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Abstract. In this paper, making use of a new identity, we es-
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1. Introduction and preliminaries

Let f : I ⊂ R→ R be a differentiable mapping on I◦, the interior of
I, and let a, b ∈ I◦ with a < b. If |f ′(x)| ≤ M for all x ∈ [a, b], then the
following inequalitiy holds:

(1.1)

∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(u)du

∣∣∣∣∣∣ ≤ M

b− a

[
(x− a)2 + (b− x)2

2

]
.

This result is well known in the literature as the Ostrowski’s inequal-
ity [10, p. 469]. For recent results and generalizations concerning Os-
trowski’s inequality see [1], [5] and the references therein.

Definition 1.1. The function f : [a, b] ⊂ R → R is said to be convex if
the following inequality holds:

f (tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)
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for all x, y ∈ [a, b] and t ∈ [0, 1] . We say that f is concave if (−f) is
convex.

The following theorem contains Hadamard type inequality for M-
Lipschitzian functions. (see [3]).

Theorem 1.2. Let f : I ⊂ R → R be an M-Lipschitzian mapping on I,
and a, b ∈ I with a < b. Then we have the inequality:

(1.2)

∣∣∣∣∣∣f
(
a+ b

2

)
− 1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ M
(b− a)

4
.

In [6], and in [7] U.S. Kirmaci proved the following theorems.

Theorem 1.3. Let f : I◦ ⊂ R → R be a differentiable mapping on I◦,
a, b ∈ I◦ with a < b. If the mapping |f ′| is convex on [a, b], then we have

(1.3)

∣∣∣∣∣∣f
(
a+ b

2

)
− 1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ (b− a)

8

(∣∣f ′(a)
∣∣+ ∣∣f ′(b)

∣∣)
Theorem 1.4. Let f : I◦ ⊂ R → R be a differentiable mapping on I◦,

a, b ∈ I◦ with a < b, and let p > 1. If the mapping |f ′|
p

p−1 is convex on
[a, b], then we have

(1.4)

∣∣∣∣∣∣f
(
a+ b

2

)
− 1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ b− a

16

(
4

p+ 1

) 1
p

×
{(

3
∣∣f ′(a)

∣∣ p
p−1 +

∣∣f ′ (b)
∣∣ p
p−1

) p−1
p

+
(
3
∣∣f ′(b)

∣∣ p
p−1 +

∣∣f ′ (a)
∣∣ p
p−1

) p−1
p

}
.

Theorem 1.5. Let f : I◦ ⊂ R → R be a differentiable mapping on I◦,

a, b ∈ I◦ with a < b, and let p > 1. If the mapping |f ′|
p

p−1 is convex on
[a, b], then we have
(1.5)∣∣∣∣∣∣f

(
a+ b

2

)
− 1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ b− a

4

(
4

p+ 1

) 1
p (∣∣f ′(a)

∣∣+ ∣∣f ′(b)
∣∣) .
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Theorem 1.6. Let f : I◦ ⊂ R → R be a differentiable mapping on I◦,
a, b ∈ I◦ with a < b, and let p > 1. If the mapping |f ′|p is convex on
[a, b], then
(1.6)∣∣∣∣∣∣f

(
a+ b

2

)
− 1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤
(
3
1− 1

p

8

)
(b− a)

(∣∣f ′(a)
∣∣+ ∣∣f ′(b)

∣∣)
In recent years several extentions and generalizations have been con-

sidered for classical convexity. A significant generalization of convex
functions is that of invex functions introduced by Hanson in [4]. Weir
and Mond [13] introduced the concept of preinvex functions and applied
it to the establisment of the sufficient optimality conditions and duality
in nonlinear programming. Pini [12] introduced the concept of prequasi-
invex function as a generalization of invex functions. Later, Mohan
and Neogy [9] obtained some properties of generalized preinvex func-
tions. Noor [11] established some Hermite-Hadamard type inequalities
for preinvex and log-preinvex functions.

The aim of this paper is to establish some Ostrowski type inequalities
for functions whose derivatives in absolute value are preinvex. Now we
recall some notions in invexity analysis which will be used throught the
paper (see [2, 8, 14] and references therein)

Let f : A→ R and η : A× A → R, where A is a nonempty set in Rn,
be continuous functions.

