GENERALIZED FRAMES IN HILBERT SPACES

A. NAJATI* AND A. RAHIMI

Communicated by Heydar Radjavi

Abstract

Here, we develop the generalized frame theory. We introduce two methods for generating g-frames of a Hilbert space \mathcal{H}. The first method uses bounded linear operators between Hilbert spaces. The second method uses bounded linear operators on ℓ_{2} to generate g-frames of \mathcal{H}. We characterize all the bounded linear mappings that transform g-frames into other g-frames. We also characterize similar and unitary equivalent g-frames in term of the range of their linear analysis operators. Finally, we generalize the fundamental frame identity to g-frames and derive some new results.

1. Introduction

Through out this paper, \mathcal{H} and \mathcal{K} are separable Hilbert spaces and $\left\{\mathcal{H}_{i}: i \in I\right\}$ is a sequence of separable Hilbert spaces, where I is a subset of \mathbb{Z}. $\mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right)$ is the collection of all bounded linear operators from \mathcal{H} to \mathcal{H}_{i}, and $\boldsymbol{\Lambda}=\left\{\Lambda_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in I\right\}, \boldsymbol{\Theta}=\left\{\Theta_{i} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in I\right\}$.
$\boldsymbol{\Lambda}$ is called a generalized frame or simply g-frame of the Hilbert space \mathcal{H} with respect to $\left\{\mathcal{H}_{i}: i \in I\right\}$ if for any vector $f \in \mathcal{H}$,

$$
\begin{equation*}
A\|f\|^{2} \leq \sum_{i \in I}\left\|\Lambda_{i} f\right\|^{2} \leq B\|f\|^{2}, \tag{1.1}
\end{equation*}
$$

MSC(2000): Primary: 41A58; Secondary: 42C15
Keywords: Frames, g-frames, g-Riesz bases, g-orthonormal bases.
Received: 11 February 2007, Accepted: 12 June 2008
*Corresponding author
(c) 2009 Iranian Mathematical Society.
where the g-frame bounds A and B are positive constants. $\boldsymbol{\Lambda}$ is called a Parseval g-frame of \mathcal{H} with respect to $\left\{\mathcal{H}_{i}: i \in I\right\}$ if $A=B=1$ in (1.1). We say a sequence $\left\{\Lambda_{i} \in \mathcal{L}(\mathcal{H}, \mathcal{K}): i \in I\right\}$ is a g-frame of \mathcal{H} with respect to \mathcal{K} whenever $\mathcal{H}_{i}=\mathcal{K}$, for each $i \in I$. We also simply say a g-frame for \mathcal{H} whenever the space sequence $\left\{\mathcal{H}_{i}: i \in I\right\}$ is clear. This notation has been introduced by W. Sun in [6]. It is an extension of frames that conclude all previous extensions of frames. Specially, if $\boldsymbol{\Lambda}$ is a g-frame of \mathcal{H}, then any vector $f \in \mathcal{H}$ can be represented as [6]:

$$
\begin{equation*}
f=\sum_{i \in I} \Lambda_{i}^{*} \Lambda_{i} S^{-1} f \tag{1.2}
\end{equation*}
$$

where S^{-1} is the inverse of the positive linear operator S on \mathcal{H}, defined by:

$$
\begin{equation*}
S f:=\sum_{i \in I} \Lambda_{i}^{*} \Lambda_{i} f \tag{1.3}
\end{equation*}
$$

S is called the g-frame operator for $\boldsymbol{\Lambda}$.
Definition 1.1. Let $\boldsymbol{\Lambda}$ be a g-frame of \mathcal{H}. A g-frame $\boldsymbol{\Theta}$ of \mathcal{H} is called a dual g-frame of $\boldsymbol{\Lambda}$ if it satisfies:

$$
f=\sum_{i \in I} \Lambda_{i}^{*} \Theta_{i} f, \quad \forall f \in \mathcal{H}
$$

It is easy to show that if $\boldsymbol{\Theta}$ is a dual g-frame of $\boldsymbol{\Lambda}$, then $\boldsymbol{\Lambda}$ will be a dual g-frame of $\boldsymbol{\Theta}$.

Let $\boldsymbol{\Lambda}$ be a g-frame of \mathcal{H} with g-frame operator S. Then, (1.2) shows that $\left\{\Lambda_{i} S^{-1} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in I\right\}$ is a dual g-frame of $\boldsymbol{\Lambda} .\left\{\Lambda_{i} S^{-1} \in\right.$ $\left.\mathcal{L}\left(\mathcal{H}, \mathcal{H}_{i}\right): i \in I\right\}$ is called canonical dual g-frame of $\boldsymbol{\Lambda}$. Among all dual g-frames of $\boldsymbol{\Lambda}$, the canonical dual g-frame has the following property [6].

Proposition 1.2. Let $\boldsymbol{\Lambda}$ be a g-frame of \mathcal{H} and $\Lambda_{i}^{\circ}=\Lambda_{i} S^{-1}$, for all $i \in I$. Then, for any $g_{i} \in \mathcal{H}_{i}$ satisfying $f=\sum_{i \in I} \Lambda_{i}^{*} g_{i}$, we have,

$$
\sum_{i \in I}\left\|g_{i}\right\|^{2}=\sum_{i \in I}\left\|\Lambda_{i}^{\circ} f\right\|^{2}+\sum_{i \in I}\left\|g_{i}-\Lambda_{i}^{\circ} f\right\|^{2}
$$

2. Mapping from \mathcal{H} to \mathcal{K} for the construction of g-frames

For a given g-frame $\boldsymbol{\Lambda}$ of \mathcal{H}, we will obtain g-frames of \mathcal{K}. One approach is to construct a sequence $\left\{\Theta_{i}=\Lambda_{i} U^{*} \in \mathcal{L}\left(\mathcal{K}, \mathcal{H}_{i}\right): i \in I\right\}$,
where U is a bounded linear operator from \mathcal{H} to \mathcal{K}. The following theorem gives us a necessary and sufficient condition for $\left\{\Theta_{i}=\Lambda_{i} U^{*} \in\right.$ $\left.\mathcal{L}\left(\mathcal{K}, \mathcal{H}_{i}\right): i \in I\right\}$ to be a g-frame of \mathcal{K}.

