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Abstract. Let V be an n-dimensional complex inner product space.
Suppose H is a subgroup of the symmetric group of degree m, and
χ : H → C is an irreducible character (not necessarily linear).
Denote by Vχ(H) the symmetry class of tensors associated with
H and χ. Let K(T ) ∈ End(Vχ(H)) be the operator induced by
T ∈ End(V ). The decomposable numerical range Wχ(T ) of T is a
subset of the classical numerical range W (K(T )) of K(T ) defined
as:

Wχ(T ) = {(K(T )x∗, x∗) : x∗ is a decomposable unit tensor}.
In this paper, we study the interplay between the geometric proper-
ties of Wχ(T ) and the algebraic properties of T . In fact, we extend
some of the results of [C. K. Li and A. Zaharia, Decomposable nu-
merical range on orthonormal decomposable tensors, Linear Algebra
Appl. 308 (2000), no, 1-3, 139–152] and [C. K. Li and A. Zaharia,
Induced operators on symmetry classes of tensors, Trans. Amer.
Math. Soc. 354 (2002), no. 2, 807–836], to non-linear irreducible
characters.
Keywords: Symmetry class of tensors, decomposable numerical
range, induced operator.
MSC(2010): Primary: 20C15; Secondary: 15A69, 15A60.

1. Introduction

In this paper, we study the decomposable numerical range of an op-
erator T , which is defined by the induced operator K(T ) acting on sym-
metry classes of tensors. The decomposable numerical range Wχ(T ) of
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T is the set of complex numbers of the form (K(T )x∗, x∗) with x∗ rang-
ing over all decomposable unit vectors in Vχ(H), where Vχ(H) is the
symmetry class of tensors associated with H and χ. This concept has
been studied extensively because of its applications in many branches of
pure and applied mathematics (see e.g., [1, 2, 3, 7, 8]).

In Section 2, we give a review of the symmetry classes of tensors; see
[9, 10] for general background. In Section 3, we study some properties of
the induced operator. Section 4 is devoted to the study of the relations
between geometric properties of Wχ(T ) and algebraic properties of T .

2. Symmetry classes of tensors

Let V be an n-dimensional inner product space over C and H be
a subgroup of the full symmetric group Sm. Let

⊗m V be the tensor
product of m copies of V and for any σ ∈ H, define the permutation
operator

P (σ) :

m⊗
V →

m⊗
V

by

P (σ)(v1 ⊗ v2 ⊗ · · · ⊗ vm) = vσ−1(1) ⊗ vσ−1(2) ⊗ · · · ⊗ vσ−1(m).

Suppose χ is a complex irreducible character of H and define the
symmetrizer,

T (χ,H) =
χ(1)

|H|
∑
σ∈H

χ(σ)P (σ),

where |H| denotes the order of H. The range of T (χ,H),

Vχ(H) := T (χ,H)(

m⊗
V )

is called the symmetry class of tensors associated with H and χ. The
elements in Vχ(H) of the form

T (χ,H)(v1 ⊗ v2 ⊗ · · · ⊗ vm)

are called decomposable symmetrized tensors and are denoted by
v1 ∗ v2 ∗ · · · ∗ vm (or briefly v∗). The inner product on V induces an
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inner product on Vχ(H) such that

(u∗, v∗) =
χ(1)

|H|
∑
σ∈H

χ(σ)

m∏
i=1

(ui, vσ(i)).

Let {e1, . . . , en} be an orthonormal basis of V and suppose Γm,n is the
set of all m-tuples of integers α = (α(1), . . . , α(m)) with
1 ≤ α(i) ≤ n. For α = (α(1), . . . , α(m)) ∈ Γm,n, we use the nota-
tion e∗α for the decomposable symmetrized tensor eα(1) ∗ · · · ∗ eα(m). It is
clear that Vχ(H) is generated by all e∗α, α ∈ Γm,n. We define an action
of H on Γm,n by

ασ = (α(σ(1)), . . . , α(σ(m))),

for any σ ∈ H and α ∈ Γm,n. Given two elements α, β ∈ Γm,n, we say
that α ∼ β if and only if α and β lie in the same orbit. Suppose ∆ is
the set of minimum elements of orbits of this action with respect to the
lexicographic order and let Hα denote the stabilizer subgroup of α (see
[9]). Define

Ω = {α ∈ Γm,n : [χ, 1Hα ] ̸= 0},
where [ , ] denotes the inner product of characters (see [5]). It is well
known that e∗α ̸= 0, if and only if α ∈ Ω (see for example [10]). Suppose
∆̄ = ∆ ∩ Ω. For any α ∈ ∆̄, we have the subspace

V ∗
α = ⟨ e∗ασ : σ ∈ H ⟩,

where ⟨set of vectors⟩ denotes the subspace generated by a given set of
vectors.
It is proved [10] that

(e∗α, e∗β) =

{
0 if α ≁ β,
χ(1)
|H|

∑
σ∈Hα

χ(σ) if α = β,

and thus

∥e∗α∥2 =
χ(1)

|H|
∑
σ∈Hα

χ(σ).

