Bulletin of the Iranian Mathematical Society Vol. 35 No. 1 (2009), pp 97-109.

GENERALIZED FRAMES IN HILBERT SPACES

A. NAJATI* AND A. RAHIMI

Communicated by Heydar Radjavi

ABSTRACT. Here, we develop the generalized frame theory. We introduce two methods for generating g-frames of a Hilbert space \mathcal{H} . The first method uses bounded linear operators between Hilbert spaces. The second method uses bounded linear operators on ℓ_2 to generate g-frames of \mathcal{H} . We characterize all the bounded linear mappings that transform g-frames into other g-frames. We also characterize similar and unitary equivalent g-frames in term of the range of their linear analysis operators. Finally, we generalize the fundamental frame identity to g-frames and derive some new results.

1. Introduction

Through out this paper, \mathcal{H} and \mathcal{K} are separable Hilbert spaces and $\{\mathcal{H}_i : i \in I\}$ is a sequence of separable Hilbert spaces, where I is a subset of \mathbb{Z} . $\mathcal{L}(\mathcal{H}, \mathcal{H}_i)$ is the collection of all bounded linear operators from \mathcal{H} to \mathcal{H}_i , and $\mathbf{\Lambda} = \{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}, \mathbf{\Theta} = \{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}.$

 Λ is called a generalized frame or simply g-frame of the Hilbert space \mathcal{H} with respect to $\{\mathcal{H}_i : i \in I\}$ if for any vector $f \in \mathcal{H}$,

(1.1)
$$A\|f\|^2 \le \sum_{i \in I} \|\Lambda_i f\|^2 \le B\|f\|^2,$$

MSC(2000): Primary: 41A58; Secondary: 42C15

Keywords: Frames, g-frames, g-Riesz bases, g-orthonormal bases. Received: 11 February 2007, Accepted: 12 June 2008

^{*}Corresponding author

^{© 2009} Iranian Mathematical Society.

⁹⁷

where the *g*-frame bounds A and B are positive constants. Λ is called a Parseval *g*-frame of \mathcal{H} with respect to $\{\mathcal{H}_i : i \in I\}$ if A = B = 1 in (1.1). We say a sequence $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{K}) : i \in I\}$ is a *g*-frame of \mathcal{H} with respect to \mathcal{K} whenever $\mathcal{H}_i = \mathcal{K}$, for each $i \in I$. We also simply say a *g*-frame for \mathcal{H} whenever the space sequence $\{\mathcal{H}_i : i \in I\}$ is clear. This notation has been introduced by W. Sun in [6]. It is an extension of frames that conclude all previous extensions of frames. Specially, if Λ is a *g*-frame of \mathcal{H} , then any vector $f \in \mathcal{H}$ can be represented as [6]:

(1.2)
$$f = \sum_{i \in I} \Lambda_i^* \Lambda_i S^{-1} f,$$

where S^{-1} is the inverse of the positive linear operator S on \mathcal{H} , defined by:

(1.3)
$$Sf := \sum_{i \in I} \Lambda_i^* \Lambda_i f.$$

S is called the g-frame operator for Λ .

Definition 1.1. Let Λ be a g-frame of \mathcal{H} . A g-frame Θ of \mathcal{H} is called a dual g-frame of Λ if it satisfies:

$$f = \sum_{i \in I} \Lambda_i^* \Theta_i f, \quad \forall f \in \mathcal{H}.$$

It is easy to show that if Θ is a dual *g*-frame of Λ , then Λ will be a dual *g*-frame of Θ .

Let Λ be a g-frame of \mathcal{H} with g-frame operator S. Then, (1.2) shows that $\{\Lambda_i S^{-1} \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a dual g-frame of Λ . $\{\Lambda_i S^{-1} \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is called *canonical dual g*-frame of Λ . Among all dual g-frames of Λ , the canonical dual g-frame has the following property [6].

Proposition 1.2. Let Λ be a g-frame of \mathcal{H} and $\Lambda_i^{\circ} = \Lambda_i S^{-1}$, for all $i \in I$. Then, for any $g_i \in \mathcal{H}_i$ satisfying $f = \sum_{i \in I} \Lambda_i^* g_i$, we have,

$$\sum_{i \in I} \|g_i\|^2 = \sum_{i \in I} \|\Lambda_i^{\circ} f\|^2 + \sum_{i \in I} \|g_i - \Lambda_i^{\circ} f\|^2.$$

2. Mapping from \mathcal{H} to \mathcal{K} for the construction of *g*-frames

For a given g-frame Λ of \mathcal{H} , we will obtain g-frames of \mathcal{K} . One approach is to construct a sequence $\{\Theta_i = \Lambda_i U^* \in \mathcal{L}(\mathcal{K}, \mathcal{H}_i) : i \in I\},\$

where U is a bounded linear operator from \mathcal{H} to \mathcal{K} . The following theorem gives us a necessary and sufficient condition for $\{\Theta_i = \Lambda_i U^* \in \mathcal{L}(\mathcal{K}, \mathcal{H}_i) : i \in I\}$ to be a g-frame of \mathcal{K} .

