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Abstract. In this paper, we give a complete proof of Theorem
4.1(ii) and a new elementary proof of Theorem 4.1(i) in [Li and
Shen, On the intersection of the normalizers of the derived sub-
groups of all subgroups of a finite group, J. Algebra, 323 (2010)
1349–1357]. In addition, we also give a generalization of Baer’s
Theorem.
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1. Introduction

Let G be a finite group (all groups considered in this paper are fi-
nite); the notation and terminology used in this paper are standard, as
in [10-11]. By N(G) denote the intersection of the normalizers of all
subgroups of G and by ω(G) denote the intersection of the normalizers
of all subnormal subgroups of G. Those concepts were introduced by R.
Baer and H. Wielandt in 1934 and 1958, respectively, and were investi-
gated by many authors, for example, see [1-2, 4-5, 7-9, 14 and 16-19].
Li and Shen [13] investigated the following concept:

Definition 1.1. Let G be a finite group. By D(G) denote the intersec-
tion of the normalizers of the derived subgroups of all subgroups of G.

Article electronically published on February 25, 2014.

Received: 30 June 2012, Accepted: 3 February 2013 .
∗Corresponding author.

c⃝2014 Iranian Mathematical Society

281



On the norm of the derived subgroups 282

That is
D(G) =

∩
H≤G

NG(H
′).

Obviously, D(G) is a characteristic subgroup of G. Let Z2(G) be the
second term of the ascending central series of G. In the light of a theorem
of P. Hall [12, III, Hauptsatz 2.11], [G′, Z2(G)] = 1, so Z2(G) centralizes
G′ and hence centralizes the derived subgroups of all the subgroups of
G, thereby

Z2(G) ≤ D(G).

Definition 1.2. For a finite group G, there exists a series of normal
subgroups:

1 = D0(G) ≤ D1(G) ≤ D2(G) ≤ · · · ≤ Dn(G) ≤ · · ·
satisfying Di+1(G)/Di(G) = D(G/Di(G)) for i = 0, 1, 2, · · · and Dn(G) =
Dn+1(G) for some integer n ≥ 1. Write D∞(G) for the terminal term
of the ascending series.

Throughout the paper, we denote by Fdn the class of finite groups G
with G′ nilpotent. It is well-known that Fdn is a saturated formation
containing all supersolvable groups.

2. A generalization of Baer’s Theorem

Theorem 2.1. (R. Baer, [3, Corollary 2, p.159]) The following prop-
erties of the group G are equivalent:
(i) G ∈ Fdn;
(ii) Every homomorphic image of G induces in each of its minimal nor-
mal subgroups a cyclic group of automorphisms;
(iii) If M is a maximal subgroup of G, then M/MG is cyclic;
(iv) If M is a maximal subgroup of G, then M/MG is abelian;
(v) (G/Φ(G))′ is nilpotent.

The following basic properties of the subgroup D(G) are required in
this paper.

Proposition 2.2. ([13]) If M ≤ G, then M
∩

D(G) ≤ D(M).

Proposition 2.3. ([13]) Let N ≤ D(G) and N ⊴G. Then D(G)/N ≤
D(G/N).
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Theorem 2.4. ([13]) Let G be a finite group. Then the following state-
ments are equivalent:
(i) G ∈ Fdn;
(ii) (G/D∞(G)) ∈ Fdn;
(iii) G = D∞(G).

The next theorem is a generalization of Theorem 2.1.

Theorem 2.5. The following properties of the group G are equivalent:
(i) G′ is nilpotent;
(ii) Every homomorphic image of G/D∞(G) induces in each of its min-
imal normal subgroups a cyclic group of automorphisms;
(iii) If M is a maximal subgroup of G of composite index, then M/MG

is abelian;
(iv) If M is a maximal subgroup of G of composite index containing
D∞(G), then M/MG is cyclic;
(v) If M is a maximal subgroup of G of composite index containing
D∞(G), then M/MG are abelian.

Proof. (i) implies (ii), (iii),(iv) and (v) by Theorem 2.1. (iv)⇒ (v); clear.
(ii)⇒ (i): By Theorem 2.1 (ii), G/D∞(G) belongs to Fdn, so G′ is nilpo-
tent by applying Theorem 2.4.