Hence we have the orthogonal decomposition [10]

Vχ(H) =
·∑

α∈∆̄

V ∗
α .
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It is also proved that

sα := dimV ∗
α = χ(1)[χ, 1Hα ],

and in particular, if χ is linear, then sα = 1. So the set

{e∗α : α ∈ ∆̄}
is a basis of Vχ(H). In the general case, let α ∈ ∆̄ and suppose

e∗ασ1
, e∗ασ2

, . . . , e∗ασt

is a basis of V ∗
α . Let

Aα = {ασ1, ασ2, . . . , ασt}.

Then we define ∆̂ =
∪

α∈∆̄Aα. It is clear that

∆̄ ⊆ ∆̂ ⊆ Ω,

and the set
{e∗α : α ∈ ∆̂}

is a basis of Vχ(H). But in general, this basis may be non-orthogonal
(see [6]). Let mj(α) be the number of occurrences of j in the sequence

α ∈ ∆̂.

3. Some properties of induced operators

Let V be an n-dimensional inner product space over C. Let H be a
subgroup of the full symmetric group Sm and suppose χ is a complex
irreducible character of H. For any T ∈ End(V ), there is a unique
induced operator K(T ) acting on Vχ(H) satisfying

K(T )v1 ∗ · · · ∗ vm = Tv1 ∗ · · · ∗ Tvm.

Indeed Vχ(H) is an invariant subspace of
⊗m T and K(T ) is the restric-

tion
⊗m T to Vχ(H) (see [10, p. 185]). Clearly K(ξT ) = ξmK(T ), ξ ∈

C.

IfH = Sm and χ ≡ 1 is the principal character ofH, then Vχ(H) is the
mth completely symmetric space over V and K(T ) is the mth induced
power of T , usually denoted by Pm(T ). If H = Sm and χ is the alter-
nating character, that is χ(σ) = sgn(σ), then Vχ(H) is the mth exterior
space over V and K(T ) is the mth compound of T , usually denoted by
Cm(T ). If H = {1}, where 1 is the identity in Sm (χ ≡ 1 is the only
irreducible character of H), then Vχ(H) =

⊗m V and K(T ) =
⊗m T is
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the mth tensor power of T .

The following contains some properties of the induced operator.

Proposition 3.1. [10]. Let S, T be linear operators on V and assume
∆̄ ̸= Ø.

(a): K(IV ) = IVχ(H).
(b): K(ST ) = K(S)K(T ).
(c): T is invertible if and only if K(T ) is . Moreover, we have

K(T−1) = K(T )−1.
(d): K(T ∗) = K(T )∗.
(e): If T is normal, unitary, positive (semi)-definite, Hermitian or

skew-Hermitian (when m is odd), then so is K(T ).
(f): If T has eigenvalues λ1, . . . , λn, then for any σ ∈ Sn, K(T )

has eigenvalues
∏n

j=1 λ
mj(α)

σ(j) , α ∈ ∆̂.

(g): If rank (T ) = r, then rank (K(T )) = |Γm,r
∩

∆̂|.

We shall use µ(∆̄) to denote the smallest integer r such that

Γm, r ∩ ∆̄ ̸= Ø. Similarly we can define µ(∆̂), but it is clear that

µ(∆̄) = µ(∆̂). By Proposition 3.1, if rank (T ) = r, then rank (K(T )) =

|Γm, r ∩ µ(∆̂)|. Thus an operator T on V satisfies K(T ) = 0 if and only
if rank(T ) < µ(∆̄).

We say that χ is of determinant type if every element α ∈ ∆̄ satisfies

m1(α) = · · · = mn(α) =
m

n
,

with µ(∆̄) > 1. Furthermore, we say that χ is of special type if every
element α ∈ Γm, r ∩ ∆̄ satisfies

m1(α) = · · · = mr(α),

with r = µ(∆̄) > 1.
Otherwise, we say that χ is of general type. Notice that the determinant
type is a particular case of the special type. One can find examples of
different types of characters in [6].