The following results generalize the results in Aldroubi [1] in the case of g-frames with analogous proofs, and we omit the details.

Theorem 2.1. Let Λ be a g-frame of \mathcal{H} with g-frame bounds A and B satisfying $0 < A \leq B < \infty$. If $U : \mathcal{H} \to \mathcal{K}$ is a bounded linear operator, then $\{\Lambda_i U^* \in \mathcal{L}(\mathcal{K}, \mathcal{H}_i) : i \in I\}$ is a g-frame of \mathcal{K} if and only if there exists $\delta > 0$ such that for any $f \in \mathcal{K}$, $||U^*f|| \geq \delta ||f||$.

Corollary 2.2. Let Λ be a g-frame of \mathcal{H} with g-frame operator S. If $K \subseteq \mathcal{H}$ is a closed subspace and if $P : \mathcal{H} \to K$ is the orthogonal projection, then $\{\Lambda_i P \in \mathcal{L}(K, \mathcal{H}_i) : i \in I\}$ and $\{\Lambda_i S^{-1} P \in \mathcal{L}(K, \mathcal{H}_i) : i \in I\}$ are dual g-frames of K. Moreover, the g-frame bounds A and B of Λ are also g-frame bounds for $\{\Lambda_i P \in \mathcal{L}(K, \mathcal{H}_i) : i \in I\}$.

Corollary 2.3. Let Λ be a g-frame for \mathcal{H} with g-frame bounds satisfying $0 < A \leq B < \infty$. If $U : \mathcal{H} \to \mathcal{K}$ is co-isometry, then $\{\Lambda_i U^* \in \mathcal{L}(\mathcal{K}, \mathcal{H}_i) : i \in I\}$ is a g-frame for \mathcal{K} with the same bounds.

3. Mapping on ℓ_2 for the construction of g-frames of \mathcal{H}

Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{K}) : i \in I\}$ be a g-frame of \mathcal{H} . We want to know which conditions on the numbers $(u_{ij})_{i,j\in I}$ will imply that the linear operators,

(3.1)
$$\Theta_i : \mathcal{H} \to \mathcal{K}, \quad \Theta_i f = \sum_{j \in I} u_{ij} \Lambda_j f, \quad \forall i \in I,$$

are well defined and constitute a g-frame for \mathcal{H} . Aldroubi in [1] has answered this question about frames.

Notation 3.1. Let us define,

$$L^{2}(\mathcal{H}, I) = \left\{ \{f_{i}\}_{i \in I} : f_{i} \in \mathcal{H} \quad \text{and} \quad \sum_{i \in I} \|f_{i}\|^{2} < \infty \right\},\$$

with the inner product given by $\langle \{f_i\}_{i \in I}, \{g_i\}_{i \in I} \rangle = \sum_{i \in I} \langle f_i, g_i \rangle$. It is clear that $L^2(\mathcal{H}, I)$ is a separable Hilbert space with respect to the pointwise operations.

Definition 3.2. Let Λ be a *g*-frame for \mathcal{H} . The *synthesis operator* for Λ is the linear operator,

$$T_{\mathbf{\Lambda}}: \Big(\sum_{i\in I}\bigoplus \mathcal{H}_i\Big)_{\ell_2} \to \mathcal{H}, \quad T_{\mathbf{\Lambda}}(\{f_i\}_{i\in I}) = \sum_{i\in I} \Lambda_i^*(f_i).$$

We call the adjoint $T^*_{\mathbf{\Lambda}}$ of the synthesis operator, the *analysis operator*. The analysis operator is the linear operator,

$$T^*_{\mathbf{\Lambda}}: \mathcal{H} \to \Big(\sum_{i \in I} \bigoplus \mathcal{H}_i\Big)_{\ell_2}, \quad T^*_{\mathbf{\Lambda}}(f) = \{\Lambda_i f\}_{i \in I}.$$

Throughout this paper, for a given g-frame Λ of \mathcal{H} , we denote by T_{Λ} and T^*_{Λ} , respectively, the synthesis and analysis operators for Λ .

The following proposition is similar to a result of [1] with an analogous proof, and we omit the details.