Definition 1.7. The set A ⊂ Rn is said to be invex with respect to
η(., .), if for every x, y ∈ A and t ∈ [0, 1] ,

x+ tη(y, x) ∈ A.

The invex set A is also called a η−connected set.

It is obvious that every convex set is invex with respect to η(y, x) =
y − x, but there exist invex sets which are not convex [2].

Definition 1.8. The function f on the invex set A is said to be preinvex
with respect to η if

f (x+ tη(y, x)) ≤ (1− t) f(x) + tf(y), ∀x, y ∈ A, t ∈ [0, 1] .

The function f is said to be preconcave if and only if −f is preinvex.

Note that every convex function is a preinvex function, but the con-
verse is not true [8]. For example f(x) = − |x| , x ∈ R, is not a convex
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function, but it is a preinvex function with respect to

η(x, y) =

{
x− y, if xy ≥ 0
y − x, if xy < 0

.

We also need the following assumption regarding the function η which
is due to Mohan and Neogy [9]:

Condition C: Let A ⊂ Rn be an open invex subset with respect to
η : A×A → R. For any x, y ∈ A and any t ∈ [0, 1] ,

η (y, y + tη(x, y)) = −tη(x, y)

η (x, y + tη(x, y)) = (1− t)η(x, y).

Note that for any x, y ∈ A and any t1, t2 ∈ [0, 1] from condition C, we
have

η (y + t2η(x, y), y + t1η(x, y)) = (t2 − t1)η(x, y).

There are many vector functions that satisfy the condition C [8], be-
sides the trivial case η(x, y) = x− y. For example let A = R\ {0} and

η(x, y) =

 x− y, if x > 0, y > 0
x− y, if x < 0, y < 0
−y, otherwise.

Then A is an invex set and η satisfies the condition C.

2. Main results

Lemma 2.1. Let A ⊂ R be an open invex subset with respect to η :
A×A → R and a, b ∈ A with a < a+ η(b, a). Suppose that f : A → R is
a differentiable function. If f ′ is integrable on [a, a+ η(b, a)], then the
following equality holds:

f(x)− 1

η(b, a)

a+η(b,a)∫
a

f(u)du

= η(b, a)


x−a
η(b,a)∫
0

tf ′ (a+ tη(b, a)) dt+

1∫
x−a
η(b,a)

(t− 1) f ′ (a+ tη(b, a)) dt


for all x ∈ [a, a+ η(b, a)].
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Since A ⊂ R is an invex subset with respect to η : A × A → R and
a, b ∈ A, for all t ∈ [0, 1] we have a + tη(b, a) ∈ A. A simple proof of
the equality can be given by performing an integration by parts in the
integrals from the right side and changing the variable. The details are
left to the interested reader.

Theorem 2.2. Let A ⊂ R be an open invex subset with respect to η :
A × A → R and a, b ∈ A with a < a + η(b, a). Suppose that f : A → R
is a differentiable function and |f ′| is preinvex function on A. If f ′ is
integrable on [a, a+ η(b, a)], then the following inequality holds:

∣∣∣∣∣∣∣f(x)−
1

η(b, a)

a+η(b,a)∫
a

f(u)du

∣∣∣∣∣∣∣ ≤
η(b, a)

6
(2.1)

×

{[
3

(
x− a

η(b, a)

)2

− 2

(
x− a

η(b, a)

)3

+ 2

(
a+ η(b, a)− x

η(b, a)

)3
] ∣∣f ′(a)

∣∣
+

[
1− 3

(
x− a

η(b, a)

)2

+ 4

(
x− a

η(b, a)

)3
] ∣∣f ′(b)

∣∣}

for all x ∈ [a, a+ η(b, a)]. The constant 1
6 is best possible in the sense

that it cannot be replaced by a smaller value.