Theorem 3.2. Suppose χ is not of the determinant type, and T ∈
End(V ). Suppose η ∈ C with |η| = 1. Then ηK(T ) is positive definite
if and only if there exists ξ ∈ C with ξm = η such that ξT is positive
definite.
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Proof. The necessity part is clear. The converse is proved in
[6, Theorem 5.3]. □

Theorem 3.3. [6]. Suppose χ is not of the determinant type. Let
T ∈ End(V ). Then K(T ) is unitary or a nonzero scalar operator if and
only if T has the corresponding property.

Theorem 3.4. Let r = µ(∆̄) and T ∈ End(V ) with rank(T ) ≥ r. Let
η ∈ C with |η| = 1. Then ηK(T ) is (i) Hermitian, (ii) positive semi-
definite if and only if one of the following holds:

(a) There exists ξ ∈ C such that ξT has the corresponding property, where
ξm = ±η for case (i) and ξm = η for case (ii) .

(b) χ is of the special type, and T = T1 ⊕ 0, where T1 is an invertible

operator acting on an r-dimensional subspace V1 of V , and η (det T1)
m/r

is real or positive according to case (i) or (ii).

Proof. The necessary part is proved in [6, Theorem 5.5]. Now we prove
the converse. If (a) holds, then the assertion is clear. Suppose (b) holds.
Then V = V1 ⊕ V ⊥

1 such that V1 is invariant under both T and T ∗; T1

is the restriction of T on V1, and the restriction of T on V ⊥
1 is the zero

operator. Thus

m⊗
V =

m⊗
V1

⊕
(

m⊗
V1)

⊥.

By applying T (χ,H) to the both sides of the equation above, we get

Vχ(H) = V1χ(H)
⊕

V1χ(H)⊥.

It is easy to see that V1χ(H) is invariant under both K(T ) and K(T )∗;
K(T1) is the restriction of K(T ) on V1χ(H).

Now suppose u ∈ V1χ(H)⊥. Then u = T (χ,H)(z), where

z ∈ (
⊗m V1)

⊥, because V1χ(H)⊥ = T (χ,H)((
⊗m V1)

⊥).
Since

(⊗mV1)
⊥ = V ⊥

1 ⊗V1⊗· · ·⊗V1+V1⊗V ⊥
1 ⊗· · ·⊗V1+ · · · +V1⊗· · ·⊗V1⊗V ⊥

1 ,
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so z =
∑

w1 ⊗ · · · ⊗ wm, where at least one of the wi belongs to V ⊥
1 .

Hence

K(T )u = K(T )T (χ,H)z

= K(T )(
∑

w1 ∗ · · · ∗ wm)

=
∑

Tw1 ∗ · · · ∗ Twm

= 0, (V1 ⊆ Ker T).

This implies that K(T ) = K(T1)⊕ 0.
Since χ is of the special type, so by Theorem 4.1 in [6], K(T ) is a multiple
of an orthogonal projection PT on Vχ(H), i.e., K(T ) = ξPT . Indeed PT

is the natural projection from Vχ(H) onto V1χ(H). Thus the restriction
PT on V1χ(H) is the identity. Since K(T1) is the restriction K(T ) on to

V1χ(H), so K(T1) = ξ I. Now we show that ξ = ( detT1)
m
r . Suppose T1

has eigenvalues λ1, . . . , λr. Then

r∏
j=1

λ
mj(α)
j , α ∈ Γm, r ∩ ∆̂

are the eigenvalues of K(T1). Since χ is of the special type, so by

Theorem 4.1 in [6], m1(α) = · · · = mr(α) =
m
r for every α ∈ Γm, r ∩ ∆̂.

Hence

r∏
j=1

λ
mj(α)
j =

r∏
j=1

λ
m
r
j =

 r∏
j=1

λj

m
r

= (det T1)
m
r ,

is the only eigenvalue of T1. Thus ξ = (det T1)
m
r . Therefore η K(T ) =

η(det T1)
m
r PT . Since PT is an orthogonal projection and by assumption

η (det T1)
m/r is real or positive, so the result follows from the fact that

every orthogonal projection is a positive semi-definite operator. □

4. Decomposable numerical range

Let V be a finite dimensional inner product space over C and
T ∈ End(V ). Let H be a subgroup of the full symmetric group Sm

and let χ be a complex irreducible character of H. The decomposable
numerical range of T is defined by

Wχ(T ) = {(K(T )x∗, x∗) : x∗ is a decomposable unit tensor in Vχ(H)}.
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Evidently, when m = 1, Wχ(T ) reduces to the classical numerical range
W (T ). Since the set of decomposable unit tensors is usually a proper
subset of the unit vectors in Vχ(H), we have

Wχ(T ) ⊆ W (K(T )),

and the inclusion is often strict.
The following lemma can be easily proved by using elementary properties
of induced operators.