The following results generalize the results in Aldroubi [1] in the case of g-frames with analogous proofs, and we omit the details.

Theorem 2.1. Let $\boldsymbol{\Lambda}$ be a g-frame of \mathcal{H} with g-frame bounds A and B satisfying $0<A \leq B<\infty$. If $U: \mathcal{H} \rightarrow \mathcal{K}$ is a bounded linear operator, then $\left\{\Lambda_{i} U^{*} \in \mathcal{L}\left(\mathcal{K}, \mathcal{H}_{i}\right): i \in I\right\}$ is a g-frame of \mathcal{K} if and only if there exists $\delta>0$ such that for any $f \in \mathcal{K},\left\|U^{*} f\right\| \geq \delta\|f\|$.

Corollary 2.2. Let $\boldsymbol{\Lambda}$ be a g-frame of \mathcal{H} with g-frame operator S. If $K \subseteq \mathcal{H}$ is a closed subspace and if $P: \mathcal{H} \rightarrow K$ is the orthogonal projection, then $\left\{\Lambda_{i} P \in \mathcal{L}\left(K, \mathcal{H}_{i}\right): i \in I\right\}$ and $\left\{\Lambda_{i} S^{-1} P \in \mathcal{L}\left(K, \mathcal{H}_{i}\right): i \in I\right\}$ are dual g-frames of K. Moreover, the g-frame bounds A and B of $\boldsymbol{\Lambda}$ are also g-frame bounds for $\left\{\Lambda_{i} P \in \mathcal{L}\left(K, \mathcal{H}_{i}\right): i \in I\right\}$.

Corollary 2.3. Let $\boldsymbol{\Lambda}$ be a g-frame for \mathcal{H} with g-frame bounds satisfying $0<A \leq B<\infty$. If $U: \mathcal{H} \rightarrow \mathcal{K}$ is co-isometry, then $\left\{\Lambda_{i} U^{*} \in \mathcal{L}\left(\mathcal{K}, \mathcal{H}_{i}\right):\right.$ $i \in I\}$ is a g-frame for \mathcal{K} with the same bounds.

3. Mapping on ℓ_{2} for the construction of g-frames of \mathcal{H}

Let $\left\{\Lambda_{i} \in \mathcal{L}(\mathcal{H}, \mathcal{K}): i \in I\right\}$ be a g-frame of \mathcal{H}. We want to know which conditions on the numbers $\left(u_{i j}\right)_{i, j \in I}$ will imply that the linear operators,

$$
\begin{equation*}
\Theta_{i}: \mathcal{H} \rightarrow \mathcal{K}, \quad \Theta_{i} f=\sum_{j \in I} u_{i j} \Lambda_{j} f, \quad \forall i \in I \tag{3.1}
\end{equation*}
$$

are well defined and constitute a g-frame for \mathcal{H}. Aldroubi in [1] has answered this question about frames.

Notation 3.1. Let us define,

$$
L^{2}(\mathcal{H}, I)=\left\{\left\{f_{i}\right\}_{i \in I}: f_{i} \in \mathcal{H} \quad \text { and } \quad \sum_{i \in I}\left\|f_{i}\right\|^{2}<\infty\right\}
$$

with the inner product given by $\left\langle\left\{f_{i}\right\}_{i \in I},\left\{g_{i}\right\}_{i \in I}\right\rangle=\sum_{i \in I}\left\langle f_{i}, g_{i}\right\rangle$. It is clear that $L^{2}(\mathcal{H}, I)$ is a separable Hilbert space with respect to the pointwise operations.

Definition 3.2. Let $\boldsymbol{\Lambda}$ be a g-frame for \mathcal{H}. The synthesis operator for $\boldsymbol{\Lambda}$ is the linear operator,

$$
T_{\boldsymbol{\Lambda}}:\left(\sum_{i \in I} \bigoplus \mathcal{H}_{i}\right)_{\ell_{2}} \rightarrow \mathcal{H}, \quad T_{\boldsymbol{\Lambda}}\left(\left\{f_{i}\right\}_{i \in I}\right)=\sum_{i \in I} \Lambda_{i}^{*}\left(f_{i}\right)
$$

We call the adjoint $T_{\boldsymbol{\Lambda}}^{*}$ of the synthesis operator, the analysis operator. The analysis operator is the linear operator,

$$
T_{\boldsymbol{\Lambda}}^{*}: \mathcal{H} \rightarrow\left(\sum_{i \in I} \bigoplus \mathcal{H}_{i}\right)_{\ell_{2}}, \quad T_{\boldsymbol{\Lambda}}^{*}(f)=\left\{\Lambda_{i} f\right\}_{i \in I}
$$

Throughout this paper, for a given g-frame $\boldsymbol{\Lambda}$ of \mathcal{H}, we denote by $T_{\boldsymbol{\Lambda}}$ and $T_{\boldsymbol{\Lambda}}^{*}$, respectively, the synthesis and analysis operators for $\boldsymbol{\Lambda}$.

The following proposition is similar to a result of [1] with an analogous proof, and we omit the details.