Proof. By Lemma 2.1 and since |f ′| is preinvex, we have

∣∣∣∣∣∣∣f(x)−
1

η(b, a)

a+η(b,a)∫
a

f(u)du

∣∣∣∣∣∣∣
≤ η(b, a)


x−a

η(b,a)∫
0

t
∣∣f ′ (a+ tη(b, a))

∣∣ dt+ 1∫
x−a

η(b,a)

(1− t)
∣∣f ′ (a+ tη(b, a))

∣∣ dt


≤ η(b, a)


x−a

η(b,a)∫
0

t
[
(1− t)

∣∣f ′(a)
∣∣+ t

∣∣f ′(b)
∣∣] dt
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+

1∫
x−a

η(b,a)

(1− t)
[
(1− t)

∣∣f ′(a)
∣∣+ t

∣∣f ′(b)
∣∣] dt


≤ η(b, a)

{[
1

2

(
x− a

η(b, a)

)2

−
1

3

(
x− a

η(b, a)

)3

+
1

3

(
a+ η(b, a)− x

η(b, a)

)3
] ∣∣f ′(a)

∣∣
+

[
1

6
−

1

2

(
x− a

η(b, a)

)2

+
2

3

(
x− a

η(b, a)

)3
] ∣∣f ′(b)

∣∣}

where we have used the fact that
x−a
η(b,a)∫
0

t (1− t) dt+

1∫
x−a
η(b,a)

(1− t)2 dt

=
1

2

(
x− a

η(b, a)

)2

− 1

3

(
x− a

η(b, a)

)3

+
1

3

(
a+ η(b, a)− x

η(b, a)

)3

and
x−a
η(b,a)∫
0

t2dt+

1∫
x−a
η(b,a)

t (1− t) dt =
1

6
− 1

2

(
x− a

η(b, a)

)2

+
2

3

(
x− a

η(b, a)

)3

.

To prove that the constant 1
6 is the best possible, let us assume that

(2.1) holds with constant K > 0, i.e.,∣∣∣∣∣∣∣f(x)−
1

η(b, a)

a+η(b,a)∫
a

f(u)du

∣∣∣∣∣∣∣ ≤ K.η(b, a)

×

{[
3

(
x− a

η(b, a)

)2

− 2

(
x− a

η(b, a)

)3

+ 2

(
a+ η(b, a)− x

η(b, a)

)3
] ∣∣f ′(a)

∣∣
+

[
1− 3

(
x− a

η(b, a)

)2

+ 4

(
x− a

η(b, a)

)3
] ∣∣f ′(b)

∣∣ .
Let f(x) = x, and then set x = a+ η(b, a). We get

η(b, a)

2
≤ 3K.η(b, a),

which gives K ≥ 1
6 and so the proof is complete. □
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Remark 2.3. Suppose that all the assumptions of Theorem 2.2 are sat-
isfied.

(a) If we choose η(b, a) = b− a and x = 2a+η(b,a)
2 , then we obtain the

following inequality which is the same as inequality (1.3)

(2.2)

∣∣∣∣∣∣f
(
a+ b

2

)
− 1

b− a

b∫
a

f(u)du

∣∣∣∣∣∣ ≤ b− a

8

(∣∣f ′(a)
∣∣+ ∣∣f ′(b)

∣∣) .
(b) In (a) with |f ′(x)| ≤ M, M > 0, we get the following inequality

which is the same as inequality (1.2)∣∣∣∣∣∣f
(
a+ b

2

)
− 1

b− a

b∫
a

f(u)du

∣∣∣∣∣∣ ≤ M
(b− a)

4
.

(c) If the mapping η satisfies the condition C, then by use of the
preinvexity of |f ′| we get∣∣f ′ (a+ tη(b, a))

∣∣ =
∣∣f ′ (a+ η(b, a) + (1− t)η(a, a+ η(b, a)))

∣∣
≤ t

∣∣f ′ (a+ η(b, a))
∣∣+ (1− t)

∣∣f ′(a)
∣∣ .(2.3)

for every t ∈ [0, 1] .
Using inequality (2.3) in the proof of Theorem 2.2, inequality (2.1)

becomes the following inequality:∣∣∣∣∣∣∣f(x)−
1

η(b, a)

a+η(b,a)∫
a

f(u)du

∣∣∣∣∣∣∣ ≤
η(b, a)

6
(2.4)

×

{[
3

(
x− a

η(b, a)

)2

− 2

(
x− a

η(b, a)

)3

+ 2

(
a+ η(b, a)− x

η(b, a)

)3
] ∣∣f ′(a)

∣∣
+

[
1− 3

(
x− a

η(b, a)

)2

+ 4

(
x− a

η(b, a)

)3
] ∣∣f ′(a+ η(b, a))

∣∣}
for all x ∈ [a, a+ η(b, a)] . We note that by use of the preinvexity of |f ′|
we have ∣∣f ′(a+ η(b, a))

∣∣ ≤ ∣∣f ′(b)
∣∣ .