Lemma 4.1. Let T ∈ End(V ). Then

(a) For any µ ∈ C, Wχ(µT ) = µmWχ(T ).

b) The set Wχ(T ) is invariant under unitary similarities, i.e., Wχ(T ) =
Wχ(U

∗TU) for any unitary operator U .

There is an interesting interplay between the geometric properties of
W (T ) and the algebraic properties of the operator T . For example, we
have the following result (see [4]).

Proposition 4.2. Let T ∈ End(V ).

(a) W (T ) = {λ} if and only if T = λI.

(b) W (T ) ⊆ R if and only if T is Hermitian.

(c) W (T ) ⊆ (0,∞) if and only if T is positive definite.

(d) W (T ) has no interior point if and only if T is a normal operator with
eigenvalues lying on a straight line.

In [7], Proposition 4.2 was generalized to the decomposable numerical
range, when the irreducible character χ is linear. In this paper, it is gen-
eralized to arbitrary irreducible characters. The following theorem is a
generalization of Theorem 3.5 in [8], to non-linear irreducible characters
of G. We need the following result of Robinson [11].

Proposition 4.3. A linear operator L on Vχ(H) satisfies (Lv∗, v∗) = 0
for all decomposable tensors v∗ = v1 ∗ · · · ∗ vm ∈ Vχ(H) if and only if
L = 0.

Theorem 4.4. Let r = µ(∆̄) and T ∈ End(V ) with rank(T ) ≥ r. Let
η ∈ C with |η| = 1. Then Wχ(T ) is a subset of
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(i) ηR or (ii) η[0,∞) if and only if one of the following conditions holds.

(a) There exists ξ ∈ C such that ξT is (i) Hermitian or (ii) positive semi-
definite, where ξm = ±η̄ for case (i) and ξm = η̄ for case (ii).

(b) χ is of the special type and T = T1⊕0, where T1 is an operator acting

on an r-dimensional subspace V1 of V and η̄(det T1)
m
r is (i) real or (ii)

nonnegative according to case (i), or (ii).

Proof. If χ and T satisfy (a) or (b), then η̄K(T ) is (i) Hermitian (ii)
positive semi-definite by Theorem 3.4. So Wχ(T ) is a subset of ηR or
η[0,∞), by Proposition 4.2.
Conversely, suppose Wχ(T ) ⊆ η̄R or η[0,∞). Then(

(ηK(T )∗ − η̄K(T ))v∗, v∗
)

= η(K(T )∗v∗, v∗)− η̄(K(T )v∗, v∗)

= η(v∗,K(T )v∗)− η̄(K(T )v∗, v∗)

= η(K(T )v∗, v∗)− η̄(K(T )v∗, v∗)

= 0,

for all unit decomposable tensors v∗ ∈ Vχ(H). By Proposition 4.3,
ηK(T )∗ − η̄K(T ) = 0, i.e., η̄K(T ) is Hermitian.
Applying Theorem 3.4, we see that T satisfies (a) or (b). □

Corollary 4.5. Let χ be not of the determinant type. Let T ∈ End(V ).
Then T is (i) Hermitian, (ii) positive semi- definite if and only if
Wχ(T + ηI) ⊆ S for all η ∈ S with (i) S = R,(ii) S = [0,∞).

Proof. If T is (i) Hermitian, (ii) positive semi-definite, then for any
η ∈ S with (i) S = R, (ii) S = [0,∞), K(T + ηI) has the corresponding
property. So the result follows from Proposition 4.2.

