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Abstract. In this paper, we propose two preconditioned AOR it-
erative methods to solve systems of linear equations whose coef-
ficient matrices are Z-matrix. These methods can be considered
as improvements of two previously presented ones in the literature.
Finally some numerical experiments are given to show the effective-
ness of the proposed preconditioners.
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1. Introduction

Consider the system of linear equations

(1.1) Ax = b,

where A = (aij) ∈ Rn×n is nonsingular matrix and b ∈ Rn. A basic
iterative method to solve Eq. (1.1) can be written as

x(k+1) = M−1Nx(k) +M−1b, k = 0, 1, 2, . . . ,

in which A = M − N , where M,N ∈ Rn×n and M is nonsingular. It
is well-known that this iterative method converges to the solution of
Eq. (1.1) for every initial guess x0 if and only if ρ(M−1N) < 1, where
ρ(.) refers to the spectral radius of matrix. Let aii ̸= 0, i = 1, 2, . . . , n.
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Therefore, without loss of generality we can assume that aii = 1, i =
1, 2, . . . , n. In this case, we split A into

(1.2) A = I − L− U,

where I is the identity matrix, −L and −U are strictly lower and strictly
upper triangular matrices, respectively. The accelerated overrelaxation
(AOR) iterative method to solve Eq. (1.1) is defined by [5]

x(k+1) = Lr,wx
(k) + w(I − rL)−1b,

in which Lr,w = (I − rL)−1[(1− w)I + (w − r)L+ wU ], where w and r
are real parameters and w ̸= 0. For certain values of the parameters w
and r the AOR iterative method results in the Jacobi, Gauss-Seidel and
the SOR methods [5].

To improve the convergence rate of an iterative method one may apply
it to the preconditioned linear system PAx = Pb, where the matrix P is
called a preconditioner. Several preconditioners have been presented for
the basic iterative methods by many authors [2-4, 6-18]. In this paper,
we consider the preconditioners Pα,β = I + Rα,β and P ∗

α,β = I + Cα,β,
where I is the identity matrix and

Rα,β =


0 0 . . . 0 0
0 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 0
−αan1 + β −αan2 + β . . . −αann−1 + β 0

 ,

Cα,β =


0 0 . . . 0

−αa21 + β 0 . . . 0
−αa31 + β 0 . . . 0

...
...

...
...

−αan1 + β 0 . . . 0

 ,

in which α and β are nonnegative real numbers. In [11], Milaszewicz
has applied the preconditioner P ∗

1,0 to the Gauss-Seidel method. Then,
Morimoto et al. have used the preconditioner P1,0 to the Gauss-Seidel
method [12]. In this paper, we apply the preconditioners Pα,β and P ∗

α,β

to the AOR iterative method and give some comparison theorems.
For convenience, we first present some notations, definitions and pre-

liminaries which will be used in this paper. A matrix A = (aij) ∈ Rn×n

is said to be nonnegative and denoted by A ≥ 0 if aij ≥ 0 for all i and
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j and A is said to be positive and denoted by A ≫ 0 if aij > 0 for all i
and j.

In the sequel, we recall some definitions, lemmas and theorems for
later use.

Theorem 1.1. [1] (Perron-Frobenius) If A ≥ 0, then ρ(A) is an eigen-
value of A, and corresponding to ρ(A), A has a nonnegative eigenvector
(Perron vector).

Definition 1.2. A matrix A = (aij) ∈ Rn×n is a Z-matrix if aij ≤ 0 for
i ̸= j.

Definition 1.3. A Z-matrix A is said to be an M-matrix if A is non-
singular and A−1 ≥ 0.

Definition 1.4. Let A ∈ Rn×n. The representation A = M − N is
called a splitting of A if M is nonsingular. The splitting A = M −N is
called
(a) convergent if ρ(M−1N) < 1;
(b) an M-splitting of A if M is an M-matrix and N ≥ 0.