Proposition 3.3. Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{K}) : i \in I\}$ be a g-frame of \mathcal{H} and assume that the bi-infinite matrix $U = (u_{ij})_{i,j\in I}$ defines a bounded linear operator on $L^2(\mathcal{K}, I)$. Then, the linear operators $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{K}) : i \in I\}$ in (3.1) are well defined and constitute a g-frame for \mathcal{H} if and only if there exists a constant $\delta > 0$ such that

$$||Ux||_2^2 \ge \delta ||x||_2^2, \quad \forall x \in \mathcal{R}_{T^*_{\Lambda}},$$

where T_{Λ} is the synthesis operator of $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{K}) : i \in I\}$.

The condition (3.2) can also be written as:

$$\sum_{i \in I} \left\| \sum_{j \in J} u_{ij} \Lambda_j f \right\|^2 \ge \delta \sum_{j \in J} \|\Lambda_j f\|^2, \quad \forall f \in \mathcal{H}.$$

The proof of the next proposition is a modification of the analogous proof for frames [see 4, Prop. 5.5.8].

Proposition 3.4. Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{K}) : i \in I\}$ be a g-frame of \mathcal{H} with g-frame bounds A and B. If the numbers $(u_{ij})_{i,j\in I}$ satisfy the two

conditions,

$$b := \sup_{k \in I} \sum_{j \in I} \left| \sum_{i \in I} u_{ik} \overline{u_{ij}} \right| < \infty,$$
$$a := \inf_{k \in I} \left(\sum_{i \in I} |u_{ik}|^2 - \sum_{j \neq k} \left| \sum_{i \in I} u_{ik} \overline{u_{ij}} \right| \right) > 0,$$

then $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{K}) : i \in I\}$ defined by (3.1) is a g-frame of \mathcal{H} with g-frame bounds aA and bB.

Proof. Let $f \in \mathcal{H}$. Then,

$$\sum_{i\in I} \left\| \sum_{j\in I} u_{ij}\Lambda_j f \right\|^2 = \sum_{i\in I} \left(\sum_{k\in I} \sum_{j\in I} u_{ij}\overline{u_{ik}} \langle \Lambda_j f, \Lambda_k f \rangle \right)$$
$$= \sum_{i\in I} \sum_{k\in I} |u_{ik}|^2 \|\Lambda_k f\|^2 + \sum_{i\in I} \sum_{k\in I} \sum_{j\neq k} u_{ij}\overline{u_{ik}} \langle \Lambda_j f, \Lambda_k f \rangle.$$

Let

$$(*) := \sum_{i \in I} \sum_{k \in I} \sum_{j \neq k} u_{ij} \overline{u_{ik}} \langle \Lambda_j f, \Lambda_k f \rangle.$$

Then, by Cauchy-Schwarz's inequality we get,

$$|(*)| \leq \sum_{k \in I} \sum_{j \neq k} \|\Lambda_k f\|^2 \Big| \sum_{i \in I} u_{ij} \overline{u_{ik}} \Big|.$$

Therefore,

$$\begin{split} \sum_{i \in I} \left\| \sum_{j \in I} u_{ij} \Lambda_j f \right\|^2 &\geq \sum_{i \in I} \sum_{k \in I} |u_{ik}|^2 \|\Lambda_k f\|^2 - |(*)| \\ &\geq \sum_{k \in I} \|\Lambda_k f\|^2 \left(\sum_{i \in I} |u_{ik}|^2 - \sum_{j \neq k} \left| \sum_{i \in I} u_{ik} \overline{u_{ij}} \right| \right) \\ &\geq aA \|f\|^2. \end{split}$$

For the upper g-frame bound we have,

$$\begin{split} \sum_{i \in I} \left\| \sum_{j \in I} u_{ij} \Lambda_j f \right\|^2 &\leq \sum_{i \in I} \sum_{k \in I} |u_{ik}|^2 \|\Lambda_k f\|^2 + |(*)| \\ &\leq \sum_{k \in I} \|\Lambda_k f\|^2 \left(\sum_{i \in I} |u_{ik}|^2 + \sum_{j \neq k} \left| \sum_{i \in I} u_{ik} \overline{u_{ij}} \right| \right) \\ &= \sum_{k \in I} \|\Lambda_k f\|^2 \sum_{j \in I} \left| \sum_{i \in I} u_{ik} \overline{u_{ij}} \right| \\ &\leq bB \|f\|^2. \end{split}$$

The converse of Proposition 3.3 is also true; i.e., any two g frames of \mathcal{H} are related by a linear operator U on $\left(\sum_{i\in I} \bigoplus \mathcal{H}_i\right)_{\ell_2}$ that satisfies condition (3.2).

