Title:
On the decomposable numerical range of operators

Author(s):
Y. Zamani and S. Ahsani
ON THE DECOMPOSABLE NUMERICAL RANGE OF OPERATORS

Y. ZAMANI* AND S. AHSANI

(Communicated by Abbas Salemi)

ABSTRACT. Let V be an n-dimensional complex inner product space. Suppose H is a subgroup of the symmetric group of degree m, and $\chi : H \to \mathbb{C}$ is an irreducible character (not necessarily linear). Denote by $V_\chi(H)$ the symmetry class of tensors associated with H and χ. Let $K(T) \in \text{End}(V_\chi(H))$ be the operator induced by $T \in \text{End}(V)$. The decomposable numerical range $W_\chi(T)$ of T is a subset of the classical numerical range $W(K(T))$ of $K(T)$ defined as:

$$W_\chi(T) = \{(K(T)x^*, x^*) : x^* \text{ is a decomposable unit tensor}\}.$$

In this paper, we study the interplay between the geometric properties of $W_\chi(T)$ and the algebraic properties of T. In fact, we extend some of the results of [C. K. Li and A. Zaharia, Decomposable numerical range on orthonormal decomposable tensors, Linear Algebra Appl. 308 (2000), no. 1-3, 139–152] and [C. K. Li and A. Zaharia, Induced operators on symmetry classes of tensors, Trans. Amer. Math. Soc. 354 (2002), no. 2, 807–836], to non-linear irreducible characters.

Keywords: Symmetry class of tensors, decomposable numerical range, induced operator.

1. Introduction

In this paper, we study the decomposable numerical range of an operator T, which is defined by the induced operator $K(T)$ acting on symmetry classes of tensors. The decomposable numerical range $W_\chi(T)$ of
T is the set of complex numbers of the form $(K(T)x^*, x^*)$ with x^* ranging over all decomposable unit vectors in $V_\chi(H)$, where $V_\chi(H)$ is the symmetry class of tensors associated with H and χ. This concept has been studied extensively because of its applications in many branches of pure and applied mathematics (see e.g., [1, 2, 3, 7, 8]).

In Section 2, we give a review of the symmetry classes of tensors; see [9, 10] for general background. In Section 3, we study some properties of the induced operator. Section 4 is devoted to the study of the relations between geometric properties of $W_\chi(T)$ and algebraic properties of T.

2. Symmetry classes of tensors

Let V be an n-dimensional inner product space over \mathbb{C} and H be a subgroup of the full symmetric group S_m. Let $\otimes^m V$ be the tensor product of m copies of V and for any $\sigma \in H$, define the permutation operator

$$P(\sigma) : \otimes^m V \to \otimes^m V$$

by

$$P(\sigma)(v_1 \otimes v_2 \otimes \cdots \otimes v_m) = v_{\sigma^{-1}(1)} \otimes v_{\sigma^{-1}(2)} \otimes \cdots \otimes v_{\sigma^{-1}(m)}.$$

Suppose χ is a complex irreducible character of H and define the symmetrizer,

$$T(\chi, H) = \frac{\chi(1)}{|H|} \sum_{\sigma \in H} \chi(\sigma) P(\sigma),$$

where $|H|$ denotes the order of H. The range of $T(\chi, H)$,

$$V_\chi(H) := T(\chi, H)(\otimes^m V)$$

is called the symmetry class of tensors associated with H and χ. The elements in $V_\chi(H)$ of the form

$$T(\chi, H)(v_1 \otimes v_2 \otimes \cdots \otimes v_m)$$

are called decomposable symmetrized tensors and are denoted by $v_1 * v_2 * \cdots * v_m$ (or briefly v^*). The inner product on V induces an
inner product on $V_{\chi}(H)$ such that

$$(u^*, v^*) = \frac{\chi(1)}{|H|} \sum_{\sigma \in H} \chi(\sigma) \prod_{i=1}^{m} (u_{\sigma(i)}, v_{\sigma(i)}).$$

