Bulletin of the

Iranian Mathematical Society

$$
\text { Vol. } 40 \text { (2014), No. 2, pp. 387-398 }
$$

Title:
On the decomposable numerical range of operators
Author(s):

Y. Zamani and S. Ahsani

ON THE DECOMPOSABLE NUMERICAL RANGE OF OPERATORS

Y. ZAMANI* AND S. AHSANI
(Communicated by Abbas Salemi)

Abstract

Let V be an n-dimensional complex inner product space. Suppose H is a subgroup of the symmetric group of degree m, and $\chi: H \rightarrow \mathbb{C}$ is an irreducible character (not necessarily linear). Denote by $V_{\chi}(H)$ the symmetry class of tensors associated with H and χ. Let $K(T) \in \operatorname{End}\left(V_{\chi}(H)\right)$ be the operator induced by $T \in \operatorname{End}(V)$. The decomposable numerical range $W_{\chi}(T)$ of T is a subset of the classical numerical range $W(K(T))$ of $K(T)$ defined as: $$
W_{\chi}(T)=\left\{\left(K(T) x^{*}, x^{*}\right): x^{*} \text { is a decomposable unit tensor }\right\} .
$$

In this paper, we study the interplay between the geometric properties of $W_{\chi}(T)$ and the algebraic properties of T. In fact, we extend some of the results of [C. K. Li and A. Zaharia, Decomposable numerical range on orthonormal decomposable tensors, Linear Algebra Appl. 308 (2000), no, 1-3, 139-152] and [C. K. Li and A. Zaharia, Induced operators on symmetry classes of tensors, Trans. Amer. Math. Soc. 354 (2002), no. 2, 807-836], to non-linear irreducible characters. Keywords: Symmetry class of tensors, decomposable numerical range, induced operator. MSC(2010): Primary: 20C15; Secondary: 15A69, 15A60.

1. Introduction

In this paper, we study the decomposable numerical range of an operator T, which is defined by the induced operator $K(T)$ acting on symmetry classes of tensors. The decomposable numerical range $W_{\chi}(T)$ of

[^0]T is the set of complex numbers of the form $\left(K(T) x^{*}, x^{*}\right)$ with x^{*} ranging over all decomposable unit vectors in $V_{\chi}(H)$, where $V_{\chi}(H)$ is the symmetry class of tensors associated with H and χ. This concept has been studied extensively because of its applications in many branches of pure and applied mathematics (see e.g., $[1,2,3,7,8]$).

In Section 2, we give a review of the symmetry classes of tensors; see $[9,10]$ for general background. In Section 3, we study some properties of the induced operator. Section 4 is devoted to the study of the relations between geometric properties of $W_{\chi}(T)$ and algebraic properties of T.

2. Symmetry classes of tensors

Let V be an n-dimensional inner product space over \mathbb{C} and H be a subgroup of the full symmetric group S_{m}. Let $\bigotimes^{m} V$ be the tensor product of m copies of V and for any $\sigma \in H$, define the permutation operator

$$
P(\sigma): \bigotimes_{\bigotimes}^{m} V \rightarrow \bigotimes_{\bigotimes}^{m} V
$$

by

$$
P(\sigma)\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{m}\right)=v_{\sigma^{-1}(1)} \otimes v_{\sigma^{-1}(2)} \otimes \cdots \otimes v_{\sigma^{-1}(m)} .
$$

Suppose χ is a complex irreducible character of H and define the symmetrizer,

$$
T(\chi, H)=\frac{\chi(1)}{|H|} \sum_{\sigma \in H} \chi(\sigma) P(\sigma),
$$

where $|H|$ denotes the order of H. The range of $T(\chi, H)$,

$$
V_{\chi}(H):=T(\chi, H)\left(\bigotimes^{m} V\right)
$$

is called the symmetry class of tensors associated with H and χ. The elements in $V_{\chi}(H)$ of the form

$$
T(\chi, H)\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{m}\right)
$$

are called decomposable symmetrized tensors and are denoted by $v_{1} * v_{2} * \cdots * v_{m}$ (or briefly v^{*}). The inner product on V induces an
inner product on $V_{\chi}(H)$ such that

$$
\left(u^{*}, v^{*}\right)=\frac{\chi(1)}{|H|} \sum_{\sigma \in H} \chi(\sigma) \prod_{i=1}^{m}\left(u_{i}, v_{\sigma(i)}\right) .
$$

Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis of V and suppose $\Gamma_{m, n}$ is the set of all m-tuples of integers $\alpha=(\alpha(1), \ldots, \alpha(m))$ with $1 \leq \alpha(i) \leq n$. For $\alpha=(\alpha(1), \ldots, \alpha(m)) \in \Gamma_{m, n}$, we use the notation e_{α}^{*} for the decomposable symmetrized tensor $e_{\alpha(1)} * \cdots * e_{\alpha(m)}$. It is clear that $V_{\chi}(H)$ is generated by all $e_{\alpha}^{*}, \alpha \in \Gamma_{m, n}$. We define an action of H on $\Gamma_{m, n}$ by

$$
\alpha \sigma=(\alpha(\sigma(1)), \ldots, \alpha(\sigma(m))),
$$

for any $\sigma \in H$ and $\alpha \in \Gamma_{m, n}$. Given two elements $\alpha, \beta \in \Gamma_{m, n}$, we say that $\alpha \sim \beta$ if and only if α and β lie in the same orbit. Suppose Δ is the set of minimum elements of orbits of this action with respect to the lexicographic order and let H_{α} denote the stabilizer subgroup of α (see [9]). Define

$$
\Omega=\left\{\alpha \in \Gamma_{m, n}:\left[\chi, 1_{H_{\alpha}}\right] \neq 0\right\},
$$

where [,] denotes the inner product of characters (see [5]). It is well known that $e_{\alpha}^{*} \neq 0$, if and only if $\alpha \in \Omega$ (see for example [10]). Suppose $\bar{\Delta}=\Delta \cap \Omega$. For any $\alpha \in \bar{\Delta}$, we have the subspace

$$
V_{\alpha}^{*}=\left\langle e_{\alpha \sigma}^{*}: \sigma \in H\right\rangle,
$$

where 〈set of vectors〉 denotes the subspace generated by a given set of vectors.
It is proved [10] that

$$
\left(e_{\alpha}^{*}, e_{\beta}^{*}\right)= \begin{cases}0 & \text { if } \alpha \nsim \beta \\ \frac{\chi(1)}{|H|} \sum_{\sigma \in H_{\alpha}} \chi(\sigma) & \text { if } \alpha=\beta\end{cases}
$$

and thus

$$
\left\|e_{\alpha}^{*}\right\|^{2}=\frac{\chi(1)}{|H|} \sum_{\sigma \in H_{\alpha}} \chi(\sigma)
$$

Hence we have the orthogonal decomposition [10]

$$
V_{\chi}(H)=\sum_{\alpha \in \bar{\Delta}} V_{\alpha}^{*} .
$$

It is also proved that

$$
s_{\alpha}:=\operatorname{dim} V_{\alpha}^{*}=\chi(1)\left[\chi, 1_{H_{\alpha}}\right],
$$

and in particular, if χ is linear, then $s_{\alpha}=1$. So the set

$$
\left\{e_{\alpha}^{*}: \alpha \in \bar{\Delta}\right\}
$$

is a basis of $V_{\chi}(H)$. In the general case, let $\alpha \in \bar{\Delta}$ and suppose

$$
e_{\alpha \sigma_{1}}^{*}, e_{\alpha \sigma_{2}}^{*}, \ldots, e_{\alpha \sigma_{t}}^{*}
$$

is a basis of V_{α}^{*}. Let

$$
A_{\alpha}=\left\{\alpha \sigma_{1}, \alpha \sigma_{2}, \ldots, \alpha \sigma_{t}\right\} .
$$

Then we define $\hat{\Delta}=\bigcup_{\alpha \in \bar{\Delta}} A_{\alpha}$. It is clear that

$$
\bar{\Delta} \subseteq \hat{\Delta} \subseteq \Omega,
$$

and the set

$$
\left\{e_{\alpha}^{*}: \quad \alpha \in \hat{\Delta}\right\}
$$

is a basis of $V_{\chi}(H)$. But in general, this basis may be non-orthogonal (see [6]). Let $m_{j}(\alpha)$ be the number of occurrences of j in the sequence $\alpha \in \hat{\Delta}$.