Proposition 3.5. Let Λ and Θ be two g-frames for \mathcal{H} . Then, there is a bounded linear operator,

$$U: \left(\sum_{i\in I} \bigoplus \mathcal{H}_i\right)_{\ell_2} \to \left(\sum_{i\in I} \bigoplus \mathcal{H}_i\right)_{\ell_2},$$

such that for any $f \in \mathcal{H}$,

$$T_{\Theta}^* f = U T_{\Lambda}^* f.$$

Proof. Since Λ is a *g*-frame, then $X = T^*_{\Lambda}(\mathcal{H})$ is a closed subspace of $\left(\sum_{i \in I} \bigoplus \mathcal{H}_i\right)_{\ell_2}$. Therefore, $T^*_{\Lambda} : \mathcal{H} \to X$ is bijective and so it is invertible. By the open mapping Theorem, $(T^*_{\Lambda})^{-1}$ is bounded. Let $U_0 = T^*_{\Theta}(T^*_{\Lambda})^{-1} : X \to \left(\sum_{i \in I} \bigoplus \mathcal{H}_i\right)_{\ell_2}$. It is obvious that U_0 is bounded on X and we can extend it on $\left(\sum_{i \in I} \bigoplus \mathcal{H}_i\right)_{\ell_2}$ by:

$$U(x) := \begin{cases} U_0(x) & \text{if } x \in X \\ 0 & \text{if } x \in X^{\perp} \end{cases}$$

Then, for each $f \in \mathcal{H}$ we have,

$$UT^*_{\mathbf{\Lambda}}f = T^*_{\mathbf{\Theta}}(T^*_{\mathbf{\Lambda}})^{-1}T^*_{\mathbf{\Lambda}}f = T^*_{\mathbf{\Theta}}f.$$

4. Similar and unitary equivalence g-frames

The definitions of similar and unitary equivalent frames give rise to definitions of similar and unitary equivalent g-frames.

Definition 4.1. Let Λ and Θ be two *g*-frames of \mathcal{H} .

- (1) We say that Λ and Θ are *similar* if there is a bounded linear invertible operator $T : \mathcal{H} \to \mathcal{H}$ such that $\Theta_i = \Lambda_i T$, for all $i \in I$.
- (2) We say that Λ and Θ are unitary equivalent if there is a unitary linear operator $T : \mathcal{H} \to \mathcal{H}$ such that $\Theta_i = \Lambda_i T$, for all $i \in I$.
- (3) We say that Λ is *isometrically equivalent* to Θ if there is an isometric linear operator $T : \mathcal{H} \to \mathcal{H}$ such that $\Theta_i = \Lambda_i T$, for all $i \in I$.

The following proposition characterizes unitary equivalence Parseval g-frames. It generalizes a result of Balan[2] in the case of Parseval g-frames

Proposition 4.2. Let Λ and Θ be two Parseval g-frames of \mathcal{H} . Then, (i) $\mathcal{R}_{T_{\Theta}^*} \subseteq \mathcal{R}_{T_{\Lambda}^*}$ if and only if Λ is isometrically equivalent to Θ . Furthermore, if $U : \mathcal{H} \to \mathcal{H}$ is an isometry such that $\Theta_i = \Lambda_i U$, for $i \in I$, then,

(4.1)
$$\ker U^* = T_{\mathbf{\Lambda}} (\mathcal{R}_{T^*_{\mathbf{\Lambda}}} \cap (\mathcal{R}_{T^*_{\mathbf{\Lambda}}})^{\perp}).$$

(ii) $\mathcal{R}_{T^*_{\Theta}} = \mathcal{R}_{T^*_{\Lambda}}$ if and only if Λ and Θ are unitary equivalent.

Proof. (i) (Necessity). Suppose that $\mathcal{R}_{T_{\Theta}^*} \subseteq \mathcal{R}_{T_{\Lambda}^*}$. It is clear that $\mathcal{R}_{T_{\Theta}^*}$ and $\mathcal{R}_{T_{\Lambda}^*}$ are closed subspaces of $\left(\sum_{i \in I} \bigoplus \mathcal{H}_i\right)_{\ell_2}$. Let $P = T_{\Lambda}^* T_{\Lambda}$ and $Q = T_{\Theta}^* T_{\Theta}$. So, $\mathcal{R}_P = \mathcal{R}_{T_{\Lambda}^*}$ and $\mathcal{R}_Q = \mathcal{R}_{T_{\Theta}^*}$. Since Λ and Θ are Parseval g-frames of \mathcal{H} , then P and Q are orthogonal projections from $\left(\sum_{i \in I} \bigoplus \mathcal{H}_i\right)_{\ell_2}$ onto $\mathcal{R}_{T_{\Lambda}^*}$ and $\mathcal{R}_{T_{\Theta}^*}$, respectively. Let $U := T_{\Lambda} T_{\Theta}^* : \mathcal{H} \to \mathcal{H}$ and let $f \in \mathcal{H}$. Then,

$$U^*Uf = T_{\Theta}T^*_{\Lambda}T_{\Lambda}T^*_{\Theta}f = T_{\Theta}T^*_{\Theta}f = f.$$