Let $\{e_1, \ldots, e_n\}$ be an orthonormal basis of V and suppose $\Gamma_{m,n}$ is the set of all m-tuples of integers $\alpha = (\alpha(1), \ldots, \alpha(m))$ with $1 \leq \alpha(i) \leq n$. For $\alpha = (\alpha(1), \ldots, \alpha(m)) \in \Gamma_{m,n}$, we use the notation e_α^* for the decomposable symmetrized tensor $e_{\alpha(1)} \cdots e_{\alpha(m)}$. It is clear that $V_{\chi}(H)$ is generated by all e_α^*, $\alpha \in \Gamma_{m,n}$. We define an action of H on $\Gamma_{m,n}$ by

$$\alpha \sigma = (\alpha(\sigma(1)), \ldots, \alpha(\sigma(m))),$$

for any $\sigma \in H$ and $\alpha \in \Gamma_{m,n}$. Given two elements $\alpha, \beta \in \Gamma_{m,n}$, we say that $\alpha \sim \beta$ if and only if α and β lie in the same orbit. Suppose Δ is the set of minimum elements of orbits of this action with respect to the lexicographic order and let H_α denote the stabilizer subgroup of α (see [9]). Define

$$\Omega = \{\alpha \in \Gamma_{m,n} : [\chi, 1_{H_\alpha}] \neq 0\},$$

where $[\cdot, \cdot]$ denotes the inner product of characters (see [5]). It is well known that $e_\alpha^* \neq 0$, if and only if $\alpha \in \Omega$ (see for example [10]). Suppose $\Delta = \Delta \cap \Omega$. For any $\alpha \in \Delta$, we have the subspace

$$V^*_\alpha = \langle e_{\alpha \sigma}^* : \sigma \in H \rangle,$$

where $\langle \text{set of vectors} \rangle$ denotes the subspace generated by a given set of vectors.

It is proved [10] that

$$(e_\alpha^*, e_\beta^*) = \begin{cases} 0 & \text{if } \alpha \sim \beta, \\ \frac{\chi(1)}{|H|} \sum_{\sigma \in H_\alpha} \chi(\sigma) & \text{if } \alpha = \beta, \end{cases}$$

and thus

$$\|e_\alpha^*\|^2 = \frac{\chi(1)}{|H|} \sum_{\sigma \in H_\alpha} \chi(\sigma).$$

Hence we have the orthogonal decomposition [10]

$$V_{\chi}(H) = \sum_{\alpha \in \Delta} V^*_\alpha.$$
It is also proved that
\[s_\alpha := \dim V_\alpha^* = \chi(1)[\chi, 1_H], \]
and in particular, if \(\chi \) is linear, then \(s_\alpha = 1 \). So the set
\[\{ e_\alpha^* : \alpha \in \tilde{\Delta} \} \]
is a basis of \(V_\chi(H) \). In the general case, let \(\alpha \in \tilde{\Delta} \) and suppose
\[e_{\alpha\sigma_1}^*, e_{\alpha\sigma_2}^*, \ldots, e_{\alpha\sigma_t}^* \]
is a basis of \(V_\alpha^* \). Let
\[A_\alpha = \{ \alpha\sigma_1, \alpha\sigma_2, \ldots, \alpha\sigma_t \}. \]
Then we define \(\tilde{\Delta} = \bigcup_{\alpha \in \Delta} A_\alpha \). It is clear that
\[\Delta \subseteq \tilde{\Delta} \subseteq \Omega, \]
and the set
\[\{ e_\alpha^* : \alpha \in \tilde{\Delta} \} \]
is a basis of \(V_\chi(H) \). But in general, this basis may be non-orthogonal (see [6]). Let \(m_j(\alpha) \) be the number of occurrences of \(j \) in the sequence \(\alpha \in \tilde{\Delta} \).

3. Some properties of induced operators

Let \(V \) be an \(n \)-dimensional inner product space over \(\mathbb{C} \). Let \(H \) be a subgroup of the full symmetric group \(S_m \) and suppose \(\chi \) is a complex irreducible character of \(H \). For any \(T \in \text{End}(V) \), there is a unique induced operator \(K(T) \) acting on \(V_\chi(H) \) satisfying
\[K(T)v_1 \ast \cdots \ast v_m = Tv_1 \ast \cdots \ast Tv_m. \]
Indeed \(V_\chi(H) \) is an invariant subspace of \(\bigotimes^m T \) and \(K(T) \) is the restriction \(\bigotimes^m T \) to \(V_\chi(H) \) (see [10, p. 185]). Clearly \(K(\xi T) = \xi^m K(T) \), \(\xi \in \mathbb{C} \).