3. Some properties of induced operators

Let V be an n-dimensional inner product space over \mathbb{C}. Let H be a subgroup of the full symmetric group S_{m} and suppose χ is a complex irreducible character of H. For any $T \in \operatorname{End}(V)$, there is a unique induced operator $K(T)$ acting on $V_{\chi}(H)$ satisfying

$$
K(T) v_{1} * \cdots * v_{m}=T v_{1} * \cdots * T v_{m}
$$

Indeed $V_{\chi}(H)$ is an invariant subspace of $\bigotimes^{m} T$ and $K(T)$ is the restriction $\bigotimes^{m} T$ to $V_{\chi}(H)$ (see [10, p. 185]). Clearly $K(\xi T)=\xi^{m} K(T), \xi \in$ \mathbb{C}.

If $H=S_{m}$ and $\chi \equiv 1$ is the principal character of H, then $V_{\chi}(H)$ is the m th completely symmetric space over V and $K(T)$ is the m th induced power of T, usually denoted by $P_{m}(T)$. If $H=S_{m}$ and χ is the alternating character, that is $\chi(\sigma)=\operatorname{sgn}(\sigma)$, then $V_{\chi}(H)$ is the m th exterior space over V and $K(T)$ is the m th compound of T, usually denoted by $C_{m}(T)$. If $H=\{1\}$, where 1 is the identity in $S_{m}(\chi \equiv 1$ is the only irreducible character of H), then $V_{\chi}(H)=\bigotimes^{m} V$ and $K(T)=\bigotimes^{m} T$ is
the m th tensor power of T.

The following contains some properties of the induced operator.
Proposition 3.1. [10]. Let S, T be linear operators on V and assume $\bar{\Delta} \neq \varnothing$.
(a): $K\left(I_{V}\right)=I_{V_{\chi}(H)}$.
(b): $K(S T)=K(S) K(T)$.
(c): T is invertible if and only if $K(T)$ is. Moreover, we have $K\left(T^{-1}\right)=K(T)^{-1}$.
(d): $K\left(T^{*}\right)=K(T)^{*}$.
(e): If T is normal, unitary, positive (semi)-definite, Hermitian or skew-Hermitian (when m is odd), then so is $K(T)$.
(f): If T has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, then for any $\sigma \in S_{n}, K(T)$ has eigenvalues $\prod_{j=1}^{n} \lambda_{\sigma(j)}^{m_{j}(\alpha)}, \alpha \in \hat{\Delta}$.
(g): If $\operatorname{rank}(T)=r$, then $\operatorname{rank}(K(T))=\left|\Gamma_{m, r} \bigcap \hat{\Delta}\right|$.

We shall use $\mu(\bar{\Delta})$ to denote the smallest integer r such that $\Gamma_{m, r} \cap \bar{\Delta} \neq \varnothing$. Similarly we can define $\mu(\hat{\Delta})$, but it is clear that $\mu(\bar{\Delta})=\mu(\hat{\Delta})$. By Proposition 3.1, if $\operatorname{rank}(T)=r$, then $\operatorname{rank}(K(T))=$ $\left|\Gamma_{m, r} \cap \mu(\hat{\Delta})\right|$. Thus an operator T on V satisfies $K(T)=0$ if and only if $\operatorname{rank}(T)<\mu(\bar{\Delta})$.

We say that χ is of determinant type if every element $\alpha \in \bar{\Delta}$ satisfies

$$
m_{1}(\alpha)=\cdots=m_{n}(\alpha)=\frac{m}{n}
$$

with $\mu(\bar{\Delta})>1$. Furthermore, we say that χ is of special type if every element $\alpha \in \Gamma_{m, r} \cap \bar{\Delta}$ satisfies

$$
m_{1}(\alpha)=\cdots=m_{r}(\alpha)
$$

with $r=\mu(\bar{\Delta})>1$.
Otherwise, we say that χ is of general type. Notice that the determinant type is a particular case of the special type. One can find examples of different types of characters in [6].