Therefore, inequality (2.4) is better than inequality (2.1).

Theorem 2.4. Let A ⊂ R be an open invex subset with respect to
η : A × A → R and a, b ∈ A with a < a + η(b, a). Suppose that f :
A → R is a differentiable function such that |f ′|q is preinvex function on
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[a, a+ η(b, a)] for some fixed q > 1. If f ′ is integrable on [a, a+ η(b, a)]
and η satisfies Condition C, then for each x ∈ [a, a+ η(b, a)] the follow-
ing inequality holds: ∣∣∣∣∣∣∣f(x)−

1

η(b, a)

a+η(b,a)∫
a

f(u)du

∣∣∣∣∣∣∣ ≤
(

1

p+ 1

) 1
p

(2.5)

×

{
(x− a)2

η(b, a)

(
|f ′(a)|q + |f ′ (x)|q

2

) 1
q

+
(a+ η(b, a)− x)2

η(b, a)

(
|f ′(a+ η(b, a))|q + |f ′ (x)|q

2

) 1
q

}

where 1
p + 1

q = 1.

Proof. We first note that if |f ′|q is a preinvex function on [a, a+ η(b, a)]
and the mapping η satisfies Condition C, then for every t ∈ [0, 1] ,

(2.6)
∣∣f ′ (a+ tη(b, a))

∣∣q ≤ t
∣∣f ′ (a+ η(b, a))

∣∣q + (1− t)
∣∣f ′(a)

∣∣q
and similarly∣∣f ′ (a+ (1− t)η(b, a))

∣∣q =
∣∣f ′ (a+ η(b, a) + tη(a, a+ η(b, a)))

∣∣q
≤ (1− t)

∣∣f ′ (a+ η(b, a))
∣∣q + t

∣∣f ′(a)
∣∣q .(2.7)

From inequalities (2.6) and (2.7)

(2.8)∣∣f ′ (a+ tη(b, a))
∣∣q+∣∣f ′ (a+ (1− t)η(b, a))

∣∣q ≤ ∣∣f ′(a)
∣∣q+∣∣f ′ (a+ η(b, a))

∣∣q .
Then integrating inequality (2.8) with respect to t over [0, 1] , we ob-

tain

(2.9)
1

η(b, a)

a+η(b,a)∫
a

∣∣f ′(t)
∣∣q dt ≤ |f ′(a)|q + |f ′ (a+ η(b, a))|q

2
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From Lemma 2.1 and using the Hölder inequality, we have∣∣∣∣∣∣∣f(x)−
1

η(b, a)

a+η(b,a)∫
a

f(u)du

∣∣∣∣∣∣∣
≤ η(b, a)


x−a
η(b,a)∫
0

tpdt


1
p


x−a
η(b,a)∫
0

∣∣f ′ (a+ tη(b, a))
∣∣q dt


1
q

+η(b, a)


1∫

x−a
η(b,a)

(1− t)p dt


1
p


1∫
x−a
η(b,a)

∣∣f ′ (a+ tη(b, a))
∣∣q dt


1
q

≤
(

1

p+ 1

) 1
p

{
(x− a)2

η(b, a)

(
|f ′ (a)|q + |f ′ (x)|q

2

) 1
q

+
(a+ η(b, a)− x)2

η(b, a)

(
|f ′ (a+ η(b, a))|q + |f ′ (x)|q

2

) 1
q

}
where we use the fact that

x−a
η(b,a)∫
0

tpdt =
1

p+ 1

(
x− a

η(b, a)

)p+1

,

1∫
x−a
η(b,a)

(1− t)p dt =
1

p+ 1

(
a+ η(b, a)− x

η(b, a)

)p+1

,

and by (2.9)

x−a
η(b,a)∫
0

∣∣f ′ (a+ tη(b, a))
∣∣q dt ≤ x− a

η(b, a)

(
|f ′ (a)|q + |f ′ (x)|q

2

)
,

1∫
x−a
η(b,a)

∣∣f ′ (a+ tη(b, a))
∣∣q dt ≤ a+ η(b, a)− x

η(b, a)

(
|f ′ (a+ η(b, a))|q + |f ′ (x)|q

2

)
.