Hence, U is an isometry. Also, $f = \sum_{i \in I} \Theta_i^* \Theta_i f$ and

$$U^*f = T_{\Theta}T^*_{\Lambda}f = T_{\Theta}(\{\Lambda_i f\}_{i \in I}) = \sum_{i \in I} \Theta^*_i \Lambda_i f.$$

So, $f = \sum_{i} \Theta_{i}^{*} \Lambda_{i} U f$. By Proposition 1.2, $\sum_{i \in I} \|\Lambda_i Uf\|^2 = \sum_{i \in I} \|\Theta_i f\|^2 + \sum_{i \in I} \|\Lambda_i Uf - \Theta_i f\|^2.$

Since $\sum_{i \in I} \|\Lambda_i U f\|^2 = \|Uf\|^2 = \|f\|^2$ and $\sum_{i \in I} \|\Theta_i f\|^2 = \|f\|^2$, then $\Lambda_i U f = \Theta_i f$, for any $i \in I$. Therefore, $\Lambda_i U = \Theta_i$ and consequently $T^*_{\Lambda}U = T^*_{\Theta}.$

(Sufficiency). Suppose that there exists an isometry $U: \mathcal{H} \to \mathcal{H}$ such that $\Theta_i = \Lambda_i U$, for $i \in I$. Then, for any $f \in \mathcal{H}$,

$$T^*_{\Theta}f = \{\Theta_i f\}_{i \in I} = \{\Lambda_i Uf\}_{i \in I} = T^*_{\Lambda} Uf,$$

and so $T_{\Theta}^* = T_{\Lambda}^* U$. Therefore, $\mathcal{R}_{T_{\Theta}^*} \subseteq \mathcal{R}_{T_{\Lambda}^*}$. For the second part of (i), since T_{Λ}^* is isometric, then we have,

$$\mathcal{R}_{T^*_{\mathbf{\Lambda}}} = T^*_{\mathbf{\Lambda}}(\ker U^* \oplus \mathcal{R}_U) = T^*_{\mathbf{\Lambda}}(\ker U^*) \oplus \mathcal{R}_{T^*_{\mathbf{\Lambda}}U}$$

So, we have,

(4.2)
$$\ker U^* = T_{\mathbf{\Lambda}} (\mathcal{R}_{T^*_{\mathbf{\Lambda}}} \cap (\mathcal{R}_{T^*_{\mathbf{\Theta}}})^{\perp}).$$

(ii) If $\mathcal{R}_{T_{\Theta}^*} = \mathcal{R}_{T_{\Phi}^*}$, then by (4.2) we obtain that U is invertible. Since U is isometric, then U is unitary. Conversely, let $U: \mathcal{H} \to \mathcal{H}$ be a unitary linear operator such that $\Theta_i = \Lambda_i U$, for $i \in I$. Since $T^*_{\mathbf{A}} U = T^*_{\mathbf{\Theta}}$, then $\mathcal{R}_{T^*_{\Theta}} = \mathcal{R}_{T^*_{\Lambda}}.$

For the general case, we have the following proposition.

Proposition 4.3. Let Λ and Θ be two *q*-frames of \mathcal{H} . Then, (i) $\mathcal{R}_{T^*_{\Theta}} \subseteq \mathcal{R}_{T^*_{\Lambda}}$ if and only if there exists a bounded linear operator $U: \mathcal{H} \to \mathcal{H}$ such that $\Theta_i = \Lambda_i U$ for $i \in I$. Furthermore (4.1) holds. (ii) $\mathcal{R}_{T_{\Theta}^*} = \mathcal{R}_{T_{\Lambda}^*}$ if and only if Λ and Θ are similar.

Proof. Let us denote by S_{Λ} and S_{Θ} the *g*-frame operators of Λ and Θ , respectively.

(i) (*Necessity*). Suppose that $\mathcal{R}_{T_{\Theta}^*} \subseteq \mathcal{R}_{T_{\Lambda}^*}$. Since $\mathcal{R}_{T_{\Lambda}^*}$ and $\mathcal{R}_{T_{\Theta}^*}$ are closed subspaces of $\left(\sum_{i\in I} \bigoplus \mathcal{H}_i\right)_{\ell_2}$, then $\mathcal{R}_{T^*_{\mathbf{\Lambda}}} = [\ker T_{\mathbf{\Lambda}}]^{\perp}$ and $\mathcal{R}_{T^*_{\mathbf{\Theta}}} =$ $[\ker T_{\Theta}]^{\perp}$. Therefore, $\ker T_{\Lambda} \subseteq \ker T_{\Theta}$. Denote by $T_{\Lambda'}$ and $T_{\Theta'}$, the synthesis operators for Parseval g-frames $\mathbf{\Lambda}' := \{\Lambda'_i = \Lambda_i S_{\mathbf{\Lambda}}^{-\frac{1}{2}}\}_{i \in I}$ and $\Theta' := \{\Theta'_i = \Theta_i S_{\Theta}^{-\frac{1}{2}}\}_{i \in I}$, respectively. Then, $T_{\Theta'} = S_{\Theta}^{-\frac{1}{2}} T_{\Theta}$ and $T_{\Lambda'} =$ $S_{\mathbf{\Lambda}}^{-\frac{1}{2}}T_{\mathbf{\Lambda}}$. So, ker $T_{\mathbf{\Theta}'} = \ker T_{\mathbf{\Theta}}$ and ker $T_{\mathbf{\Lambda}'} = \ker T_{\mathbf{\Lambda}}$. By Proposition