Proposition 3.3. Let $\left\{\Lambda_{i} \in \mathcal{L}(\mathcal{H}, \mathcal{K}): i \in I\right\}$ be a g-frame of \mathcal{H} and assume that the bi-infinite matrix $U=\left(u_{i j}\right)_{i, j \in I}$ defines a bounded linear operator on $L^{2}(\mathcal{K}, I)$. Then, the linear operators $\left\{\Theta_{i} \in \mathcal{L}(\mathcal{H}, \mathcal{K}): i \in I\right\}$ in (3.1) are well defined and constitute a g-frame for \mathcal{H} if and only if there exists a constant $\delta>0$ such that

$$
\begin{equation*}
\|U x\|_{2}^{2} \geq \delta\|x\|_{2}^{2}, \quad \forall x \in \mathcal{R}_{T_{\Lambda}^{*}}, \tag{3.2}
\end{equation*}
$$

where T_{Λ} is the synthesis operator of $\left\{\Lambda_{i} \in \mathcal{L}(\mathcal{H}, \mathcal{K}): i \in I\right\}$.

The condition (3.2) can also be written as:

$$
\sum_{i \in I}\left\|\sum_{j \in J} u_{i j} \Lambda_{j} f\right\|^{2} \geq \delta \sum_{j \in J}\left\|\Lambda_{j} f\right\|^{2}, \quad \forall f \in \mathcal{H}
$$

The proof of the next proposition is a modification of the analogous proof for frames [see 4, Prop. 5.5.8].

Proposition 3.4. Let $\left\{\Lambda_{i} \in \mathcal{L}(\mathcal{H}, \mathcal{K}): i \in I\right\}$ be a g-frame of \mathcal{H} with g-frame bounds A and B. If the numbers $\left(u_{i j}\right)_{i, j \in I}$ satisfy the two
conditions,

$$
\begin{aligned}
b & :=\sup _{k \in I} \sum_{j \in I}\left|\sum_{i \in I} u_{i k} \overline{u_{i j}}\right|<\infty \\
a & :=\inf _{k \in I}\left(\sum_{i \in I}\left|u_{i k}\right|^{2}-\sum_{j \neq k}\left|\sum_{i \in I} u_{i k} \overline{u_{i j}}\right|\right)>0
\end{aligned}
$$

then $\left\{\Theta_{i} \in \mathcal{L}(\mathcal{H}, \mathcal{K}): i \in I\right\}$ defined by (3.1) is a g-frame of \mathcal{H} with g-frame bounds $a A$ and $b B$.

Proof. Let $f \in \mathcal{H}$. Then,

$$
\begin{aligned}
\sum_{i \in I}\left\|\sum_{j \in I} u_{i j} \Lambda_{j} f\right\|^{2} & =\sum_{i \in I}\left(\sum_{k \in I} \sum_{j \in I} u_{i j} \overline{u_{i k}}\left\langle\Lambda_{j} f, \Lambda_{k} f\right\rangle\right) \\
& =\sum_{i \in I} \sum_{k \in I}\left|u_{i k}\right|^{2}\left\|\Lambda_{k} f\right\|^{2}+\sum_{i \in I} \sum_{k \in I} \sum_{j \neq k} u_{i j} \overline{u_{i k}}\left\langle\Lambda_{j} f, \Lambda_{k} f\right\rangle
\end{aligned}
$$

Let

$$
(*):=\sum_{i \in I} \sum_{k \in I} \sum_{j \neq k} u_{i j} \overline{u_{i k}}\left\langle\Lambda_{j} f, \Lambda_{k} f\right\rangle
$$

Then, by Cauchy-Schwarz's inequality we get,

$$
|(*)| \leq \sum_{k \in I} \sum_{j \neq k}\left\|\Lambda_{k} f\right\|^{2}\left|\sum_{i \in I} u_{i j} \overline{u_{i k}}\right|
$$

Therefore,

$$
\begin{aligned}
\sum_{i \in I}\left\|\sum_{j \in I} u_{i j} \Lambda_{j} f\right\|^{2} & \geq \sum_{i \in I} \sum_{k \in I}\left|u_{i k}\right|^{2}\left\|\Lambda_{k} f\right\|^{2}-|(*)| \\
& \geq \sum_{k \in I}\left\|\Lambda_{k} f\right\|^{2}\left(\sum_{i \in I}\left|u_{i k}\right|^{2}-\sum_{j \neq k}\left|\sum_{i \in I} u_{i k} \overline{u_{i j}}\right|\right) \\
& \geq a A\|f\|^{2}
\end{aligned}
$$

For the upper g-frame bound we have,

$$
\begin{aligned}
\sum_{i \in I}\left\|\sum_{j \in I} u_{i j} \Lambda_{j} f\right\|^{2} & \leq \sum_{i \in I} \sum_{k \in I}\left|u_{i k}\right|^{2}\left\|\Lambda_{k} f\right\|^{2}+|(*)| \\
& \leq \sum_{k \in I}\left\|\Lambda_{k} f\right\|^{2}\left(\sum_{i \in I}\left|u_{i k}\right|^{2}+\sum_{j \neq k}\left|\sum_{i \in I} u_{i k} \overline{\overline{u_{i j}}}\right|\right) \\
& =\sum_{k \in I}\left\|\Lambda_{k} f\right\|^{2} \sum_{j \in I}\left|\sum_{i \in I} u_{i k} \overline{u_{i j}}\right| \\
& \leq b B\|f\|^{2} .
\end{aligned}
$$

The converse of Proposition 3.3 is also true; i.e., any two g frames of \mathcal{H} are related by a linear operator U on $\left(\sum_{i \in I} \bigoplus \mathcal{H}_{i}\right)_{\ell_{2}}$ that satisfies condition (3.2).