Theorem 3.2. Suppose χ is not of the determinant type, and $T \in$ $\operatorname{End}(V)$. Suppose $\eta \in \mathbb{C}$ with $|\eta|=1$. Then $\eta K(T)$ is positive definite if and only if there exists $\xi \in \mathbb{C}$ with $\xi^{m}=\eta$ such that ξT is positive definite.

Proof. The necessity part is clear. The converse is proved in [6, Theorem 5.3].

Theorem 3.3. [6]. Suppose χ is not of the determinant type. Let $T \in \operatorname{End}(V)$. Then $K(T)$ is unitary or a nonzero scalar operator if and only if T has the corresponding property.

Theorem 3.4. Let $r=\mu(\bar{\Delta})$ and $T \in \operatorname{End}(V)$ with $\operatorname{rank}(T) \geq r$. Let $\eta \in \mathbb{C}$ with $|\eta|=1$. Then $\eta K(T)$ is (i) Hermitian, (ii) positive semidefinite if and only if one of the following holds:
(a) There exists $\xi \in \mathbb{C}$ such that ξT has the corresponding property, where $\xi^{m}= \pm \eta$ for case (i) and $\xi^{m}=\eta$ for case (ii).
(b) χ is of the special type, and $T=T_{1} \oplus 0$, where T_{1} is an invertible operator acting on an r-dimensional subspace V_{1} of V, and $\eta\left(\operatorname{det} T_{1}\right)^{m / r}$ is real or positive according to case (i) or (ii).

Proof. The necessary part is proved in [6, Theorem 5.5]. Now we prove the converse. If (a) holds, then the assertion is clear. Suppose (b) holds. Then $V=V_{1} \oplus V_{1}^{\perp}$ such that V_{1} is invariant under both T and $T^{*} ; T_{1}$ is the restriction of T on V_{1}, and the restriction of T on V_{1}^{\perp} is the zero operator. Thus

$$
\bigotimes^{m} V=\bigotimes^{m} V_{1} \bigoplus\left(\bigotimes^{m} V_{1}\right)^{\perp}
$$

By applying $T(\chi, H)$ to the both sides of the equation above, we get

$$
V_{\chi}(H)=V_{1_{\chi}}(H) \bigoplus V_{1_{\chi}}(H)^{\perp}
$$

It is easy to see that $V_{1 \chi}(H)$ is invariant under both $K(T)$ and $K(T)^{*}$; $K\left(T_{1}\right)$ is the restriction of $K(T)$ on $V_{1 \chi}(H)$.

Now suppose $u \in V_{1 \chi}(H)^{\perp}$. Then $u=T(\chi, H)(z)$, where $z \in\left(\otimes^{m} V_{1}\right)^{\perp}$, because $V_{1 \chi}(H)^{\perp}=T(\chi, H)\left(\left(\otimes^{m} V_{1}\right)^{\perp}\right)$.
Since
$\left(\otimes^{m} V_{1}\right)^{\perp}=V_{1}^{\perp} \otimes V_{1} \otimes \cdots \otimes V_{1}+V_{1} \otimes V_{1}^{\perp} \otimes \cdots \otimes V_{1}+\cdots+V_{1} \otimes \cdots \otimes V_{1} \otimes V_{1}^{\perp}$,
so $z=\sum w_{1} \otimes \cdots \otimes w_{m}$, where at least one of the w_{i} belongs to V_{1}^{\perp}. Hence

$$
\begin{aligned}
K(T) u & =K(T) T(\chi, H) z \\
& =K(T)\left(\sum w_{1} * \cdots * w_{m}\right) \\
& =\sum T w_{1} * \cdots * T w_{m} \\
& =0, \quad\left(V_{1} \subseteq \operatorname{Ker} T\right)
\end{aligned}
$$