4.2, there exists an isometry $V : \mathcal{H} \to \mathcal{H}$ such that $\Theta'_i = \Lambda'_i V$, for all $i \in I$. Hence $\Theta_i = \Lambda_i S_{\mathbf{\Lambda}}^{-\frac{1}{2}} V S_{\mathbf{\Theta}}^{\frac{1}{2}}$. Therefore, the result follows by letting $U = S_{\mathbf{\Lambda}}^{-\frac{1}{2}} V S_{\mathbf{\Theta}}^{\frac{1}{2}}.$

(Sufficiency.) It is straightforward.

For the second part of (i), by Proposition 4.2, we have,

$$\ker U^* = S_{\mathbf{\Lambda}}^{\frac{1}{2}} \ker V^* = S_{\mathbf{\Lambda}}^{\frac{1}{2}} T_{\mathbf{\Lambda}'}(\mathcal{R}_{T^*_{\mathbf{\Lambda}'}} \cap (\mathcal{R}_{T^*_{\mathbf{\Theta}'}})^{\perp}) = T_{\mathbf{\Lambda}}(\mathcal{R}_{T^*_{\mathbf{\Lambda}}} \cap (\mathcal{R}_{T^*_{\mathbf{\Theta}}})^{\perp}).$$

(ii) (*Necessity*). If $\mathcal{R}_{T_{\Theta}^*} = \mathcal{R}_{T_{\Lambda}^*}$, then $\mathcal{R}_{T_{\Theta'}^*} = \mathcal{R}_{T_{\Lambda'}^*}$. Therefore, by part (*ii*) of Proposition 4.2, V is unitary and consequently U^* is onto. Hence, $\ker U = [\mathcal{R}_{U^*}]^{\perp} = \{0\}.$ Also, by part (i), U is onto. Therefore, U is invertible.

(Sufficiency). It is straightforward.

Proposition 4.4. Let Λ be a g-frame of \mathcal{H} and let Θ be a sequence of bounded linear operators. Suppose that there exist constants $\lambda, \mu \in [0, 1)$ such that

(4.3)
$$\left\|\sum_{i\in I}\Theta_{i}^{*}f_{i}-\Lambda_{i}^{*}f_{i}\right\|\leq\lambda\left\|\sum_{i\in I}\Lambda_{i}^{*}f_{i}\right\|+\mu\left\|\sum_{i\in I}\Theta_{i}^{*}f_{i}\right\|,$$

for any $\{f_i\}_{i\in I} \in \left(\sum_{i\in I} \bigoplus \mathcal{H}_i\right)_{\ell_2}$. Then, (i) Θ is a g-frame of \mathcal{H} .

(ii) Λ and Θ are similar.

Proof. (*i*) See [5].

(ii) It is clear that ker $T_{\Theta} = \ker T_{\Lambda}$. Therefore, (ii) follows from Proposition 4.3.

5. g-frame identity

Here, we generalize the frame identity to the situation of g-frames. We also give some results related to *g*-frame identity. The following identity has been introduced in [3].

Theorem 5.1. Let $\{f_i\}_{i \in I}$ be a Parseval frame of \mathcal{H} . For any $J \subseteq I$ and all $f \in \mathcal{H}$, we have:

$$\sum_{i \in J} |\langle f, f_i \rangle|^2 - \left\| \sum_{i \in J} \langle f, f_i \rangle f_i \right\|^2 = \sum_{i \in J^c} |\langle f, f_i \rangle|^2 - \left\| \sum_{i \in J^c} \langle f, f_i \rangle f_i \right\|^2.$$

Let Λ be a g-frame of \mathcal{H} . For any $J \subseteq I$, let $S_J : \mathcal{H} \to \mathcal{H}$ be a linear operator defined by:

$$S_J(f) = \sum_{i \in J} \Lambda_i^* \Lambda_i f, \quad \forall f \in \mathcal{H}.$$

We begin with the following key lemma.