Proposition 3.5. Let $\boldsymbol{\Lambda}$ and $\boldsymbol{\Theta}$ be two g-frames for \mathcal{H}. Then, there is a bounded linear operator,

$$
U:\left(\sum_{i \in I} \bigoplus \mathcal{H}_{i}\right)_{\ell_{2}} \rightarrow\left(\sum_{i \in I} \bigoplus \mathcal{H}_{i}\right)_{\ell_{2}}
$$

such that for any $f \in \mathcal{H}$,

$$
T_{\boldsymbol{\Theta}}^{*} f=U T_{\boldsymbol{\Lambda}}^{*} f
$$

Proof. Since $\boldsymbol{\Lambda}$ is a g-frame, then $X=T_{\boldsymbol{\Lambda}}^{*}(\mathcal{H})$ is a closed subspace of $\left(\sum_{i \in I} \oplus \mathcal{H}_{i}\right)_{\ell_{2}}$. Therefore, $T_{\boldsymbol{\Lambda}}^{*}: \mathcal{H} \rightarrow X$ is bijective and so it is invertible. By the open mapping Theorem, $\left(T_{\boldsymbol{\Lambda}}^{*}\right)^{-1}$ is bounded. Let $U_{0}=$ $T_{\boldsymbol{\Theta}}^{*}\left(T_{\boldsymbol{\Lambda}}^{*}\right)^{-1}: X \rightarrow\left(\sum_{i \in I} \oplus \mathcal{H}_{i}\right)_{\ell_{2}}$. It is obvious that U_{0} is bounded on X and we can extend it on $\left(\sum_{i \in I} \oplus \mathcal{H}_{i}\right)_{\ell_{2}}$ by:

$$
U(x):= \begin{cases}U_{0}(x) & \text { if } x \in X \\ 0 & \text { if } x \in X^{\perp}\end{cases}
$$

Then, for each $f \in \mathcal{H}$ we have,

$$
U T_{\boldsymbol{\Lambda}}^{*} f=T_{\boldsymbol{\Theta}}^{*}\left(T_{\boldsymbol{\Lambda}}^{*}\right)^{-1} T_{\boldsymbol{\Lambda}}^{*} f=T_{\boldsymbol{\Theta}}^{*} f .
$$

4. Similar and unitary equivalence g-frames

The definitions of similar and unitary equivalent frames give rise to definitions of similar and unitary equivalent g-frames.

Definition 4.1. Let $\boldsymbol{\Lambda}$ and $\boldsymbol{\Theta}$ be two g-frames of \mathcal{H}.
(1) We say that $\boldsymbol{\Lambda}$ and $\boldsymbol{\Theta}$ are similar if there is a bounded linear invertible operator $T: \mathcal{H} \rightarrow \mathcal{H}$ such that $\Theta_{i}=\Lambda_{i} T$, for all $i \in I$.
(2) We say that $\boldsymbol{\Lambda}$ and $\boldsymbol{\Theta}$ are unitary equivalent if there is a unitary linear operator $T: \mathcal{H} \rightarrow \mathcal{H}$ such that $\Theta_{i}=\Lambda_{i} T$, for all $i \in I$.
(3) We say that $\boldsymbol{\Lambda}$ is isometrically equivalent to $\boldsymbol{\Theta}$ if there is an isometric linear operator $T: \mathcal{H} \rightarrow \mathcal{H}$ such that $\Theta_{i}=\Lambda_{i} T$, for all $i \in I$.

The following proposition characterizes unitary equivalence Parseval g-frames. It generalizes a result of Balan[2] in the case of Parseval g frames

Proposition 4.2. Let $\boldsymbol{\Lambda}$ and $\boldsymbol{\Theta}$ be two Parseval g-frames of \mathcal{H}. Then, (i) $\mathcal{R}_{T_{\Theta}^{*}} \subseteq \mathcal{R}_{T_{\Lambda}^{*}}$ if and only if $\boldsymbol{\Lambda}$ is isometrically equivalent to $\boldsymbol{\Theta}$. Furthermore, if $U: \mathcal{H} \rightarrow \mathcal{H}$ is an isometry such that $\Theta_{i}=\Lambda_{i} U$, for $i \in I$, then,

$$
\begin{equation*}
\operatorname{ker} U^{*}=T_{\boldsymbol{\Lambda}}\left(\mathcal{R}_{T_{\boldsymbol{\Lambda}}^{*}} \cap\left(\mathcal{R}_{T_{\Theta}^{*}}\right)^{\perp}\right) \tag{4.1}
\end{equation*}
$$

(ii) $\mathcal{R}_{T_{\Theta}^{*}}=\mathcal{R}_{T_{\Lambda}^{*}}$ if and only if $\boldsymbol{\Lambda}$ and $\boldsymbol{\Theta}$ are unitary equivalent.

Proof. (i) (Necessity). Suppose that $\mathcal{R}_{T_{\Theta}^{*}} \subseteq \mathcal{R}_{T_{\Lambda}^{*}}$. It is clear that $\mathcal{R}_{T_{\Theta}^{*}}$ and $\mathcal{R}_{T_{\Lambda}^{*}}$ are closed subspaces of $\left(\sum_{i \in I} \oplus \mathcal{H}_{i}\right)_{\ell_{2}}$. Let $P=T_{\Lambda}^{*} T_{\Lambda}$ and $Q=T_{\boldsymbol{\Theta}}^{*} T_{\boldsymbol{\Theta}}$. So, $\mathcal{R}_{P}=\mathcal{R}_{T_{\boldsymbol{\Lambda}}^{*}}$ and $\mathcal{R}_{Q}=\mathcal{R}_{T_{\boldsymbol{\Theta}}^{*}}$. Since $\boldsymbol{\Lambda}$ and $\boldsymbol{\Theta}$ are Parseval g-frames of \mathcal{H}, then P and Q are orthogonal projections from $\left(\sum_{i \in I} \oplus \mathcal{H}_{i}\right)_{\ell_{2}}$ onto $\mathcal{R}_{T_{\Lambda}^{*}}$ and $\mathcal{R}_{T_{\Theta}^{*}}$, respectively. Let $U:=T_{\boldsymbol{\Lambda}} T_{\boldsymbol{\Theta}}^{*}$: $\mathcal{H} \rightarrow \mathcal{H}$ and let $f \in \mathcal{H}$. Then,

$$
U^{*} U f=T_{\boldsymbol{\Theta}} T_{\boldsymbol{\Lambda}}^{*} T_{\boldsymbol{\Lambda}} T_{\boldsymbol{\Theta}}^{*} f=T_{\boldsymbol{\Theta}} T_{\mathbf{\Theta}}^{*} f=f .
$$