This implies that $K(T)=K\left(T_{1}\right) \oplus 0$.
Since χ is of the special type, so by Theorem 4.1 in [6], $K(T)$ is a multiple of an orthogonal projection P_{T} on $V_{\chi}(H)$, i.e., $K(T)=\xi P_{T}$. Indeed P_{T} is the natural projection from $V_{\chi}(H)$ onto $V_{1 \chi}(H)$. Thus the restriction P_{T} on $V_{1 \chi}(H)$ is the identity. Since $K\left(T_{1}\right)$ is the restriction $K(T)$ on to $V_{1 \chi}(H)$, so $K\left(T_{1}\right)=\xi I$. Now we show that $\xi=\left(\operatorname{det} T_{1}\right)^{\frac{m}{r}}$. Suppose T_{1} has eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$. Then

$$
\prod_{j=1}^{r} \lambda_{j}^{m_{j}(\alpha)}, \quad \alpha \in \Gamma_{m, r} \cap \hat{\Delta}
$$

are the eigenvalues of $K\left(T_{1}\right)$. Since χ is of the special type, so by Theorem 4.1 in $[6], m_{1}(\alpha)=\cdots=m_{r}(\alpha)=\frac{m}{r}$ for every $\alpha \in \Gamma_{m, r} \cap \hat{\Delta}$. Hence

$$
\prod_{j=1}^{r} \lambda_{j}^{m_{j}(\alpha)}=\prod_{j=1}^{r} \lambda_{j}^{\frac{m}{r}}=\left(\prod_{j=1}^{r} \lambda_{j}\right)^{\frac{m}{r}}=\left(\operatorname{det} T_{1}\right)^{\frac{m}{r}}
$$

is the only eigenvalue of T_{1}. Thus $\xi=\left(\operatorname{det} T_{1}\right)^{\frac{m}{r}}$. Therefore $\eta K(T)=$ $\eta\left(\operatorname{det} T_{1}\right)^{\frac{m}{r}} P_{T}$. Since P_{T} is an orthogonal projection and by assumption $\eta\left(\operatorname{det} T_{1}\right)^{m / r}$ is real or positive, so the result follows from the fact that every orthogonal projection is a positive semi-definite operator.

4. Decomposable numerical range

Let V be a finite dimensional inner product space over \mathbb{C} and $T \in \operatorname{End}(V)$. Let H be a subgroup of the full symmetric group S_{m} and let χ be a complex irreducible character of H. The decomposable numerical range of T is defined by

$$
W_{\chi}(T)=\left\{\left(K(T) x^{*}, x^{*}\right): x^{*} \text { is a decomposable unit tensor in } V_{\chi}(H)\right\}
$$

Evidently, when $m=1, W_{\chi}(T)$ reduces to the classical numerical range $W(T)$. Since the set of decomposable unit tensors is usually a proper subset of the unit vectors in $V_{\chi}(H)$, we have

$$
W_{\chi}(T) \subseteq W(K(T))
$$

and the inclusion is often strict.
The following lemma can be easily proved by using elementary properties of induced operators.

Lemma 4.1. Let $T \in \operatorname{End}(V)$. Then
(a) For any $\mu \in \mathbb{C}, W_{\chi}(\mu T)=\mu^{m} W_{\chi}(T)$.
b) The set $W_{\chi}(T)$ is invariant under unitary similarities, i.e., $W_{\chi}(T)=$ $W_{\chi}\left(U^{*} T U\right)$ for any unitary operator U.

There is an interesting interplay between the geometric properties of $W(T)$ and the algebraic properties of the operator T. For example, we have the following result (see [4]).
Proposition 4.2. Let $T \in \operatorname{End}(V)$.
(a) $W(T)=\{\lambda\}$ if and only if $T=\lambda I$.
(b) $W(T) \subseteq \mathbb{R}$ if and only if T is Hermitian.
(c) $W(T) \subseteq(0, \infty)$ if and only if T is positive definite.
(d) $W(T)$ has no interior point if and only if T is a normal operator with eigenvalues lying on a straight line.