Theorem 1.5. [16, Lemma 1.4] Let A be a nonnegative matrix.
(a) If αx ≤ Ax for some nonnegative vector x ̸= 0, then α ≤ ρ(A).
(b) If Ax ≤ βx for some positive vector x, then ρ(A) ≤ β. Moreover, if
A is irreducible and if 0 ̸= αx ≤ Ax ≤ βx for some nonnegative vector
x, then α ≤ ρ(A) ≤ β and x is positive.

Lemma 1.6. [16, Lemma 1.5 ] Let A = M −N be an M-splitting of A.
Then ρ(M−1N) < 1 if and only if A is an M-matrix.

Lemma 1.7. [16, Lemma 1.6 ] Let A be a Z-matrix. Then, A is an
M-matrix if and only if there is a positive vector x such that Ax ≫ 0.

Lemma 1.8. [15, Lemma 2.2 ] Let A = (aij) ∈ Rn×n be an M-matrix.
Then, there exists ϵ0 > 0 such that, for any 0 < ϵ ≤ ϵ0, A(ϵ) = (aij(ϵ))
is also an M-matrix, where

aij(ϵ) =

{
aij , if aij ̸= 0,
−ϵ, if aij = 0.

2. Preconditioned AOR iterative method with Pα,β

For the sake of simplicity, let R = R1,0, Rα = Rα,0, P = I + R and
Pα = I + Rα. We first consider the preconditioner Pα to the system
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(1.1), where α is a nonnegative real number. In this case, the coefficient
matrix of the preconditioned system can be written as

A = (I +Rα)A = I − L− U +Rα −RαL−RαU = D − L− U,

where D, L and U are diagonal, strictly lower triangular and strictly
upper triangular matrices, respectively, i.e.,

(2.1) D = I − E(α), L = L−Rα +RαL+ F (α), U = U,

in which E(α) and F (α) are the diagonal and strictly lower triangular
parts of RαU , respectively. If D−rL is nonsingular, the iteration matrix
of the AOR iterative method to solve the preconditioned system PαAx =
Pαb is of the form

Lr,w = (D − rL)−1[(1− w)D + (w − r)L+ wU ].

Let β ≥ 0. If we apply the preconditioner Pα,β to the system (1.1), then
the coefficient matrix of the system can be written as

A′ = (I +Rα,β)A = I −L−U +Rα,β −Rα,βL−Rα,βU = D′ −L′ −U ′,

where D′, L′ and U ′, are the diagonal, strictly lower triangular and
strictly upper triangular matrices, respectively. Assuming Rβ = Rα,β −
Rα, it can be seen that

(2.2) D′ = D − E(β), L′ = L−Rβ +RβL+ F (β), U ′ = U,

where E(β) and F (β) are the diagonal and strictly lower parts of RβU ,
respectively. Now, if D′ − rL′ is nonsingular, then the iteration matrix
of the AOR iterative method with the preconditioner Pα,β is of the form

L′
r,w = (D′ − rL′)−1[(1− w)D′ + (w − r)L′ + wU ′].

Theorem 2.1. Let A be an M-matrix. If

(1− α)anj − α

n−1∑
k=1
k ̸=j

ankakj + β(1 +

n−1∑
k=1
k ̸=j

akj) ≤ 0,

for j = 1, . . . , n, then A′ is an M-matrix, too.

Proof. The entries a′ij of A′ = (a′ij) are given by the expressions

a′ij =

{
aij , 1 ≤ i < n− 1, 1 ≤ j ≤ n,

anj −
∑n−1

k=1(αank − β)akj , i = n, 1 ≤ j ≤ n.
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Since A is a Z-matrix, we have a′ij ≤ 0 for i ̸= n. Also, for i = n we see
that

aij = (1− α)anj − α

n−1∑
k=1
k ̸=j

ankakj + β(1 +

n−1∑
k=1
k ̸=j

akj) ≤ 0.

Therefore, A′ is a Z-matrix. By Lemma 1.7 there is a positive vector x
such that Ax ≫ 0. On the other hand, A′x = (I+Rα,β)Ax ≫ 0. Again,
by Lemma 1.7 we conclude that the matrix A′ is an M-matrix. □
Remark 2.2. Let A be an M-matrix. If

(1− α)anj − α

n−1∑
k=1
k ̸=j

ankakj ≤ 0,

for 1 ≤ j ≤ n, then A is an M-matrix, too.