Hence, U is an isometry. Also, $f=\sum_{i \in I} \Theta_{i}^{*} \Theta_{i} f$ and

$$
U^{*} f=T_{\boldsymbol{\Theta}} T_{\boldsymbol{\Lambda}}^{*} f=T_{\boldsymbol{\Theta}}\left(\left\{\Lambda_{i} f\right\}_{i \in I}\right)=\sum_{i \in I} \Theta_{i}^{*} \Lambda_{i} f
$$

So, $f=\sum_{i} \Theta_{i}^{*} \Lambda_{i} U f$. By Proposition 1.2,

$$
\sum_{i \in I}\left\|\Lambda_{i} U f\right\|^{2}=\sum_{i \in I}\left\|\Theta_{i} f\right\|^{2}+\sum_{i \in I}\left\|\Lambda_{i} U f-\Theta_{i} f\right\|^{2} .
$$

Since $\sum_{i \in I}\left\|\Lambda_{i} U f\right\|^{2}=\|U f\|^{2}=\|f\|^{2}$ and $\sum_{i \in I}\left\|\Theta_{i} f\right\|^{2}=\|f\|^{2}$, then $\Lambda_{i} U f=\Theta_{i} f$, for any $i \in I$. Therefore, $\Lambda_{i} U=\Theta_{i}$ and consequently $T_{\boldsymbol{\Lambda}}^{*} U=T_{\Theta}^{*}$.
(Sufficiency). Suppose that there exists an isometry $U: \mathcal{H} \rightarrow \mathcal{H}$ such that $\Theta_{i}=\Lambda_{i} U$, for $i \in I$. Then, for any $f \in \mathcal{H}$,

$$
T_{\Theta}^{*} f=\left\{\Theta_{i} f\right\}_{i \in I}=\left\{\Lambda_{i} U f\right\}_{i \in I}=T_{\boldsymbol{\Lambda}}^{*} U f,
$$

and so $T_{\Theta}^{*}=T_{\Lambda}^{*} U$. Therefore, $\mathcal{R}_{T_{\Theta}^{*}} \subseteq \mathcal{R}_{T_{\Lambda}^{*}}$.
For the second part of (i), since $T_{\boldsymbol{\Lambda}}^{*}$ is isometric, then we have,

$$
\mathcal{R}_{T_{\Lambda}^{*}}=T_{\boldsymbol{\Lambda}}^{*}\left(\operatorname{ker} U^{*} \oplus \mathcal{R}_{U}\right)=T_{\boldsymbol{\Lambda}}^{*}\left(\operatorname{ker} U^{*}\right) \oplus \mathcal{R}_{T_{\Lambda}^{*} U} .
$$

So, we have,

$$
\begin{equation*}
\operatorname{ker} U^{*}=T_{\Lambda}\left(\mathcal{R}_{T_{\Lambda}^{*}} \cap\left(\mathcal{R}_{T_{\Theta}^{*}}\right)^{\perp}\right) . \tag{4.2}
\end{equation*}
$$

(ii) If $\mathcal{R}_{T_{\Theta}^{*}}=\mathcal{R}_{T_{\Lambda}^{*}}$, then by (4.2) we obtain that U is invertible. Since U is isometric, then U is unitary. Conversely, let $U: \mathcal{H} \rightarrow \mathcal{H}$ be a unitary linear operator such that $\Theta_{i}=\Lambda_{i} U$, for $i \in I$. Since $T_{\boldsymbol{\Lambda}}^{*} U=T_{\boldsymbol{\Theta}}^{*}$, then $\mathcal{R}_{T_{\Theta}^{*}}=\mathcal{R}_{T_{\Lambda}^{*}}$.

For the general case, we have the following proposition.
Proposition 4.3. Let $\boldsymbol{\Lambda}$ and $\boldsymbol{\Theta}$ be two g-frames of \mathcal{H}. Then,
(i) $\mathcal{R}_{T_{\Theta}^{*}} \subseteq \mathcal{R}_{T_{\Lambda}^{*}}$ if and only if there exists a bounded linear operator $U: \mathcal{H} \rightarrow \mathcal{H}$ such that $\Theta_{i}=\Lambda_{i} U$ for $i \in I$. Furthermore (4.1) holds.
(ii) $\mathcal{R}_{T_{\Theta}^{*}}=\mathcal{R}_{T_{\Lambda}^{*}}$ if and only if $\boldsymbol{\Lambda}$ and $\boldsymbol{\Theta}$ are similar.