(iii) ⇒ (i): Suppose that the group G satisfies (iii). First of all, we
show that G is soluble. If every maximal subgroup of G is of index a
prime, then G is supersolvable and hence G′ is nilpotent, as desired. So
we may assume that there exists a maximal subgroup M of G such that
|G : M | is a composite index. By hypothesis, M/MG is abelian. As
a group with an abelian maximal subgroup is solvable, we know that
G/MG is solvable. Thus

G/
∩
M

MG

is solvable. Moreover, the intersection of all maximal subgroups of a
group of composite index is supersolvable [6, Theorem 3], so the inter-
section of all MG is supersolvable. Consequently, G is solvable.

Now, if every maximal subgroup M of G satisfies that M/MG is
abelian, then G satisfies (iv) of Theorem 2.1, and hence G′ is nilpo-
tent, as desired. Thus we assume that there exists a maximal sub-
group M of G such that M/MG is non-abelian. By hypothesis, every
maximal subgroup L of composite index of G satisfies that L/LG is
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abelian, so the subgroup M possesses prime index. It follows that we
have G/MG = [N/MG]M/MG where |N/MG| = |G : M | = p is prime,
so M/MG would be cyclic, a contradiction.

(v) ⇒ (i): Clearly, G/D∞(G) satisfies (iii). Therefore G/D∞(G) is
an Fdn-group. Thus apply Theorem 2.4 to conclude that G′ is nilpotent
and (i) holds. □
Lemma 2.6. Let G be a finite group and suppose that M is a maximal
subgroup of G. Then, either M ′ ≤ MG or D∞(G) ≤ M .

Proof. Assuming that Dk(G) ≤ M , we get that M/Dk(G) is a maximal
subgroup of G/Dk(G). Now either NG/Dk(G)((M/Dk(G))′) = M/Dk(G)
or (M/Dk(G))′ = M ′Dk(G)/Dk(G)⊴G/Dk(G). Thus, eitherM ′Dk(G)⊴
G, so thatM ′ ≤ M ′Dk(G) ≤ MG or Dk+1(G)/Dk(G) ≤ M/Dk(G) and
Dk+1(G) ≤ M . It follows that either M ′ ≤ MG or D∞(G) ≤ M . □

The next consequence follows from Theorem 2.5(v) and Lemma 2.6.

Corollary 2.7. If every maximal subgroup M of G of composite index
satisfies M ′ ≤ D∞(G), then G′ is nilpotent.

Proof. If M is a maximal subgroup of G of composite index, then ei-
ther M ′ ≤ MG or D∞(G) ≤ M . But, in the latter case we have by
assumption that M ′ ≤ D∞(G) ≤ MG, as required. □
Remark 2.8. If H ≤ K, then, it is clear that D(K) ≤ D(H). And thus,
it follows that D(D(G)) = D(G). Hence, we must have D∞(D(G)) =
D(G), and thus, by theorem 2.4, D(G)′ is nilpotent.

3. Some new results of D-groups

Definition 3.1. A finite group G is called a D-group if G = D(G), that
is, the derived subgroups of all subgroups of G are normal.

Theorem 3.2. If G is a supersolvable D-group, then the nilpotent resid-
ual GN is abelian.

Proof. Assume that the theorem is false and let G be a counterexample
of minimal order. Since G is supersolvable, by hypothesis, G has unique
minimal normal subgroup N of order p, where p is the largest prime
divisor of |G|. If N1, N2 are distinct minimal normal subgroups of G
and M1/N1, M2/N2 are the nilpotent residuals of G/N1, G/N1, resp.,
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then, by induction M1/N1, M2/N2 are both abelian and the nilpotent
residual of G is contained in M1 ∩ M2. But, then, there is a 1-1 map-
ping M1 ∩M2 to M1/N1 ∩M2/N2. In this case it would follow that the
nilpotent residual of G is abelian, as required.

By the induction hypothesis and Proposition 2.3, GN /N is abelian
and Op′(G) = 1. Let P be Sylow p-subgroup of G. Then G = [P ]H,
where H is a p′-Hall subgroup. Since [P,H]⊴ ⟨P,H⟩ = G and G/[P,H]
is nilpotent, GN = [P,H]. Moreover, [P,H,H] = [P,H] and the mini-
mality of G imply GN = P . Hence GN = F (G).

Since G is a supersolvable, all chief factors of G contained in GN are
cyclic. Assume GN is not cyclic. Then there is a chief factor J/I of G
contained in GN which is a cyclic group of order p such that I is cyclic
and J is non-cyclic. We have J = I⟨x⟩, xp ∈ I and this is an abelian
group because I ≤ Z(GN ) by N/C-Theorem. By the theory of abelian
groups, J possesses (pf , p)-type, so Ω1(J) is abelian with (p, p)-type and
normal in G.