Proof. It is enough to set β = 0 in Theorem 2.1. □
Theorem 2.3. Let A = (aij) ∈ Rn×n be a nonsingular Z-matrix, 0 ≤
r ≤ w ≤ 1, w ̸= 0 and

(1− α)anj − α

n−1∑
k=1
k ̸=j

ankakj + β(1 +

n−1∑
k=1
k ̸=j

akj) ≤ 0,

for 1 ≤ j ≤ n.
(1) If ρ(Lr,w) < 1, then ρ(L′

r,w) ≤ ρ(Lr,w) < 1.

(2) If ρ(Lr,w) > 1 and 1 −
∑n−1

k=1(αank − β)akn > 0, then ρ(L′
r,w) ≥

ρ(Lr,w) > 1.

Proof. See Theorem 2.6 in [15]. □
Remark 2.4. Let A = (aij) ∈ Rn×n be a nonsingular Z-matrix, 0 ≤
r ≤ w ≤ 1, w ̸= 0 and

(1− α)anj − α
n−1∑
k=1
k ̸=j

ankakj ≤ 0,

for 1 ≤ j ≤ n.
(1) If ρ(Lr,w) < 1, then ρ(Lr,w) ≤ ρ(Lr,w) < 1.

(2) If ρ(Lr,w) > 1 and 1−α
∑n−1

k=1 ankakn > 0, then ρ(Lr,w) ≥ ρ(Lr,w) >
1.

Proof. It is enough to set β = 0 in Theorem 2.3. □
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In the sequel, we present a comparison theorem concerning the pro-
posed preconditioners.

Theorem 2.5. Let A = (aij) ∈ Rn×n be a nonsingular Z-matrix, 0 ≤
r ≤ w ≤ 1, w ̸= 0 and

(1−α)anj−α
n−1∑
k=1
k ̸=j

ankakj+β(1+
n−1∑
k=1
k ̸=j

akj) ≤ 0, (1−α)anj−α
n−1∑
k=1
k ̸=j

ankakj ≤ 0,

for 1 ≤ j ≤ n.
(1) If ρ(Lr,w) < 1, then ρ(L′

r,w) ≤ ρ(Lr,w) < 1.

(2) If ρ(Lr,w) > 1 and 1 −
∑n−1

k=1(αank − β)akn > 0, then ρ(L′
r,w) ≥

ρ(Lr,w) > 1.

Proof. Assume that

A = M −N =
1

w
(I − rL)− 1

w
[(1− w)I + (w − r)L+ wU ],

A = M −N =
1

w
(D − rL)− 1

w
[(1− w)D + (w − r)L+ wU ].

It is easy to see that under the assumptions of the theorem A = M −N
is an M-splitting. We consider the following two cases.
Case I : If ρ(Lr,w) < 1, then by Lemma 1.6, A is an M-matrix, and

therefore by Remark 2.2 A is an M-matrix as well. Hence, D > 0, L ≥
0, U ≥ 0 and we see that A = M −N is an M-splitting and as a result
by Lemma 1.6 we have ρ(Lr,w) < 1. On the other hand, we have

Lr,w = (D − rL)−1[(1− w)D + (w − r)L+ wU ]

= (I − rD
−1

L)−1[(1− w)I + (w − r)D
−1

L+ wD
−1

U ]

= [ I + (rD
−1

L) + (rD
−1

L)2 + · · · ]
×[(1− w)I + (w − r)D

−1
L+ wD

−1
U ]

≥ [(1− w)I + (w − r)D
−1

L+ wD
−1

U ],(2.3)

which shows that the matrix Lr,w is nonnegative. By Theorem 1.1 there

is a nonnegative vector x such that Lr,wx = ρ(Lr,w)x. For the sake of

simplicity, let λ = ρ(Lr,w). Then

[(1− w)D + (w − r)L+ wU ]x = λ(D − rL)x,

and

(2.4) wU ′x = wUx = (λ− 1 + w)Dx+ (r − w − λr)Lx.