Proof. Let us denote by $S_{\boldsymbol{\Lambda}}$ and $S_{\boldsymbol{\Theta}}$ the g-frame operators of $\boldsymbol{\Lambda}$ and $\boldsymbol{\Theta}$, respectively.
(i) (Necessity). Suppose that $\mathcal{R}_{T_{\Theta}^{*}} \subseteq \mathcal{R}_{T_{\Lambda}^{*}}$. Since $\mathcal{R}_{T_{\Lambda}^{*}}$ and $\mathcal{R}_{T_{\Theta}^{*}}$ are closed subspaces of $\left(\sum_{i \in I} \oplus \mathcal{H}_{i}\right)_{\ell_{2}}$, then $\mathcal{R}_{T_{\boldsymbol{\Lambda}}^{*}}=\left[\operatorname{ker} T_{\boldsymbol{\Lambda}}\right]^{\perp}$ and $\mathcal{R}_{T_{\Theta}^{*}}=$ $\left[\operatorname{ker} T_{\boldsymbol{\Theta}}\right]^{\perp}$. Therefore, $\operatorname{ker} T_{\boldsymbol{\Lambda}} \subseteq \operatorname{ker} T_{\boldsymbol{\Theta}}$. Denote by $T_{\boldsymbol{\Lambda}^{\prime}}$ and $T_{\boldsymbol{\Theta}^{\prime}}$, the synthesis operators for Parseval g-frames $\boldsymbol{\Lambda}^{\prime}:=\left\{\Lambda_{i}^{\prime}=\Lambda_{i} S_{\Lambda}^{-\frac{1}{2}}\right\}_{i \in I}$ and $\boldsymbol{\Theta}^{\prime}:=\left\{\Theta_{i}^{\prime}=\Theta_{i} S_{\Theta^{-\frac{1}{2}}}\right\}_{i \in I}$, respectively. Then, $T_{\boldsymbol{\Theta}^{\prime}}=S_{\Theta^{-\frac{1}{2}}} T_{\boldsymbol{\Theta}}$ and $T_{\boldsymbol{\Lambda}^{\prime}}=$ $S_{\boldsymbol{\Lambda}}^{-\frac{1}{2}} T_{\boldsymbol{\Lambda}}$. So, $\operatorname{ker} T_{\boldsymbol{\Theta}^{\prime}}=\operatorname{ker} T_{\boldsymbol{\Theta}}$ and $\operatorname{ker} T_{\boldsymbol{\Lambda}^{\prime}}=\operatorname{ker} T_{\boldsymbol{\Lambda}}$. By Proposition
4.2, there exists an isometry $V: \mathcal{H} \rightarrow \mathcal{H}$ such that $\Theta_{i}^{\prime}=\Lambda_{i}^{\prime} V$, for all $i \in I$. Hence $\Theta_{i}=\Lambda_{i} S_{\boldsymbol{\Lambda}}^{-\frac{1}{2}} V S_{\Theta}^{\frac{1}{2}}$. Therefore, the result follows by letting $U=S_{\Lambda}^{-\frac{1}{2}} V S_{\Theta}^{\frac{1}{2}}$.
(Sufficiency.) It is straightforward.
For the second part of (i), by Proposition 4.2, we have,

$$
\operatorname{ker} U^{*}=S_{\boldsymbol{\Lambda}}^{\frac{1}{2}} \operatorname{ker} V^{*}=S_{\boldsymbol{\Lambda}}^{\frac{1}{2}} T_{\boldsymbol{\Lambda}^{\prime}}\left(\mathcal{R}_{T_{\boldsymbol{\Lambda}^{\prime}}^{*}} \cap\left(\mathcal{R}_{T_{\Theta^{\prime}}^{*}}\right)^{\perp}\right)=T_{\boldsymbol{\Lambda}}\left(\mathcal{R}_{T_{\boldsymbol{\Lambda}}^{*}} \cap\left(\mathcal{R}_{T_{\Theta}^{*}}\right)^{\perp}\right)
$$

(ii) (Necessity). If $\mathcal{R}_{T_{\Theta}^{*}}=\mathcal{R}_{T_{\Lambda}^{*}}$, then $\mathcal{R}_{T_{\Theta^{\prime}}^{*}}=\mathcal{R}_{T_{\Lambda^{\prime}}^{*}}$. Therefore, by part
(ii) of Proposition 4.2, V is unitary and consequently U^{*} is onto. Hence, $\operatorname{ker} U=\left[\mathcal{R}_{U^{*}}\right]^{\perp}=\{0\}$. Also, by part $(i), U$ is onto. Therefore, U is invertible.
(Sufficiency). It is straightforward.
Proposition 4.4. Let $\boldsymbol{\Lambda}$ be a g-frame of \mathcal{H} and let $\boldsymbol{\Theta}$ be a sequence of bounded linear operators. Suppose that there exist constants $\lambda, \mu \in[0,1)$ such that

$$
\begin{equation*}
\left\|\sum_{i \in I} \Theta_{i}^{*} f_{i}-\Lambda_{i}^{*} f_{i}\right\| \leq \lambda\left\|\sum_{i \in I} \Lambda_{i}^{*} f_{i}\right\|+\mu\left\|\sum_{i \in I} \Theta_{i}^{*} f_{i}\right\| \tag{4.3}
\end{equation*}
$$

for any $\left\{f_{i}\right\}_{i \in I} \in\left(\sum_{i \in I} \bigoplus \mathcal{H}_{i}\right)_{\ell_{2}}$. Then,
(i) Θ is a g-frame of \mathcal{H}.
(ii) $\boldsymbol{\Lambda}$ and $\boldsymbol{\Theta}$ are similar.

Proof. (i) See [5].
(ii) It is clear that $\operatorname{ker} T_{\boldsymbol{\Theta}}=\operatorname{ker} T_{\boldsymbol{\Lambda}}$. Therefore, (ii) follows from Proposition 4.3.

5. g-frame identity

Here, we generalize the frame identity to the situation of g-frames. We also give some results related to g-frame identity. The following identity has been introduced in [3].