□
Corollary 2.5. Suppose that all the assumptions of Theorem 2.4 are
satisfied. If we choose |f ′ (x)| ≤ M, M > 0, for each x ∈ [a, a+ η(b, a)] ,
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then we have∣∣∣∣∣∣∣f(x)−
1

η(b, a)

a+η(b,a)∫
a

f(u)du

∣∣∣∣∣∣∣ ≤
(

1

p+ 1

) 1
p

M

(
(x− a)2 + (a+ η(b, a)− x)2

η(b, a)

)
.

Corollary 2.6. Suppose that all the assumptions of Theorem 2.4 are

satisfied. Taking x = 2a+η(b,a)
2 in inequality (2.5) and t = 1

2 in inequality
(2.6) we obtain∣∣∣∣∣∣∣f

(
2a+ η(b, a)

2

)
− 1

η(b, a)

a+η(b,a)∫
a

f(u)du

∣∣∣∣∣∣∣
≤

(
1

p+ 1

) 1
p

{
η(b, a)

4

(
3 |f ′(a)|q + |f ′ (a+ η(b, a))|q

4

) 1
q

+
η(b, a)

4

(
3 |f ′(a+ η(b, a))|q + |f ′ (a)|q

4

) 1
q

}
.

Remark 2.7. In Corollary 2.6, if we take η(b, a) = b− a, then we have
the following inequality which is the same as inequality (1.4).∣∣∣∣∣∣f

(
a+ b

2

)
− 1

b− a

b∫
a

f(u)du

∣∣∣∣∣∣
≤ b− a

16

(
4

p+ 1

) 1
p {(

3
∣∣f ′(a)

∣∣q + ∣∣f ′ (b)
∣∣q) 1

q +
(
3
∣∣f ′(b)

∣∣q + ∣∣f ′ (a)
∣∣q) 1

q

}
Let a1 = 3 |f ′(a)|q , b1 = |f ′ (b)|q , a2 = 3 |f ′(b)|q , b2 = |f ′ (a)|q . Here
0 < 1

q < 1, for q > 1. Using the fact that

(2.10)
n∑

k=1

(ak + bk)
s ≤

n∑
k=1

ask +
n∑

k=1

bsk

for (0 ≤ s < 1) , a1, a2, . . . , an ≥ 0, b1, b2, . . . , bn ≥ 0, we obtain the
following inequality which is the same as inequality (1.5).∣∣∣∣∣∣f

(
a+ b

2

)
− 1

b− a

b∫
a

f(u)du

∣∣∣∣∣∣ ≤ b− a

4

(
4

p+ 1

) 1
p (∣∣f ′(a)

∣∣+ ∣∣f ′(b)
∣∣)

Theorem 2.8. Let A ⊂ R be an open invex subset with respect to η :
A×A → R and a, b ∈ A with a < a+ η(b, a). Suppose that f : A → R is
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a differentiable function and |f ′|q is preinvex function on [a, a+ η(b, a)]
for some fixed q ≥ 1. If f ′ is integrable on [a, a+ η(b, a)], then the
following inequality holds:∣∣∣∣∣∣∣f(x)−

1

η(b, a)

a+η(b,a)∫
a

f(u)du

∣∣∣∣∣∣∣ ≤ η(b, a)

(
1

2

)1− 1
q

×


(

x− a

η(b, a)

)2
(
1− 1

q

) [
(x− a)2 (3η(b, a)− 2x+ 2a)

6η3(b, a)

∣∣f ′ (a)
∣∣q

+
1

3

(
x− a

η(b, a)

)3 ∣∣f ′ (b)
∣∣q] 1

q

+

(
a+ η(b, a)− x

η(b, a)

)2
(
1− 1

q

) [
1

3

(
a+ η(b, a)− x

η(b, a)

)3 ∣∣f ′ (a)
∣∣q

+

(
1

6
+

(x− a)2 (2x− 3η(b, a)− 2a)

6η3(b, a)

)∣∣f ′ (b)
∣∣q] 1

q


for each x ∈ [a, a+ η(b, a)] .