Let U = Ω1(J). Then U = ⟨z⟩ × ⟨y⟩, zp = yp = 1, where ⟨z⟩ = N is
normal in G. Set V = ⟨y⟩. We consider UH. Since G is supersolvable,
V is also H-invariant. If H acts nontrivially on V , then V is the derived
subgroup of V H. By hypothesis, V is normal in G, which contradicts
the uniqueness of N . Therefore, H acts trivially on V and so H acts
trivially on U/N . Hence CGN /N (H) > 1. This is a contradiction as

the nilpotent residual GN /N of G/N which is abelian and HN/N is a
p′-action on it so that [P/N,HN/N ] = P/N , the nilpotent residual of
G/N . □

D.J.S. Robinson had proved the following: If N is a nilpotent normal
subgroup of a group G and G/N ′ is supersolvable, then G is supersolv-
able [16]. Theorem 3.3 is immediate from the Robinson theorem. But,
Theorem 3.4 is not obvious.

Theorem 3.3. A D-group G is supersolvable if and only if G/G′′ is
supersolvable.

Theorem 3.4. The D-group G is nilpotent if and only if the nilpotent
residual GN ⊆ G

′′
.
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Proof. The necessity of the theorem is clear. Assume the converse is not
true and let G be a counterexample of minimal order. Then GN > 1.
Let GN /K be a chief factor of G and consider the quotient group G/K.
By Theorem 3.3, GN /K is cyclic of order a prime p, and we know that
G/K is a D-group by definition. By the choice of G we see that K must
be 1, namely GN is cyclic of order p. Obviously, GN ̸⊆ Φ(G) (otherwise
G is nilpotent, a contradiction). Thus there exists a maximal subgroup
M of G such that G = GNM and GN ∩M = 1. If M is abelian, then
G′ = GN , but GN ≤ G′′ by hypothesis, it follows that G′ = G′′, which
gives G′ = 1, a contradiction. Therefore we can let M be non-abelian.
Then we can find a minimal non-abelian subgroup Q ≤ M , and hence
Q′ is of order a prime q. By hypothesis Q′ is normal in G and so Q′ is in
the center Z(M) because M is nilpotent. Also, [GN , Q′] ≤ GN ∩Q′ = 1,
so GN centralizes Q′ too. Consequently, Z(G) ≥ Q′ > 1. Now, the
quotient group G/Z(G) satisfies the condition obviously, it follows that
G/Z(G) is nilpotent by the choice of G. But then, G would be nilpotent,
a final contradiction. □

4. A complete proof

Li and Shen [13], gave the following: For a finite group G, if all el-
ements of prime order of G are in D(G), then G is solvable and the
Fitting length of G is bounded by 3. However, in the course of proof
we omitted the following theorem. In fact, the following theorem has its
own interest.

Theorem 4.1. Let G be a p-solvable group. Suppose that all elements
of G of order p are in D(G). If p = 2, in addition, all elements of G of
order 4 are in D(G), then lp(G) ≤ 1.

Proof. We use induction on |G|. Clearly, G/Op′(G) satisfies the hypoth-
esis and lp(G/Op′(G)) = lp(G). We may assume that Op′(G) = 1.

Let P be a Sylow p-subgroup of D(G). By Theorem 2.4, D(G)′ is
nilpotent. Thus Op′(G) = 1 implies D(G)′ ≤ P , it follows that P is
normal in D(G) and so P is normal in G. Also, Fp(G) = Op′,p(G) =
Op(G). As G is p-solvable, by [15, p.269, Theorem 9.3.1], we know

CG(Op(G)) ≤ Op(G).

We now claim that G is q-nilpotent for any prime q ̸= p. Otherwise,
there exists a prime q such that G is non-q-nilpotent. Then there exists
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a subgroup K with the following properties: K is non-q-nilpotent but
all proper subgroups of K are q-nilpotent. By a theorem of Itô [15,
p.296, Theorem 10.3.3], K = [Q]R, where Q is a normal q-subgroup,
exp(Q) = p or 4, and R is a cyclic r-subgroup, the prime r ̸= q. We
know that K ′ = Q. Consider the subgroup

M = Op(G)Q.