Theorem 5.1. Let $\left\{f_{i}\right\}_{i \in I}$ be a Parseval frame of \mathcal{H}. For any $J \subseteq I$ and all $f \in \mathcal{H}$, we have:

$$
\sum_{i \in J}\left|\left\langle f, f_{i}\right\rangle\right|^{2}-\left\|\sum_{i \in J}\left\langle f, f_{i}\right\rangle f_{i}\right\|^{2}=\sum_{i \in J^{c}}\left|\left\langle f, f_{i}\right\rangle\right|^{2}-\left\|\sum_{i \in J^{c}}\left\langle f, f_{i}\right\rangle f_{i}\right\|^{2}
$$

Let $\boldsymbol{\Lambda}$ be a g-frame of \mathcal{H}. For any $J \subseteq I$, let $S_{J}: \mathcal{H} \rightarrow \mathcal{H}$ be a linear operator defined by:

$$
S_{J}(f)=\sum_{i \in J} \Lambda_{i}^{*} \Lambda_{i} f, \quad \forall f \in \mathcal{H}
$$

We begin with the following key lemma.
Lemma 5.2. Suppose that $T: \mathcal{H} \rightarrow \mathcal{H}$ is a bounded and self-adjoint linear operator. Let $a, b, c \in \mathbb{R}$ and $U=a T^{2}+b T+c I$.
(i) If $a>0$, then

$$
\inf _{\|f\|=1}\langle U f, f\rangle \geq \frac{4 a c-b^{2}}{4 a}
$$

(ii) If $a<0$, then

$$
\sup _{\|f\|=1}\langle U f, f\rangle \leq \frac{4 a c-b^{2}}{4 a}
$$

Proof. (i) By elementary computations, we have,

$$
U=a\left(T+\frac{b}{2 a} I\right)^{2}+\frac{4 a c-b^{2}}{4 a} I
$$

Since $\left(T+\frac{b}{2 a} I\right)^{2} \geq 0$, then

$$
U \geq \frac{4 a c-b^{2}}{4 a} I
$$

Then, for all $f \in \mathcal{H}$,

$$
\langle U f, f\rangle \geq \frac{4 a c-b^{2}}{4 a}\|f\|^{2}
$$

So,

$$
\inf _{\|f\|=1}\langle U f, f\rangle \geq \frac{4 a c-b^{2}}{4 a}
$$

(ii) It follows from (i).

The following theorem generalizes Theorem 5.1 for Parseval g-frames.

Theorem 5.3. Let $\boldsymbol{\Lambda}$ be a Parseval g-frame of \mathcal{H}. Then, for any $J \subseteq I$ and all $f \in \mathcal{H}$, we have:

$$
\begin{align*}
& \sum_{i \in J}\left\|\Lambda_{i} f\right\|^{2}+\left\|S_{J^{c}} f\right\|^{2}=\sum_{i \in J^{c}}\left\|\Lambda_{i} f\right\|^{2}+\left\|S_{J} f\right\|^{2}, \tag{5.1}\\
& \sum_{i \in J}\left\|\Lambda_{i} f\right\|^{2}+\left\|S_{J^{c}} f\right\|^{2} \geq \frac{3}{4}\|f\|^{2}, \tag{5.2}\\
& 0 \leq S_{J}-S_{J}^{2} \leq \frac{1}{4} I, \tag{5.3}\\
& \frac{1}{2} I \leq S_{J}^{2}+S_{J^{c}}^{2} \leq \frac{3}{2} I . \tag{5.4}
\end{align*}
$$

Proof. Let $S: \mathcal{H} \rightarrow \mathcal{H}$ be the g-frame operator of $\boldsymbol{\Lambda}$. Then, $S=I$ and $f=S_{J} f+S_{J^{c}} f$, for all $f \in \mathcal{H}$. Let $f \in \mathcal{H}$. Then,

$$
\begin{aligned}
\sum_{i \in J}\left\|\Lambda_{i} f\right\|^{2}+\left\|S_{J^{c}} f\right\|^{2} & =\left\langle S_{J} f, f\right\rangle+\left\langle S_{J^{c}} f, S_{J^{c}} f\right\rangle \\
& =\left\langle\left(S_{J}+S_{J^{c}}^{2}\right) f, f\right\rangle \\
& =\left\langle\left(I-S_{J}+S_{J}^{2}\right) f, f\right\rangle \\
& =\left\langle\left(S_{J^{c}}+S_{J}^{2}\right) f, f\right\rangle \\
& =\sum_{i \in J^{c}}\left\|\Lambda_{i} f\right\|^{2}+\left\|S_{J} f\right\|^{2}
\end{aligned}
$$

This proves (5.1). Since $\sum_{i \in J}\left\|\Lambda_{i} f\right\|^{2}+\left\|S_{J^{c}} f\right\|^{2}=\left\langle\left(S_{J}^{2}-S_{J}+I\right) f, f\right\rangle$, then the inequality (5.2) follows by Lemma 5.2. To prove (5.3), we have $S_{J} S_{J^{c}}=S_{J^{c}} S_{J}$, for all $J \subseteq I$. So $0 \leq S_{J} S_{J^{c}}=S_{J}-S_{J}^{2}$. Also, by Lemma 5.2 we have $S_{J}-S_{J}^{2} \leq \frac{1}{4} \bar{I}$.

To prove (5.4), we have $S_{J}^{2}+S_{J^{c}}^{2}=I-2 S_{J} S_{J^{c}}=2 S_{J}^{2}-2 S_{J}+I$, for all $J \subseteq I$. By Lemma 5.2 , we get that $S_{J}^{2}+S_{J^{c}}^{2} \geq \frac{1}{2} I$. Since $S_{J}-S_{J}^{2} \geq 0$ (by (5.3)), then we have $S_{J}^{2}+S_{J c}^{2} \leq I+2 S_{J}-2 S_{J}^{2}$. So, the result follows from Lemma 5.2.