If \(H = S_m \) and \(\chi \equiv 1 \) is the principal character of \(H \), then \(V_\chi(H) \) is the \(m \)th completely symmetric space over \(V \) and \(K(T) \) is the \(m \)th induced power of \(T \), usually denoted by \(P_m(T) \). If \(H = S_m \) and \(\chi \) is the alternating character, that is \(\chi(\sigma) = \text{sgn}(\sigma) \), then \(V_\chi(H) \) is the \(m \)th exterior space over \(V \) and \(K(T) \) is the \(m \)th compound of \(T \), usually denoted by \(C_m(T) \). If \(H = \{1\} \), where 1 is the identity in \(S_m \) (\(\chi \equiv 1 \) is the only irreducible character of \(H \)), then \(V_\chi(H) = \bigotimes^m V \) and \(K(T) = \bigotimes^m T \) is
Proposition 3.1. [10]. Let S, T be linear operators on V and assume \(\Delta \neq \emptyset \).

(a): \(K(I_V) = I_{V^N} \).
(b): \(K(ST) = K(S)K(T) \).
(c): T is invertible if and only if $K(T)$ is. Moreover, we have $K(T^{-1}) = K(T)^{-1}$.
(d): \(K(T^*) = K(T)^* \).
(e): If T is normal, unitary, positive (semi)-definite, Hermitian or skew-Hermitian (when m is odd), then so is $K(T)$.
(f): If T has eigenvalues $\lambda_1, \ldots, \lambda_n$, then for any $\sigma \in S_n$, $K(T)$ has eigenvalues $\prod_{j=1}^n \lambda_{\sigma(j)}^{m_j(\alpha)}$, $\alpha \in \tilde{\Delta}$.
(g): If rank(T) = r, then rank($K(T)$) = $|\Gamma_{m, r} \cap \tilde{\Delta}|$.

We shall use $\mu(\tilde{\Delta})$ to denote the smallest integer r such that $\Gamma_{m, r} \cap \tilde{\Delta} \neq \emptyset$. Similarly we can define $\mu(\Delta)$, but it is clear that $\mu(\Delta) = \mu(\tilde{\Delta})$. By Proposition 3.1, if rank(T) = r, then rank($K(T)$) = $|\Gamma_{m, r} \cap \mu(\Delta)|$. Thus an operator T on V satisfies $K(T) = 0$ if and only if rank(T) < $\mu(\Delta)$.

We say that χ is of determinant type if every element $\alpha \in \tilde{\Delta}$ satisfies

$$m_1(\alpha) = \cdots = m_n(\alpha) = \frac{m}{n},$$

with $\mu(\tilde{\Delta}) > 1$. Furthermore, we say that χ is of special type if every element $\alpha \in \Gamma_{m, r} \cap \tilde{\Delta}$ satisfies

$$m_1(\alpha) = \cdots = m_r(\alpha),$$

with $r = \mu(\tilde{\Delta}) > 1$.

Otherwise, we say that χ is of general type. Notice that the determinant type is a particular case of the special type. One can find examples of different types of characters in [6].

Theorem 3.2. Suppose χ is not of the determinant type, and $T \in \text{End}(V)$. Suppose $\eta \in \mathbb{C}$ with $|\eta| = 1$. Then $\eta K(T)$ is positive definite if and only if there exists $\xi \in \mathbb{C}$ with $\xi^m = \eta$ such that ξT is positive definite.
Proof. The necessity part is clear. The converse is proved in [6, Theorem 5.3].

Theorem 3.3. [6]. Suppose χ is not of the determinant type. Let $T \in \text{End}(V)$. Then $K(T)$ is unitary or a nonzero scalar operator if and only if T has the corresponding property.

Theorem 3.4. Let $r = \mu(\Delta)$ and $T \in \text{End}(V)$ with rank$(T) \geq r$. Let $\eta \in \mathbb{C}$ with $|\eta| = 1$. Then $\eta K(T)$ is (i) Hermitian, (ii) positive semi-definite if and only if one of the following holds:

(a) There exists $\xi \in \mathbb{C}$ such that ξT has the corresponding property, where $\xi^m = \pm \eta$ for case (i) and $\xi^m = \eta$ for case (ii).