Let p > 2. By above, Ω1(Gp) ≤ P ≤ Op(G), so Ω1(Gp) = Ω1(Op(G)).
Then Ω1(Op(G)) ⊴ G. By hypothesis, Ω1(Op(G)) normalizes K ′ =
Q, it follows that [Q,Ω1(Op(G))] = 1. By [12, p.437, 5.12], we get
[Q,Op(G)] = 1. Thus Q ≤ CG(Op(G)). As CG(Op(G)) ≤ Op(G) and Q
is a p′-group, Q must be 1, a contradiction. Similar for the case when
p = 2.

Now let Gq′ denote the normal q-complement of G for every prime
q ̸= p. Then Gp ≤ Gq′ and Gp is the intersection of all Gq′ , hence Gp⊴G,
and of course, lp(G) = 1. The proof is now complete. □

Next, we give a new elementary proof of [13, Theorem 4.1(i)] by Burn-
side theorem and a complete proof of [13, Theorem 4.1(ii)].

Theorem 4.2. Let G be a finite group. If all elements of odd prime
order of G are in D(G), then:
(i) G is solvable;
(ii) The Fitting length of G is bounded by 3.

Proof. First we show (i). Assume that the theorem is false and let G be
a counterexample of minimal order. If M is a proper subgroup of G, by
Proposition 2.2 we have M ∩D(G) ≤ D(M). Thus all cyclic subgroups
of M of odd prime order are in D(M). So M satisfies the condition.
By the choice of G, M is solvable. Consequently, G is a non-solvable
group in which all proper subgroups are solvable, so that G/Φ(G) is a
minimal simple group. As D(G) is normal in G and solvable, it follows
that D(G) ≤ Φ(G), the Frattini subgroup of G.

Let p be an odd prime dividing the order of G and let Gp be a Sylow
p-subgroup of G. We firstly claim the following two conclusions:

(i) Ω1(Gp)⊴G and
(ii) CG(Ω1(Gp)) ≤ Φ(G).
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It is well known that Φ(G) is nilpotent, so all Sylow subgroups of
Φ(G) are normal in G. Let P be a Sylow p-subgroup of Φ(G). By hy-
pothesis, all subgroups of G of order p are in D(G) and hence in P , so
Ω1(Gp) = Ω1(P ). Thus Ω1(Gp) char P ⊴G, (i) follows. Let us show (ii).
By (i), Ω1(Gp) is normal in G, it follows that CG(Ω1(Gp)) is normal in G.
Thus G/Φ(G) contains a normal subgroup CG(Ω1(Gp))Φ(G)/Φ(G). As
G/Φ(G) has no non-trivial normal subgroups, we have CG(Ω1(Gp))Φ(G) =
Φ(G) or CG(Ω1(Gp))Φ(G) = G. Suppose that the second case happens.
Then we have CG(Ω1(Gp)) = G, i.e, Ω1(Gp) ≤ Z(G). Thus all elements
of G of order p are in Z(G). Noting that p is an odd prime, we can apply
the Itô lemma [12, p.435, Satz 5.5] to see that G is p-nilpotent. Because
the quotient groups of a p-nilpotent group is also p-nilpotent, we see that
G/Φ(G) would be p-nilpotent. But G/Φ(G) has no non-trivial normal
subgroup, which implies that G/Φ(G) is a p′-group. However, by [12, III,
Satz 3.8], p | |G/Φ(G)| holds whenever p | |Φ(G)|. This is a contradic-
tion. We thus conclude that only the first case is true, which implies (ii).

Fix an odd prime p as above. Consider the subgroup

N = NG(Gp).

By Schur -Zassenhaus theorem [15, p.253, Theorem 9.12], N possesses
a Hall p′-subgroup H such that N = [Gp]H. By condition, Ω1(Gp) ≤
D(G), namely Ω1(Gp) normalizes the derived subgroup of every sub-
group of G, so Ω1(Gp) normalizes H ′. On the other hand, by (i), we
have Ω1(Gp) ⊴ N . Thus [Ω1(Gp),H

′] ≤ Ω1(Gp) ∩ H ′ = 1, hence H ′

acts trivially on Ω1(Gp) by conjugation. By [12, p.437, Satz 5.12], H ′

acts trivially on Gp. That is, the subgroup GpH
′ = Gp × H ′. Now,

N/GpH
′ = GpH/GpH

′ ∼= H/(GpH
′ ∩ H) = H/H ′, so N ′ ≤ Gp × H ′.

Because Gp and H are subgroups of N , we have G′
p ≤ N ′ and H ′ ≤ N ′,

so we can write for some P ≤ Gp,

N ′ = P ×H ′, G′
p ≤ P ≤ Gp.