Proof. By Lemma 2.1, inequality (2.3) and using the well known power
mean inequality, we have∣∣∣∣∣∣∣f(x)−

1

η(b, a)

a+η(b,a)∫
a

f(u)du

∣∣∣∣∣∣∣
≤ η(b, a)


x−a

η(b,a)∫
0

tdt


1− 1

q


x−a
η(b,a)∫
0

t
∣∣f ′ (a+ tη(b, a))

∣∣q dt


1
q

+η(b, a)


1∫

x−a
η(b,a)

(1− t) dt


1− 1

q


1∫
x−a

η(b,a)

(1− t)
∣∣f ′ (a+ tη(b, a))

∣∣q dt


1
q

≤ η(b, a)

(
1

2

)1− 1
q


(

x− a

η(b, a)

)2
(
1− 1

q

) [
(x− a)2 (3η(b, a)− 2x+ 2a)

6η3(b, a)

∣∣f ′ (a)
∣∣q

+
1

3

(
x− a

η(b, a)

)3 ∣∣f ′ (b)
∣∣q] 1

q

+

(
a+ η(b, a)− x

η(b, a)

)2
(
1− 1

q

) [
1

3

(
x− a

η(b, a)

)3 ∣∣f ′ (a)
∣∣q

+

(
1

6
+

(x− a)2 (2x− 3η(b, a)− 2a)

6η3(b, a)

)∣∣f ′ (b)
∣∣q] 1

q
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where we use the fact that
x−a

η(b,a)∫
0

tdt =
1

2

(
x− a

η(b, a)

)2

,

x−a
η(b,a)∫
0

t
∣∣f ′ (a+ tη(b, a))

∣∣q dt
≤ (x− a)2 (3η(b, a)− 2x+ 2a)

6η3(b, a)

∣∣f ′ (a)
∣∣q + 1

3

(
x− a

η(b, a)

)3 ∣∣f ′ (b)
∣∣q ,

1∫
x−a
η(b,a)

(1− t) dt =
1

2

(
a+ η(b, a)− x

η(b, a)

)2

,

and
1∫

x−a
η(b,a)

(1− t)
∣∣f ′ (a+ tη(b, a))

∣∣q dt

≤
1

3

(
a+ η(b, a)− x

η(b, a)

)3 ∣∣f ′ (a)
∣∣q +

(
1

6
+

(x− a)2 (2x− 3η(b, a)− 2a)

6η3(b, a)

)∣∣f ′ (b)
∣∣q .

The proof is complete. □
Corollary 2.9. Suppose that all the assumptions of Theorem 2.8 are

satisfied and let x = 2a+η(b,a)
2 . Then by inequality (2.10) we have the

following inequality∣∣∣∣∣∣∣f
(
2a+ η(b, a)

2

)
− 1

η(b, a)

a+η(b,a)∫
a

f(x)dx

∣∣∣∣∣∣∣≤
(
3
1− 1

q

8

)
η(b, a)

(∣∣f ′(a)
∣∣+ ∣∣f ′(b)

∣∣) .
Remark 2.10. Suppose that all the assumptions of Theorem 2.8 are
satisfied.

(a) Taking η(b, a) = b − a, in Corollary 2.9, we have the following
inequality which is the same with inequality (1.6)∣∣∣∣∣∣f

(
a+ b

2

)
− 1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤
(
3
1− 1

q

8

)
(b− a)

(∣∣f ′(a)
∣∣+ ∣∣f ′(b)

∣∣) .
(b) If the mapping η satisfies Condition C, then by using the inequality
(2.6) for |f ′|q in the proof of Theorem 2.8, we obtain
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∣∣∣∣∣∣∣f(x)−
1

η(b, a)

a+η(b,a)∫
a

f(u)du

∣∣∣∣∣∣∣ ≤ η(b, a)

(
1

2

)1− 1
q

×


(

x− a

η(b, a)

)2
(
1− 1

q

) [
(x− a)2 (3η(b, a)− 2x+ 2a)

6η3(b, a)

∣∣f ′ (a)
∣∣q

+
1

3

(
x− a

η(b, a)

)3∣∣f ′ (a+ η(b, a))
∣∣q] 1

q

+

(
a+ η(b, a)− x

η(b, a)

)2(1− 1
q

)[
1

3

(
a+ η(b, a)− x

η(b, a)

)3∣∣f ′ (a)
∣∣q

+

(
1

6
+

(x− a)2 (2x− 3η(b, a)− 2a)

6η3(b, a)

)∣∣f ′ (a+ η(b, a))
∣∣q] 1

q

 .
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