363 Hassani and Salkuyeh

We also have

λ(D′ − rL′)x = λ(1− r)D′x+ λr(D′ − L′)x

= λ(1− r)D′x+ λr[D − E(β)− L+Rβ −RβL− F (β)]x.(2.5)

By using Eqs. (2.1), (2.2), (2.4) and (2.5), we have

L′
r,wx− λx

= (D′ − rL′)−1[(1− w)D′ + (w − r)L′ + wU ′ − λ(D′ − rL′)]x

= (D′ − rL′)−1[(1− w)D′ + (w − r)L′ + (λ− 1 + w)D

+(r − w − λr)L− λ(1− r)D′ − λr(D − E(β)− L

+Rβ −RβL− F (β))]x

= (D′ − rL′)−1[(1− w − λ+ λr)D′ + λ(D − rL)− (1− w)D

+(w − r)(L′ − L)− λr(D − E(β)− L+Rβ −RβL− F (β))]x

= (D′ − rL′)−1[(1− w − λ+ λr)D′ + λ(D − rL)− (1− w)D

+(w − r)(D′ −D + E(β)−Rβ +RβL+ F (β))− λr(D − E(β)

−L+Rβ −RβL− F (β))]x

= (D′ − rL′)−1[(λ− 1)(1− r)(D −D′) + (w − r + λr)(E(β)−Rβ

+RβL+ F (β))]x

= (D′ − rL′)−1[(λ− 1)(1− r)(D −D′)

+(w − r + λr)(RβU +RβL−Rβ)]x

= (D′ − rL′)−1[(λ− 1)(1− r)(D −D′) + (r − λr)Rβ

+(λr − r)(RβU +RβL)− wRβ + wRβL+ wRβU ]x

= (D′ − rL′)−1[(λ− 1)(1− r)(D −D′) + (r − λr)Rβ

+(λr − r)(RβU +RβL)− wRβ + wRβL

+Rβ((λ− 1 + w)D + (r − w − λr)L)]x

= (D′ − rL′)−1[(λ− 1)(1− r)E(β)− r(λ− 1)Rβ + r(λ− 1)RβU

+(λ− 1)RβD + wRβD − wRβ + (w − r + λr)Rβ(L− L)]x.

Since RβE(α) = RβF (α) = RβRα = 0, D = I − E(α) and L − L =
Rα −RαL− F (α), we see that

(2.6) L′
r,wx−λx = (λ−1)(D′−rL′)−1[(1−r)E(β)+(1−r)Rβ+rRβU ].
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Let B = (1 − r)E(β) + (1 − r)Rβ + rRβU . Obviously, B ≥ 0. On the
other hand, by Theorem 2.1 A′ is also an M-matrix and therefore

(D′ − rL′)−1 ≥ 0.

Now, if A is an irreducible matrix, then by Eq. (2.3) we have

Lr,w ≥ (1− w)I + w(1− r)D
−1

L+ wD
−1

U.

This relation shows that if 0 ≤ r < 1 (note that w ̸= 0), then Lr,w is also
irreducible. Hence, by Lemma 4 in [15] we have λ > 0 and the Perron
vector x is positive. Now, from Eq. (2.6) we conclude that

L′
r,wx ≤ λx,

and by using Theorem 1.5 we get

ρ(L′
r,w) ≤ λ = ρ(Lr,w).

If r = 1, then w = r = 1 and

ρ(L′
1,1) = lim

r→1−
ρ(L′

r,1) ≤ lim
r→1−

ρ(Lr,1) = ρ(L1,1) < 1.

On the other hand, if A is a reducible matrix, then by Lemma 1.8 for
every small enough ϵ > 0 the matrix A(ϵ) is an irreducible M-matrix.
Hence, we have

ρ(L′
r,w) = lim

ϵ→0+
ρ(L′

r,w(ϵ)) ≤ lim
ϵ→0+

ρ(Lr,w(ϵ)) = ρ(Lr,w) < 1.