In [7], Proposition 4.2 was generalized to the decomposable numerical range, when the irreducible character χ is linear. In this paper, it is generalized to arbitrary irreducible characters. The following theorem is a generalization of Theorem 3.5 in [8], to non-linear irreducible characters of G. We need the following result of Robinson [11].
Proposition 4.3. A linear operator L on $V_{\chi}(H)$ satisfies $\left(L v^{*}, v^{*}\right)=0$ for all decomposable tensors $v^{*}=v_{1} * \cdots * v_{m} \in V_{\chi}(H)$ if and only if $L=0$.

Theorem 4.4. Let $r=\mu(\bar{\Delta})$ and $T \in \operatorname{End}(V)$ with $\operatorname{rank}(T) \geq r$. Let $\eta \in \mathbb{C}$ with $|\eta|=1$. Then $W_{\chi}(T)$ is a subset of
(i) $\eta \mathbb{R}$ or (ii) $\eta[0, \infty)$ if and only if one of the following conditions holds.
(a) There exists $\xi \in \mathbb{C}$ such that ξT is (i) Hermitian or (ii) positive semidefinite, where $\xi^{m}= \pm \bar{\eta}$ for case (i) and $\xi^{m}=\bar{\eta}$ for case (ii).
(b) χ is of the special type and $T=T_{1} \oplus 0$, where T_{1} is an operator acting on an r-dimensional subspace V_{1} of V and $\bar{\eta}\left(\operatorname{det} T_{1}\right)^{\frac{m}{r}}$ is (i) real or (ii) nonnegative according to case (i), or (ii).

Proof. If χ and T satisfy (a) or (b), then $\bar{\eta} K(T)$ is (i) Hermitian (ii) positive semi-definite by Theorem 3.4. So $W_{\chi}(T)$ is a subset of $\eta \mathbb{R}$ or $\eta[0, \infty)$, by Proposition 4.2.
Conversely, suppose $W_{\chi}(T) \subseteq \bar{\eta} \mathbb{R}$ or $\eta[0, \infty)$. Then

$$
\begin{aligned}
\left(\left(\eta K(T)^{*}-\bar{\eta} K(T)\right) v^{*}, v^{*}\right) & =\eta\left(K(T)^{*} v^{*}, v^{*}\right)-\bar{\eta}\left(K(T) v^{*}, v^{*}\right) \\
& =\eta\left(v^{*}, K(T) v^{*}\right)-\bar{\eta}\left(K(T) v^{*}, v^{*}\right) \\
& =\eta \overline{\left(K(T) v^{*}, v^{*}\right)}-\bar{\eta}\left(K(T) v^{*}, v^{*}\right) \\
& =0
\end{aligned}
$$

for all unit decomposable tensors $v^{*} \in V_{\chi}(H)$. By Proposition 4.3, $\eta K(T)^{*}-\bar{\eta} K(T)=0$, i.e., $\bar{\eta} K(T)$ is Hermitian.
Applying Theorem 3.4, we see that T satisfies (a) or (b).
Corollary 4.5. Let χ be not of the determinant type. Let $T \in \operatorname{End}(V)$. Then T is (i) Hermitian, (ii) positive semi- definite if and only if $W_{\chi}(T+\eta I) \subseteq S$ for all $\eta \in S$ with (i) $S=\mathbb{R}$, (ii) $S=[0, \infty)$.

Proof. If T is (i) Hermitian, (ii) positive semi-definite, then for any $\eta \in S$ with (i) $S=\mathbb{R}$, (ii) $S=[0, \infty), K(T+\eta I)$ has the corresponding property. So the result follows from Proposition 4.2.

Conversely, suppose that $W_{\chi}(T+\eta I) \subseteq \mathbb{R}$ for all $\eta \in \mathbb{R}$. If $\eta \in \mathbb{R}$ is not an eigenvalue of T, then $T+\eta I$ is an invertible operator. Thus $\operatorname{rank}(T+\eta I) \geq r=\mu(\bar{\Delta})$. So, $T+\eta I$ satisfies (a) or (b) of Theorem 4.4. If (b) holds, then χ is of the special type, and $T+\eta I=T_{1} \oplus 0$, where T_{1} is an invertible operator acting on an r-dimensional subspace. Since $T+\eta I$ is invertible, so $T+\eta I=T_{1}$, i.e., $r=n$, and χ is of the determinant type, a contradiction. Thus (a) holds and there exists $\xi \in \mathbb{C}$ with $\xi^{m}= \pm 1$ such that $\xi(T+\eta I)$ is Hermitian.
Since the number of the m th roots of unity is finite, there exist two
distinct real numbers η_{1} and η_{2} such that $\xi\left(T+\eta_{1} I\right)$ and $\xi\left(T+\eta_{2} I\right)$ are Hermitian, where ξ is an m th root of unity, i.e.,