Lemma 5.2. Suppose that $T : \mathcal{H} \to \mathcal{H}$ is a bounded and self-adjoint linear operator. Let $a, b, c \in \mathbb{R}$ and $U = aT^2 + bT + cI$. (i) If a > 0, then

$$\inf_{\|f\|=1} \langle Uf, f\rangle \geq \frac{4ac-b^2}{4a}.$$

(ii) If a < 0, then

$$\sup_{\|f\|=1} \langle Uf, f \rangle \le \frac{4ac - b^2}{4a}.$$

Proof. (i) By elementary computations, we have,

 $\|$

$$U = a\left(T + \frac{b}{2a}I\right)^2 + \frac{4ac - b^2}{4a}I.$$

Since $(T + \frac{b}{2a}I)^2 \ge 0$, then

$$U \ge \frac{4ac - b^2}{4a}I$$

Then, for all $f \in \mathcal{H}$,

$$\langle Uf, f \rangle \ge \frac{4ac - b^2}{4a} \|f\|^2.$$

So,

$$\inf_{f \parallel = 1} \langle Uf, f \rangle \ge \frac{4ac - b^2}{4a}.$$

(ii) It follows from (i).

The following theorem generalizes Theorem 5.1 for Parseval g-frames.

Theorem 5.3. Let Λ be a Parseval g-frame of \mathcal{H} . Then, for any $J \subseteq I$ and all $f \in \mathcal{H}$, we have:

(5.1)
$$\sum_{i \in J} \|\Lambda_i f\|^2 + \|S_{J^c} f\|^2 = \sum_{i \in J^c} \|\Lambda_i f\|^2 + \|S_J f\|^2,$$

(5.2)
$$\sum_{i \in J} \|\Lambda_i f\|^2 + \|S_{J^c} f\|^2 \ge \frac{3}{4} \|f\|^2,$$

(5.3)
$$0 \le S_J - S_J^2 \le \frac{1}{4}I,$$

(5.4)
$$\frac{1}{2}I \le S_J^2 + S_{J^c}^2 \le \frac{3}{2}I.$$

Proof. Let $S : \mathcal{H} \to \mathcal{H}$ be the *g*-frame operator of Λ . Then, S = I and $f = S_J f + S_{J^c} f$, for all $f \in \mathcal{H}$. Let $f \in \mathcal{H}$. Then,

$$\sum_{i \in J} \|\Lambda_i f\|^2 + \|S_{J^c} f\|^2 = \langle S_J f, f \rangle + \langle S_{J^c} f, S_{J^c} f \rangle$$
$$= \left\langle (S_J + S_{J^c}^2) f, f \right\rangle$$
$$= \left\langle (I - S_J + S_J^2) f, f \right\rangle$$
$$= \left\langle (S_{J^c} + S_J^2) f, f \right\rangle$$
$$= \sum_{i \in J^c} \|\Lambda_i f\|^2 + \|S_J f\|^2.$$

This proves (5.1). Since $\sum_{i \in J} \|\Lambda_i f\|^2 + \|S_{J^c} f\|^2 = \langle (S_J^2 - S_J + I)f, f \rangle$, then the inequality (5.2) follows by Lemma 5.2. To prove (5.3), we have $S_J S_{J^c} = S_{J^c} S_J$, for all $J \subseteq I$. So $0 \leq S_J S_{J^c} = S_J - S_J^2$. Also, by Lemma 5.2 we have $S_J - S_J^2 \leq \frac{1}{4}I$.

To prove (5.4), we have $S_J^2 + S_{J^c}^2 = I - 2S_J S_{J^c} = 2S_J^2 - 2S_J + I$, for all $J \subseteq I$. By Lemma 5.2, we get that $S_J^2 + S_{J^c}^2 \ge \frac{1}{2}I$. Since $S_J - S_J^2 \ge 0$ (by (5.3)), then we have $S_J^2 + S_{J^c}^2 \le I + 2S_J - 2S_J^2$. So, the result follows from Lemma 5.2.

Corollary 5.4. Let Λ be a g-frame of \mathcal{H} with g-frame operator S. Then, for any $J \subseteq I$ and for all $f \in \mathcal{H}$, we have,

$$(5.5) \sum_{i \in J} \|\Lambda_i f\|^2 + \sum_{i \in I} \|\Lambda_i S^{-1} S_{J^c} f\|^2 = \sum_{i \in J^c} \|\Lambda_i f\|^2 + \sum_{i \in I} \|\Lambda_i S^{-1} S_J f\|^2,$$

$$(5.6) \sum_{i \in J} \|\Lambda_i f\|^2 + \sum_{i \in I} \|\Lambda_i S^{-1} S_{J^c} f\|^2 \ge \frac{3}{4} \langle Sf, f \rangle \ge \frac{3}{4} \|S^{-1}\|^{-1} \|f\|^2,$$

$$(5.7) \qquad 0 \le S_J - S_J S^{-1} S_J \le \frac{1}{4} S,$$

$$(5.8) \quad \frac{1}{2} S \le S_J S^{-1} S_J - S_{J^c} S^{-1} S_{J^c} \le \frac{3}{2} S.$$