Corollary 5.4. Let $\boldsymbol{\Lambda}$ be a g-frame of \mathcal{H} with g-frame operator S. Then, for any $J \subseteq I$ and for all $f \in \mathcal{H}$, we have,

$$
\begin{equation*}
\sum_{i \in J}\left\|\Lambda_{i} f\right\|^{2}+\sum_{i \in I}\left\|\Lambda_{i} S^{-1} S_{J^{c}} f\right\|^{2}=\sum_{i \in J^{c}}\left\|\Lambda_{i} f\right\|^{2}+\sum_{i \in I}\left\|\Lambda_{i} S^{-1} S_{J} f\right\|^{2} \tag{5.5}
\end{equation*}
$$

$$
\begin{align*}
& \sum_{i \in J}\left\|\Lambda_{i} f\right\|^{2}+\sum_{i \in I}\left\|\Lambda_{i} S^{-1} S_{J^{c}} f\right\|^{2} \geq \frac{3}{4}\langle S f, f\rangle \geq \frac{3}{4}\left\|S^{-1}\right\|^{-1}\|f\|^{2}, \tag{5.6}\\
& \text { (5.8) } \frac{1}{2} S \leq S_{J} S^{-1} S_{J}-S_{J^{c}} S^{-1} S_{J^{c}} \leq \frac{3}{2} S \text {. } \tag{5.7}
\end{align*}
$$

Proof. Let $\Theta_{i}=\Lambda_{i} S^{-\frac{1}{2}}$, for each $i \in I$. Then, Θ is a Parseval g-frame of \mathcal{H}. For any $J \subseteq I$, let $\tilde{S}_{J}: \mathcal{H} \rightarrow \mathcal{H}$ be a linear operator defined by:

$$
\tilde{S}_{J} f=\sum_{i \in J} \Theta_{i}^{*} \Theta_{i} f, \quad \forall f \in \mathcal{H}
$$

So, $\tilde{S}_{J}=S^{-\frac{1}{2}} S_{J} S^{-\frac{1}{2}}$. Hence, it follows from (5.1) of Theorem 5.3 that

$$
\begin{equation*}
\sum_{i \in J}\left\|\Theta_{i} f\right\|^{2}+\sum_{i \in I}\left\|\Theta_{i} \tilde{S}_{J^{c}} f\right\|^{2}=\sum_{i \in J^{c}}\left\|\Theta_{i} f\right\|^{2}+\sum_{i \in I}\left\|\Theta_{i} \tilde{S}_{J} f\right\|^{2} \tag{5.9}
\end{equation*}
$$

for all $f \in \mathcal{H}$. Replacing f by $S^{\frac{1}{2}} f$ in (5.9), we get (5.5). Applying (5.2) for the Parseval g-frame Θ, we get,

$$
\sum_{i \in J}\left\|\Theta_{i} f\right\|^{2}+\left\|\tilde{S}_{J_{c}} f\right\|^{2} \geq \frac{3}{4}\|f\|^{2}, \quad \forall f \in \mathcal{H}
$$

Since $\langle S f, f\rangle \geq\left\|S^{-1}\right\|^{-1}\|f\|^{2}$, then replacing f by $S^{\frac{1}{2}} f$ in the last inequality, we get (5.6). To prove (5.7), it follows from (5.3) that $0 \leq \tilde{S}_{J}-\tilde{S}_{J}^{2} \leq \frac{1}{4} I$. Hence,

$$
0 \leq S^{-\frac{1}{2}}\left(S_{J}-S_{J} S^{-1} S_{J}\right) S^{-\frac{1}{2}} \leq \frac{1}{4} I
$$

which is equivalent to (5.7). Finally, we have from (5.4),

$$
\begin{equation*}
\frac{1}{2} I \leq \tilde{S}_{J}^{2}+\tilde{S}_{J^{c}}^{2} \leq \frac{3}{2} I \tag{5.10}
\end{equation*}
$$

Since $\tilde{S}_{J}=S^{-\frac{1}{2}} S_{J} S^{-\frac{1}{2}}$ and $\tilde{S}_{J^{c}}=S^{-\frac{1}{2}} S_{J^{c}} S^{-\frac{1}{2}}$, then we get (5.8) from (5.10).

Corollary 5.5. Let $\left\{f_{i}\right\}_{i \in I}$ be a Parseval frame of \mathcal{H}. Then, for any $J \subseteq I$ and all $f \in \mathcal{H}$, we have:

$$
\begin{array}{r}
0 \leq \sum_{i \in J}\left|\left\langle f, f_{i}\right\rangle\right|^{2}-\left\|\sum_{i \in J}\left\langle f, f_{i}\right\rangle f_{i}\right\|^{2} \leq \frac{1}{4}\|f\|^{2}, \\
\frac{1}{2}\|f\|^{2} \leq\left\|\sum_{i \in J}\left\langle f, f_{i}\right\rangle f_{i}\right\|^{2}+\left\|\sum_{i \in J^{c}}\left\langle f, f_{i}\right\rangle f_{i}\right\|^{2} \leq \frac{3}{2}\|f\|^{2} .
\end{array}
$$

Acknowledgments

The authors thank the referee(s) for a number of valuable suggestions on a previous version of this paper.

References

[1] A. Aldroubi, Portraits of frames, Proc. Amer. Math. Soc. 123 (1995) 1661-1668.
[2] R. Balan, Equivalence relations and distances between Hilbert frames, Proc. Amer. Math. Soc. 127 (1999) 2353-2366.
[3] R. Balan, P. G. Casazza, D. Edidin and G. Kutyniok, A new identity for Parseval frames, Proc. Amer. Math. Soc. 135 (2007) 1007-1015.
[4] O. Christensen, An Introduction to Frame and Riesz Bases, Birkhäuser, 2002.
[5] A. Najati, M.H. Faroughi and A. Rahimi, G-frames and stability of g-frames in Hilbert spaces, Methods of Functional Analysis and Topology, 14 (2008) 271-286.
[6] S. Wenchang, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322 (2006) 437-452.

Abbas Najati

Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, P. O. Box 179, Ardabil, Iran.

Email: a.nejati@yahoo.com, abbasnajati@yahoo.com

Asghar Rahimi

Faculty of Basic Sciences, Department of Mathematics, University of Maragheh, Maragheh, Iran.
Email: asgharrahimi@yahoo.com