Conversely, suppose that Wχ(T + ηI) ⊆ R for all η ∈ R. If η ∈ R
is not an eigenvalue of T , then T + ηI is an invertible operator. Thus
rank(T + ηI) ≥ r = µ(∆̄). So, T + ηI satisfies (a) or (b) of Theorem
4.4. If (b) holds, then χ is of the special type, and T + ηI = T1 ⊕ 0,
where T1 is an invertible operator acting on an r-dimensional subspace.
Since T + ηI is invertible, so T + ηI = T1, i.e., r = n, and χ is of the
determinant type, a contradiction. Thus (a) holds and there exists ξ ∈ C
with ξm = ±1 such that ξ(T + ηI) is Hermitian.
Since the number of the mth roots of unity is finite, there exist two
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distinct real numbers η1 and η2 such that ξ(T + η1I) and ξ(T + η2I) are
Hermitian, where ξ is an mth root of unity, i.e.,

ξ̄(T ∗ + η1I) = ξ(T + η1I),

ξ̄(T ∗ + η2I) = ξ(T + η2I).

Thus ξ̄(η1 − η2)I = ξ(η1 − η2)I, and we get ξ = ξ̄. Hence T = T ∗ and
the assertion holds.

Now, suppose that Wχ(T + ηI) ⊆ [0,∞) for all η ∈ [0,∞). Similar to
the proof of case (i), where S = R, we conclude that T is a Hermitian
operator. To prove that T is positive semi-definite, we show that the
eigenvalues of T are all nonnegative (see [10, Corollary 2.35]).
Let λ be an eigenvalue of T and v be the corresponding eigenvec-
tor. Since the number of the mth roots of unity is finite, hence sim-
ilar to the proof of case (i), there exist a complex number ξ with
ξm = 1 and a decreasing sequence {ηn} of real positive numbers such
that η1 > −λ, ηn → 0 and for any n ∈ N, ξ(T + ηnI) is positive semi-
definite. This implies that ξ(λ+ηn) ≥ 0 for every n ∈ N. Since η1 > −λ,
so we must have ξ = 1 and hence λ + ηn ≥ 0 for all n > 1. Using the
fact that ηn → 0 completes the proof. □
Theorem 4.6. Suppose χ is not of the determinant type. Let T ∈
End(V ) and η ∈ C with |η| = 1.

(a) Wχ(T ) ⊆ η(0,∞) if and only if there exists ξ ∈ C with ξm = η̄ such
that ξT is positive definite.

(b) Wχ(T ) is a singleton if and only if T is a scalar operator.

Proof.
(a) Suppose Wχ(T ) ⊆ η(0,∞). Then η̄ Wχ(T ) ⊆ (0,∞). So
(η̄K(T )x∗, x∗) > 0 for all unit decomposable tensors x∗. Therefore
η̄K(T ) is positive definite. By Theorem 3.2, we see that there exists
ξ ∈ C with ξm = η̄ such that ξ T is positive definite.
Conversely, assume that there exists ξ ∈ C with ξm = η̄ such that
ξT is positive definite. Then η̄K(T ) = ξmK(T ) = K(ξT ) is posi-
tive definite. So W (η̄K(T )) ⊆ (0,∞), by Proposition 4.2. Therefore
Wχ(T ) ⊆ W (K(T )) ⊆ η(0,∞).

(b) If T = ξI for some ξ ∈ C, then K(T ) = ξmI. So Wχ(T ) = {ξm}
by definition. Conversely, let Wχ(T ) = {ξ} for some ξ ∈ C. Then
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(K(T )x∗, x∗) = ξ for all unit decomposable tensors x∗ ∈ Vχ(H). So
((K(T )− ξI)x∗, x∗) = 0. Therefore, by Proposition 4.3, K(T ) = ξI.
Now, we see that T is a scalar operator from Theorem 3.3. □

By Theorem 4.4, we know that if χ is not of the determinant type,
then Wχ(T ) is a subset of a line passing through the origin if and only if
ξT is Hermitian for some ξ ∈ C. In the following theorem, we determine
the conditions under which Wχ(T ) is a subset of a line not passing
through the origin.

Theorem 4.7. Suppose χ is not of the determinant type, and
T ∈ End(V ) is non-scalar. Then Wχ(T ) is a subset of a line not passing

through the origin if and only if for every α ∈ ∆̂,

(m1(α), . . . ,mn(α)) is a permutation of (k, . . . , k, k + 1, . . . , k + 1︸ ︷︷ ︸
t

),

where m = nk+t with 1 ≤ t < n, and T is an invertible normal operator
such that one of the following holds:

(a): t = 1 and the eigenvalues of T lie on a line not passing through
the origin;

(b): 1 < t < n− 1 and one of the eigenvalues of T has multiplicity
n− 1;

(c): t = n− 1 and the eigenvalues of T−1 lie on a line not passing
through the origin.

Proof. Similar to the case of linear characters (see Theorem 3.8 in [8]).
□
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