$$
\begin{aligned}
\bar{\xi}\left(T^{*}+\eta_{1} I\right) & =\xi\left(T+\eta_{1} I\right), \\
\bar{\xi}\left(T^{*}+\eta_{2} I\right) & =\xi\left(T+\eta_{2} I\right) .
\end{aligned}
$$

Thus $\bar{\xi}\left(\eta_{1}-\eta_{2}\right) I=\xi\left(\eta_{1}-\eta_{2}\right) I$, and we get $\xi=\bar{\xi}$. Hence $T=T^{*}$ and the assertion holds.

Now, suppose that $W_{\chi}(T+\eta I) \subseteq[0, \infty)$ for all $\eta \in[0, \infty)$. Similar to the proof of case (i), where $S=\mathbb{R}$, we conclude that T is a Hermitian operator. To prove that T is positive semi-definite, we show that the eigenvalues of T are all nonnegative (see [10, Corollary 2.35]).
Let λ be an eigenvalue of T and v be the corresponding eigenvector. Since the number of the m th roots of unity is finite, hence similar to the proof of case (i), there exist a complex number ξ with $\xi^{m}=1$ and a decreasing sequence $\left\{\eta_{n}\right\}$ of real positive numbers such that $\eta_{1}>-\lambda, \eta_{n} \rightarrow 0$ and for any $n \in \mathbb{N}, \xi\left(T+\eta_{n} I\right)$ is positive semidefinite. This implies that $\xi\left(\lambda+\eta_{n}\right) \geq 0$ for every $n \in \mathbb{N}$. Since $\eta_{1}>-\lambda$, so we must have $\xi=1$ and hence $\lambda+\eta_{n} \geq 0$ for all $n>1$. Using the fact that $\eta_{n} \rightarrow 0$ completes the proof.
Theorem 4.6. Suppose χ is not of the determinant type. Let $T \in$ $\operatorname{End}(V)$ and $\eta \in \mathbb{C}$ with $|\eta|=1$.
(a) $W_{\chi}(T) \subseteq \eta(0, \infty)$ if and only if there exists $\xi \in \mathbb{C}$ with $\xi^{m}=\bar{\eta}$ such that ξT is positive definite.
(b) $W_{\chi}(T)$ is a singleton if and only if T is a scalar operator.

Proof.
(a) Suppose $W_{\chi}(T) \subseteq \eta(0, \infty)$. Then $\bar{\eta} W_{\chi}(T) \subseteq(0, \infty)$. So $\left(\bar{\eta} K(T) x^{*}, x^{*}\right)>0$ for all unit decomposable tensors x^{*}. Therefore $\bar{\eta} K(T)$ is positive definite. By Theorem 3.2, we see that there exists $\xi \in \mathbb{C}$ with $\xi^{m}=\bar{\eta}$ such that ξT is positive definite.
Conversely, assume that there exists $\xi \in \mathbb{C}$ with $\xi^{m}=\bar{\eta}$ such that ξT is positive definite. Then $\bar{\eta} K(T)=\xi^{m} K(T)=K(\xi T)$ is positive definite. So $W(\bar{\eta} K(T)) \subseteq(0, \infty)$, by Proposition 4.2. Therefore $W_{\chi}(T) \subseteq W(K(T)) \subseteq \eta(0, \infty)$.
(b) If $T=\xi I$ for some $\xi \in \mathbb{C}$, then $K(T)=\xi^{m} I$. So $W_{\chi}(T)=\left\{\xi^{m}\right\}$ by definition. Conversely, let $W_{\chi}(T)=\{\xi\}$ for some $\xi \in \mathbb{C}$. Then
$\left(K(T) x^{*}, x^{*}\right)=\xi$ for all unit decomposable tensors $x^{*} \in V_{\chi}(H)$. So $\left((K(T)-\xi I) x^{*}, x^{*}\right)=0$. Therefore, by Proposition 4.3, $K(T)=\xi I$.
Now, we see that T is a scalar operator from Theorem 3.3.
By Theorem 4.4, we know that if χ is not of the determinant type, then $W_{\chi}(T)$ is a subset of a line passing through the origin if and only if ξT is Hermitian for some $\xi \in \mathbb{C}$. In the following theorem, we determine the conditions under which $W_{\chi}(T)$ is a subset of a line not passing through the origin.