As G is non-solvable, by the Burnside {p, q}-theorem [15, p.247, Theo-
rem 8.5.3], the order of G contains at least three distinct primes. There-
fore there exists another odd prime q dividing the order G such that
q ̸= p. Let Gq be a Sylow q-subgroup of G. By (i), we have Ω1(Gq)⊴G.
Also, by hypothesis, Ω1(Gq) ≤ D(G), so Ω1(Gq) normalizes N ′. As P
char N ′, it follows that Ω1(Gq) normalizes P too. Thus the subgroup
Ω1(Gq)P = Ω1(Gq)× P , and hence CG(Ω1(Gq)) ≥ P . Applying (ii), we
see that P ≤ Φ(G). Recall that H ′ acts trivially on Ω1(Gp), applying
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(ii) again , we have H ′ ≤ Φ(G). Thus

N ′ = P ×H ′ ≤ Φ(G).

Study the quotient group G = G/Φ(G). Then Gp = GpΦ(G)/Φ(G)

is a Sylow p-subgroup of G/Φ(G). Write NG(Gp) = M/Φ(G). Then
GpΦ(G)⊴M and Gp is a Sylow p-subgroup of GpΦ(G). By Frattini ar-

gument M = NM (Gp)Φ(G). Therefore NG(Gp) = NG(Gp)Φ(G)/Φ(G).

Now, NG(Gp) ∼= NG(Gp)/(NG(Gp)∩Φ(G)), and, by the above, NG(Gp)
′ =

N ′ ≤ Φ(G), so NG(Gp)/(NG(Gp) ∩ Φ(G)) is abelian. Consequently,

NG(Gp) is abelian. By a theorem of Burnside [12, IV, Hauptsatz 2.6], G

is p-nilpotent. This is not possible because G is a minimal simple group.
The proof now is complete.

The proof of (ii): Let p be any odd prime dividing |G| and let P be
a Sylow p-subgroup of G. As G is solvable, it is p-solvable. According
to Theorem 4.1, we have Fp(G) = Op′,p(G) = Op′(G)P , the maximal
normal p-nilpotent subgroup of G. Then CG(P ) ≤ Fp(G) by [15, p.269,
Theorem 9.3.1]. Next, by Frattini argument G = NG(P )Op′(G). On the
other hand, by Schur-Zassensaus’s theorem [15, p.253, Theorem 9.1.2],
NG(P ) = [P ]M , where M is a Hall p′-subgroup of NG(P ). By hy-
pothesis, Ω1(P ) normalizes M ′. Hence M ′ centralizes Ω1(P ), and thus
centralizes P . Consequently

M ′ ≤ Fp(G).

Now G = Fp(G)M , it follows that G/Fp(G) ∼= M/Fp(G) ∩ M . As
M ′ ≤ Fp(G)∩M , G/Fp(G) is an abelian group. Let T be the intersection
of all Fp(G). Then T is p-nilpotent for every odd prime p, and hence T
is an extension of an abelian 2-group by a nilpotent group of odd order.
Thus we get a series of normal subgroups of G:

1 ≤ T2 ≤ T ≤ G,

where T2 is the Sylow 2-subgroup of T . In this series all the factor
groups are nilpotent, which indicates the Fitting length of G is at most
3, completing the proof. □

5. Some relation conjectures

By hypercenter results [20], we give the following conjectures:
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Conjecture 5.1. Let G be a p-solvable group. Suppose that all elements
of G of order p are in D∞(G). If p = 2, in addition, all elements of G
of order 4 are in D∞(G), then the lp(G) ≤ 1.

Conjecture 5.2. Let G be a finite group. If all elements of prime order
of G are in D∞(G), then:
(i) G is solvable;
(ii) The Fitting length of G is bounded by 3.

On generation results, Thompson, Baer and Flavell [3, 10, 21-22] gave
the following:

Theorem 5.3. Let G be a group. Then G is a solvable group if and
only if ⟨x, y⟩ is a solvable group, ∀x, y ∈ G.

Theorem 5.4. Let G be a group. Then G is a supersolvable group if
and only if ⟨x, y⟩ is a supersolvable group, ∀x, y ∈ G.

Theorem 5.5. Let G be a group. Then G is a Fdn-group if and only if
⟨x, y, z⟩ is a Fdn-group, ∀x, y, z ∈ G.

We observe that D-groups are closely related to supersolvable groups
and Fdn-groups. So we give the following conjecture:

Conjecture 5.6. Let G be a group. Then G is a D-group if and only if
⟨x, y, z⟩ is a D-group, for ∀x, y, z ∈ G.
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