover, one can not realize
Γ as a value semi-group of a polynomial ring with < d variables. �

Remark 7.2. The following remarks are in order:

• The positivity condition is quite restrictive, in general. However,
in the case we restrict to the value semi-groups of polynomial
rings of two variables, all the value semi-groups are of positive
type (see Proposition 4.2 in [2]). Moreover, in this case, if the
ordinal type of the group is ω2, then we are in the equality case of
Abhyankar’s inequality and the semigroup has to be of positive
type.

• The semigroup Γ is well ordered by [9], and it is of ordinal type
≤ ωrk(G) (see [15] Vol. II, Appendix 3, Proposition 2).

Proposition 7.3. With the notation of Theorem 7.1 and Lemma 2.1,
for any limit ordinal ω(i+1) ≤ α, we have rk(Gω(i+1)) = rk(Gω(i+1)−)+
1. In particular, nω(i+1) = ∞.
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Proof. We extend the notion of effective component to this situation.
Consider an order embedding (Φ, <) ⊆ (Rn, <lex) such that Γ ⊆ Rn

≥les0
.

By definition, the effective component for the limit ordinal ωi is the first
index t ≤ n such that #{(γj)t}ωi≤j<ω(i+1) = ∞. Like in the case of
effective components, one can prove that t is well-defined. Note that
(γj)t′ = 0, for t′ < t and j < ω(i + 1). Moreover, one can show that the
conditions of Proposition 2.8(i) and (ii) hold in this case. Suppose the
effective component for ωi is t. Then, an argument, similar to the proof
given for Proposition 2.8(iii), shows that (γj)t → +∞ (j → ω(i + 1)).
But, γω(i+1) >lex γωi+j , for j ∈ N. This is possible only if (γω(i+1))t′ > 0,
for some t′ < t. �
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