(b) χ is of the special type, and $T = T_1 \oplus 0$, where T_1 is an invertible operator acting on an r-dimensional subspace V_1 of V, and $\eta(\det T_1)^{m/r}$ is real or positive according to case (i) or (ii).

Proof. The necessary part is proved in [6, Theorem 5.5]. Now we prove the converse. If (a) holds, then the assertion is clear. Suppose (b) holds. Then $V = V_1 \oplus V_1^\perp$ such that V_1 is invariant under both T and T^*; T_1 is the restriction of T on V_1, and the restriction of T on V_1^\perp is the zero operator. Thus

$$\bigotimes^m V = \bigotimes^m V_1 \bigoplus \bigotimes^m (V_1^\perp).$$

By applying $T(\chi, H)$ to the both sides of the equation above, we get

$$V_\chi(H) = V_1 \chi(H) \bigoplus V_1(\chi(H))^\perp.$$

It is easy to see that $V_1 \chi(H)$ is invariant under both $K(T)$ and $K(T)^*$; $K(T_1)$ is the restriction of $K(T)$ on $V_1 \chi(H)$.

Now suppose $u \in V_1 \chi(H)^\perp$. Then $u = T(\chi, H)(z)$, where $z \in (\bigotimes^m V_1)^\perp$, because $V_1 \chi(H)^\perp = T(\chi, H)((\bigotimes^m V_1)^\perp)$. Since

$$(\bigotimes^m V_1)^\perp = V_1^\perp \otimes V_1 \otimes \cdots \otimes V_1 + V_1 \otimes V_1^\perp \otimes \cdots \otimes V_1 + \cdots + V_1 \otimes \cdots \otimes V_1 \otimes V_1^\perp,$$
so \(z = \sum w_1 \otimes \cdots \otimes w_m \), where at least one of the \(w_i \) belongs to \(V_1^\perp \). Hence

\[
K(T)u = K(T)T(\chi, H)z = K(T)(\sum w_1 \cdots \cdot w_m) = \sum Tw_1 \cdots \cdot Tw_m = 0, \quad (V_1 \subseteq \text{Ker } T).
\]

This implies that \(K(T) = K(T_1) \oplus 0 \).

Since \(\chi \) is of the special type, so by Theorem 4.1 in [6], \(K(T) \) is a multiple of an orthogonal projection \(P_T \) on \(V_\chi(H) \), i.e., \(K(T) = \xi P_T \). Indeed \(P_T \) is the natural projection from \(V_\chi(H) \) onto \(V_1 \chi(H) \). Thus the restriction \(P_T \) on \(V_1 \chi(H) \) is the identity. Since \(K(T_1) \) is the restriction \(K(T) \) on to \(V_1 \chi(H) \), so \(K(T_1) = \xi I \). Now we show that \(\xi = (\det T_1)^\frac{m}{r} \). Suppose \(T_1 \) has eigenvalues \(\lambda_1, \ldots, \lambda_r \). Then

\[
\prod_{j=1}^r \lambda_j^{m_j(\alpha)}, \quad \alpha \in \Gamma_m, r \cap \Delta
\]

are the eigenvalues of \(K(T_1) \). Since \(\chi \) is of the special type, so by Theorem 4.1 in [6], \(m_1(\alpha) = \cdots = m_r(\alpha) = \frac{m}{r} \) for every \(\alpha \in \Gamma_m, r \cap \Delta \). Hence

\[
\prod_{j=1}^r \lambda_j^{m_j(\alpha)} = \prod_{j=1}^r \lambda_j^{m} = \left(\prod_{j=1}^r \lambda_j \right)^{\frac{m}{r}} = (\det T_1)^{\frac{m}{r}},
\]

is the only eigenvalue of \(T_1 \). Thus \(\xi = (\det T_1)^\frac{m}{r} \). Therefore \(\eta K(T) = \eta(\det T_1)^\frac{m}{r} P_T \). Since \(P_T \) is an orthogonal projection and by assumption \(\eta (\det T_1)^{m/r} \) is real or positive, so the result follows from the fact that every orthogonal projection is a positive semi-definite operator. \(\square \)