This completes the first part of the theorem.
Case II : Let ρ(Lr,w) > 1. By Remark (2.4), we have ρ(Lr,w) ≥ ρ(Lr,w) >

1. Then by the assumption 1−
∑n−1

k=1(αank − β)akn > 0 of the theorem
we see that A′ is a Z-matrix and therefore D′ − rL′ is an M-matrix and
by Eq. (2.6) and Theorem 1.5, we get

ρ(L′
r,w) ≥ ρ(Lr,w) > 1.

This proves the second part of the theorem. □

3. Preconditioned AOR iterative method with P ∗
α,β

For simplicity, we assume that C = C1,0, Cα = Cα,0, P
∗ = I +C and

P ∗
α = I + Cα. As we mentioned Milaszewicz in [11] applied precondi-

tioned Gauss-Seidel method in conjunction with the preconditioner P ∗
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to solve Eq. (1.1). We first consider the preconditioner P ∗
α. In this case,

Ã = P ∗
αA can be written as

Ã = I − L− U + Cα − CαU = D̃ − L̃− Ũ ,

where D̃, L̃ and Ũ are, respectively, diagonal, strictly lower triangular
and strictly upper triangular matrices and

(3.1) D̃ = I − E2(α), L̃ = L− Cα + F2(α), Ũ = U +G2(α),

in which E2(α), F2(α) and G2(α) are, respectively, diagonal, strictly
lower triangular and strictly upper triangular matrices such that

CαU = G2(α) + E2(α) + F2(α).

If D̃ − rL̃ is nonsingular, then the iteration matrix of the AOR method
with the preconditioner P ∗

α can be expressed as

L̃r,w = (D̃ − rL̃)−1[(1− w)D̃ + (w − r)L̃+ wŨ ].

Now, we use the preconditioner P ∗
α,β. In this case, Â = P ∗

α,βA can be
decomposed as

Â = I − L− U + Cα,β − Cα,βU = D̂ − L̂− Û ,

where D̂, L̂ and Û are, respectively, diagonal, strictly lower triangular
and strictly upper triangular matrices. If we assume Cβ = Cα,β − Cα,
then

(3.2) D̂ = D̃ − E2(β), L̂ = L̃− Cβ + F2(β), Û = Ũ +G2(β),

in which E2(β), F2(β) and G2(β) are, respectively, diagonal, strictly
lower triangular and strictly upper triangular matrices such that

CβU = G2(β) + E2(β) + F2(β).

If (D̂−rL̂) is nonsigular, then the iteration matrix of the AOR iterative
method with the preconditioner P ∗

α,β can be written as

L̂r,w = (D̂ − rL̂)−1[(1− w)D̂ + (w − r)L̂+ wÛ ].

Theorem 3.1. Let A be an M-matrix. If

(1− α)ai1 + β ≤ 0,

for 2 ≤ i ≤ n, then Â is an M-matrix, too.
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Proof. Let A be an M-matrix and Â = (âij). Then, we have

âij = aij + (−αai1 + β)a1j = aij − αai1a1j + βa1j ,

for 2 ≤ i ≤ n. Since A is a Z-matrix, obviously we have âij ≤ 0, for
i ̸= j and j ̸= 1. For j = 1, we see that

âij = (1− α)ai1 + β ≤ 0.

Hence, Â is a Z-matrix. By Lemma 1.7, there exists a positive vector x

such that Ax ≫ 0. On the other hand, we have Âx = (I+Cα,β)Ax ≫ 0.

Therefore, by Lemma 1.7, Â is also an M-matrix. □
Remark 3.2. Let A be an M-matrix. If

(1− α)ai1 ≤ 0,

for 2 ≤ i ≤ n, then Ã is an M-matrix, too.

Proof. It is enough to set β = 0 in Theorem 3.1. □
Theorem 3.3. Let A = (aij) ∈ Rn×n be a nonsingular Z-matrix, 0 ≤
r ≤ w ≤ 1, w ̸= 0 and

(1− α)ai1 + β ≤ 0,

for 2 ≤ i ≤ n.