Proof. Let $\Theta_i = \Lambda_i S^{-\frac{1}{2}}$, for each $i \in I$. Then, Θ is a Parseval *g*-frame of \mathcal{H} . For any $J \subseteq I$, let $\tilde{S}_J : \mathcal{H} \to \mathcal{H}$ be a linear operator defined by:

$$\tilde{S}_J f = \sum_{i \in J} \Theta_i^* \Theta_i f, \quad \forall f \in \mathcal{H}.$$

So, $\tilde{S}_J = S^{-\frac{1}{2}} S_J S^{-\frac{1}{2}}$. Hence, it follows from (5.1) of Theorem 5.3 that

(5.9)
$$\sum_{i \in J} \|\Theta_i f\|^2 + \sum_{i \in I} \|\Theta_i \tilde{S}_{J^c} f\|^2 = \sum_{i \in J^c} \|\Theta_i f\|^2 + \sum_{i \in I} \|\Theta_i \tilde{S}_J f\|^2,$$

for all $f \in \mathcal{H}$. Replacing f by $S^{\frac{1}{2}}f$ in (5.9), we get (5.5). Applying (5.2) for the Parseval g-frame Θ , we get,

$$\sum_{i\in J} \|\Theta_i f\|^2 + \|\tilde{S}_{J_c} f\|^2 \ge \frac{3}{4} \|f\|^2, \quad \forall f \in \mathcal{H}.$$

Since $\langle Sf, f \rangle \geq ||S^{-1}||^{-1} ||f||^2$, then replacing f by $S^{\frac{1}{2}}f$ in the last inequality, we get (5.6). To prove (5.7), it follows from (5.3) that $0 \leq \tilde{S}_J - \tilde{S}_J^2 \leq \frac{1}{4}I$. Hence,

$$0 \le S^{-\frac{1}{2}} (S_J - S_J S^{-1} S_J) S^{-\frac{1}{2}} \le \frac{1}{4} I,$$

which is equivalent to (5.7). Finally, we have from (5.4),

(5.10)
$$\frac{1}{2}I \le \tilde{S}_J^2 + \tilde{S}_{J^c}^2 \le \frac{3}{2}I.$$

Since $\tilde{S}_J = S^{-\frac{1}{2}} S_J S^{-\frac{1}{2}}$ and $\tilde{S}_{J^c} = S^{-\frac{1}{2}} S_{J^c} S^{-\frac{1}{2}}$, then we get (5.8) from (5.10).

Corollary 5.5. Let $\{f_i\}_{i \in I}$ be a Parseval frame of \mathcal{H} . Then, for any $J \subseteq I$ and all $f \in \mathcal{H}$, we have:

$$0 \leq \sum_{i \in J} |\langle f, f_i \rangle|^2 - \left\| \sum_{i \in J} \langle f, f_i \rangle f_i \right\|^2 \leq \frac{1}{4} \|f\|^2,$$
$$\frac{1}{2} \|f\|^2 \leq \left\| \sum_{i \in J} \langle f, f_i \rangle f_i \right\|^2 + \left\| \sum_{i \in J^c} \langle f, f_i \rangle f_i \right\|^2 \leq \frac{3}{2} \|f\|^2.$$

Acknowledgments

The authors thank the referee(s) for a number of valuable suggestions on a previous version of this paper.

References

- [1] A. Aldroubi, Portraits of frames, Proc. Amer. Math. Soc. 123 (1995) 1661–1668.
- [2] R. Balan, Equivalence relations and distances between Hilbert frames, Proc. Amer. Math. Soc. 127 (1999) 2353–2366.
- [3] R. Balan, P. G. Casazza, D. Edidin and G. Kutyniok, A new identity for Parseval frames, Proc. Amer. Math. Soc. 135 (2007) 1007–1015.
- [4] O. Christensen, An Introduction to Frame and Riesz Bases, Birkhäuser, 2002.
- [5] A. Najati, M.H. Faroughi and A. Rahimi, G-frames and stability of g-frames in Hilbert spaces, Methods of Functional Analysis and Topology, 14 (2008) 271–286.
- [6] S. Wenchang, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322 (2006) 437–452.

Abbas Najati

Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, P. O. Box 179, Ardabil, Iran.

Email: a.nejati@yahoo.com, abbasnajati@yahoo.com

Asghar Rahimi

Faculty of Basic Sciences, Department of Mathematics, University of Maragheh, Maragheh, Iran.

Email: asgharrahimi@yahoo.com