Theorem 4.7. Suppose χ is not of the determinant type, and $T \in \operatorname{End}(V)$ is non-scalar. Then $W_{\chi}(T)$ is a subset of a line not passing through the origin if and only if for every $\alpha \in \hat{\Delta}$,
$\left(m_{1}(\alpha), \ldots, m_{n}(\alpha)\right)$ is a permutation of $(k, \ldots, k, \underbrace{k+1, \ldots, k+1}_{t})$,
where $m=n k+t$ with $1 \leq t<n$, and T is an invertible normal operator such that one of the following holds:
(a): $t=1$ and the eigenvalues of T lie on a line not passing through the origin;
(b): $1<t<n-1$ and one of the eigenvalues of T has multiplicity $n-1$;
(c): $t=n-1$ and the eigenvalues of T^{-1} lie on a line not passing through the origin.

Proof. Similar to the case of linear characters (see Theorem 3.8 in [8]).

Acknowledgments

This research work was supported by Sahand University of Technology. The authors thank the referee for his/her useful comments.

References

[1] N. Bebiano, C. K. Li and J. D. Providencia, The numerical range and decomposable numerical range of matrices, Linear Multilinear Algebra 29 (1991), no. 3-4, 195-205.
[2] N. Bebiano and C. K. Li, A brief survey on the decomposable numerical range of matrices, Linear Multilinear Algebra 32 (1992), no. 3-4, 179-190.
[3] N. Bebiano, C. K. Li and J. D. Providencia, Generalized numerical ranges of permanental compounds arising from quantum systems of bosons, Electron. J. Linear Algebra 7 (2000) 73-91.
[4] K. E. Gustafson and D. K. M. Rao, Numerical Range: The Field of Values of Linear Operators and Matrices, Springer-Verlage, New York, 1997.
[5] I. M. Isaacs, Character Theory of Finite Groups, Academic Press, New YorkLondon, 1976.
[6] C. K. Li and T. Y. Tam, Operator properties of T and $K(T)$, Linear Algebra Appl. 401 (2005) 173-191.
[7] C. K. Li and A. Zaharia, Decomposable numerical range on orthonormal decomposable tensors, Linear Algebra Appl. 308 (2000), no, 1-3, 139-152.
[8] C. K. Li and A. Zaharia, Induced operators on symmetry classes of tensors, Trans. Amer. Math. Soc. 354 (2002), no. 2, 807-836.
[9] M. Marcus, Finite Dimensional Multilinear Algebra, Part I, Marcel Dekker, Inc., New York, 1973.
[10] R. Merris, Multilinear Algebra, Gordon and Breach Science Publisher, Amsterdam, 1997.
[11] H. Robinson, Quadratic forms on symmetry classes of tensors, Linear Multilinear Algebra 4 (1977), no. 4, 233-241.
(Yousef Zamani) Faculty of Sciences, Sahand University of Technology, P.O. Box 53317-11111, Tabriz, Iran

E-mail address: zamani@sut.ac.ir
(Sima Ahsani) Faculty of Sciences, Sahand University of Technology, P.O. Box 53317-11111, Tabriz, Iran

E-mail address: s-ahsani@sut.ac.ir

[^0]: Article electronically published on April 30, 2014.
 Received: 10 April 2012, Accepted: 1 March 2013.

 * Corresponding author.