(1) If ρ(Lr,w) < 1, then ρ(L̂r,w) ≤ ρ(Lr,w) < 1.

(2) If ρ(Lr,w) > 1 and 1−αai1a1i+βa1i > 0, then ρ(L̂r,w) ≥ ρ(Lr,w) > 1.

Proof. See Theorem 2.6 in [15]. □
Remark 3.4. Let A = (aij) ∈ Rn×n be a nonsingular Z-matrix, 0 ≤
r ≤ w ≤ 1, w ̸= 0 and

(1− α)ai1 ≤ 0,

for 2 ≤ i ≤ n.

(1) If ρ(Lr,w) < 1, then ρ(L̃r,w) ≤ ρ(Lr,w) < 1.

(2) If ρ(Lr,w) > 1 and 1− αai1a1i > 0, then ρ(L̃r,w) ≥ ρ(Lr,w) > 1.

Proof. It is enough to set β = 0 in Theorem 3.3. □
In continuation, we present a comparison theorem concerning the pro-

posed preconditioners.

Theorem 3.5. Let A = (aij) ∈ Rn×n be a nonsingular Z-matrix, 0 ≤
r ≤ w ≤ 1, w ̸= 0 and

(1− α)ai1 + β ≤ 0,
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for 2 ≤ i ≤ n.

(1) If ρ(Lr,w) < 1, then ρ(L̂r,w) ≤ ρ(L̃r,w) < 1.

(2) If ρ(Lr,w) > 1 and 1−αai1a1i+βa1i > 0, then ρ(L̂r,w) ≥ ρ(L̃r,w) > 1.

Proof. The proof is quite similar to that of Theorem 2.5 and is omitted
here. □

4. Numerical examples

In this section, to evaluate the efficiency of the preconditioners pre-
sented in this paper we compare the spectral radii of the iteration matrix
of preconditioned AOR iterative methods in conjunction with the pro-
posed preconditioners for two matrices.

Example 4.1. In this example, we consider

A =


1 −0.1 −0.1 −0.1

−0.5 1 0 −0.1
−0.5 0 1 −0.4
−0.7 −0.2 −0.4 1

 ,

as the coefficient matrix of the system (1.1). For w = 0.8, α = 0.6,
β = 0.1 and r = 0.1, 0.2, . . . , 0.9, it is easy to verify that all the assump-
tions of Theorems 2.5 and 3.5 are satisfied. Hence, we expect that Pα,β

(resp. P ∗
α,β) is superior to Pα (resp. P ∗

α) which is itself better than the
preconditioner P = I. To confirm this claim we report the spectral radii
of the iteration matrix of the preconditioned AOR methods with the
proposed preconditioners in Table 1. As we observe, the results con-
firm the claim. For more investigation, let w = 0.7, α = 0.3, β = 0.15
and r = 0.1, 0.2, . . . , 0.9. We report the results in Table 2. As we see,
the results give the same conclusion as Table 1.

Example 4.2. Let

A =


1 −0.5 −0.2 0 −1

−0.2 1 0 −0.2 −0.2
−0.2 −0.2 1 −0.2 −0.3
−0.4 0 −0.1 1 −0.1
−0.3 −0.1 −0.1 −0.1 1

 .

Similar to the previous example we present the spectral radii of the
iteration matrix of the preconditioned AOR methods with the proposed



Improvements of two preconditioned AOR iterative methods 368

Table 1. Comparison of spectral radii of the AOR
method with preconditioners P = I, Pα, Pα,β, P

∗
α, P

∗
α,β

with w = 0.8, α = 0.6 and β = 0.1 for different values of
r for Example 4.1.

r P = I P = Pα P = Pα,β P = P ∗
α P = P ∗

α,β

0.1 0.6873 0.6125 0.5697 0.6375 0.6188
0.2 0.6760 0.6004 0.5579 0.6255 0.6066
0.3 0.6636 0.5871 0.5450 0.6123 0.5933
0.4 0.6498 0.5725 0.5309 0.5977 0.5787
0.5 0.6344 0.5563 0.5152 0.5815 0.5623
0.6 0.6169 0.5379 0.4976 0.5631 0.5438
0.7 0.5968 0.5167 0.4773 0.5419 0.5224
0.8 0.5731 0.4918 0.4535 0.5167 0.4971
0.9 0.5440 0.4609 0.4240 0.4856 0.4656

Table 2. Comparison of spectral radii of the AOR
method with preconditioners P = I, Pα, Pα,β, P

∗
α, P

∗
α,β

with w = 0.7, α = 0.3 and β = 0.15 for different val-
ues of r for Example 4.1.

r P = I P = Pα P = Pα,β P = P ∗
α P = P ∗

α,β

0.1 0.7568 0.7311 0.6909 0.7393 0.7214
0.2 0.7480 0.7219 0.6818 0.7303 0.7122
0.3 0.7383 0.7119 0.6719 0.7203 0.7020
0.4 0.7276 0.7008 0.6610 0.7093 0.6909
0.5 0.7156 0.6884 0.6488 0.6970 0.6784
0.6 0.7021 0.6744 0.6352 0.6830 0.6643
0.7 0.6864 0.6583 0.6195 0.6669 0.6480
0.8 0.6679 0.6392 0.6011 0.6480 0.6288
0.9 0.6453 0.6158 0.5784 0.6246 0.6051

preconditioners in Tables 3 and 4 for two sets of parameters. In the first
set we consider w = 0.9, α = 0.3, β = 0.1 and r = 0.1, 0.2, . . . , 0.9 and
for the second set w = 0.9, α = 0.4, β = 0.12 and r = 0.1, 0.2, . . . , 0.9.
Both of Tables 3 and 4 show that the preconditioner Pα,β (resp. P ∗

α,β )

is better than Pα (resp. P ∗
α) which is itself better than the preconditioner

P = I.
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Table 3. Comparison of spectral radii of the AOR
method with preconditioners P = I, Pα, Pα,β, P

∗
α, P

∗
α,β

with w = 0.9, α = 0.3 and β = 0.1 for different values of
r for Example 4.1.

r P = I P = Pα P = Pα,β P = P ∗
α P = P ∗

α,β

0.1 0.8971 0.8846 0.8523 0.8818 0.8554
0.2 0.8920 0.8789 0.8457 0.8761 0.8487
0.3 0.8864 0.8727 0.8385 0.8698 0.8414
0.4 0.8801 0.8657 0.8304 0.8627 0.8332
0.5 0.8730 0.8578 0.8213 0.8547 0.8240
0.6 0.8649 0.8488 0.8111 0.8456 0.8135
0.7 0.8556 0.8384 0.7993 0.8352 0.8015
0.8 0.8447 0.8262 0.7856 0.8230 0.7875
0.9 0.8317 0.8116 0.7694 0.8084 0.7708

Table 4. Comparison of spectral radii of the AOR
method with preconditioners P = I, Pα, Pα,β, P

∗
α, P

∗
α,β

with w = 0.9, α = 0.4 and β = 0.12 for different val-
ues of r for Example 4.1.

r P = I P = Pα P = Pα,β P = P ∗
α P = P ∗

α,β

0.1 0.8971 0.8797 0.8342 0.8756 0.8376
0.2 0.8920 0.8738 0.8271 0.8696 0.8304
0.3 0.8864 0.8673 0.8193 0.8630 0.8224
0.4 0.8801 0.8601 0.8106 0.8556 0.8135
0.5 0.8730 0.8518 0.8009 0.8473 0.8035
0.6 0.8649 0.8425 0.7900 0.8378 0.7921
0.7 0.8556 0.8317 0.7774 0.8269 0.7791
0.8 0.8447 0.8190 0.7628 0.8142 0.7640
0.9 0.8317 0.8039 0.7456 0.7990 0.7459

5. Conclusion

We have improved two known preconditioned AOR iterative methods.
Some comparison theorems have been given to show the improvement of
the preconditioners. Some numerical examples have been presented to
validate the presented theoretical results. Numerical results show that
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the proposed preconditioners are more effective than the primary version
of them.
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