4. Decomposable numerical range

Let \(V \) be a finite dimensional inner product space over \(\mathbb{C} \) and \(T \in \text{End}(V) \). Let \(H \) be a subgroup of the full symmetric group \(S_m \) and let \(\chi \) be a complex irreducible character of \(H \). The decomposable numerical range of \(T \) is defined by

\[
W_\chi(T) = \{ (K(T)x^*, x^*) : x^* \text{ is a decomposable unit tensor in } V_\chi(H) \}.
\]
Evidently, when $m = 1$, $W_\chi(T)$ reduces to the classical numerical range $W(T)$. Since the set of decomposable unit tensors is usually a proper subset of the unit vectors in $V_\chi(H)$, we have

$$W_\chi(T) \subseteq W(K(T)),$$

and the inclusion is often strict.

The following lemma can be easily proved by using elementary properties of induced operators.

Lemma 4.1. Let $T \in \text{End}(V)$. Then

(a) For any $\mu \in \mathbb{C}$, $W_\chi(\mu T) = \mu^m W_\chi(T)$.

(b) The set $W_\chi(T)$ is invariant under unitary similarities, i.e., $W_\chi(T) = W_\chi(U^*TU)$ for any unitary operator U.

There is an interesting interplay between the geometric properties of $W(T)$ and the algebraic properties of the operator T. For example, we have the following result (see [4]).

Proposition 4.2. Let $T \in \text{End}(V)$.

(a) $W(T) = \{\lambda\}$ if and only if $T = \lambda I$.

(b) $W(T) \subseteq \mathbb{R}$ if and only if T is Hermitian.

(c) $W(T) \subseteq (0, \infty)$ if and only if T is positive definite.

(d) $W(T)$ has no interior point if and only if T is a normal operator with eigenvalues lying on a straight line.

In [7], Proposition 4.2 was generalized to the decomposable numerical range, when the irreducible character χ is linear. In this paper, it is generalized to arbitrary irreducible characters. The following theorem is a generalization of Theorem 3.5 in [8], to non-linear irreducible characters of G. We need the following result of Robinson [11].

Proposition 4.3. A linear operator L on $V_\chi(H)$ satisfies $(Lv^*, v^*) = 0$ for all decomposable tensors $v^* = v_1 \ast \cdots \ast v_m \in V_\chi(H)$ if and only if $L = 0$.

Theorem 4.4. Let $r = \mu(\Delta)$ and $T \in \text{End}(V)$ with $\text{rank}(T) \geq r$. Let $\eta \in \mathbb{C}$ with $|\eta| = 1$. Then $W_\chi(T)$ is a subset of
(i) $\eta\mathbb{R}$ or (ii) $\eta[0,\infty)$ if and only if one of the following conditions holds.

(a) There exists $\xi \in \mathbb{C}$ such that ξT is (i) Hermitian or (ii) positive semi-definite, where $\xi^m = \pm \eta$ for case (i) and $\xi^m = \bar{\eta}$ for case (ii).

(b) χ is of the special type and $T = T_1 \oplus 0$, where T_1 is an operator acting on an r-dimensional subspace V_1 of V and $\eta(|\det T_1|)^{\frac{1}{m}}$ is (i) real or (ii) nonnegative according to case (i), or (ii).

Proof. If χ and T satisfy (a) or (b), then $\eta K(T)$ is (i) Hermitian or (ii) positive semi-definite by Theorem 3.4. So $W_\chi(T)$ is a subset of $\eta\mathbb{R}$ or $\eta[0,\infty)$, by Proposition 4.2.

Conversely, suppose $W_\chi(T) \subseteq \eta\mathbb{R}$ or $\eta[0,\infty)$. Then

$$
\left((\eta K(T)^* - \bar{\eta} K(T)) v^*, v^* \right) = \eta (K(T)^* v^*, v^*) - \bar{\eta} (K(T) v^*, v^*) = 0,
$$

for all unit decomposable tensors $v^* \in V_\chi(H)$. By Proposition 4.3, $\eta K(T)^* - \bar{\eta} K(T) = 0$, i.e., $\eta K(T)$ is Hermitian.

Applying Theorem 3.4, we see that T satisfies (a) or (b). \square

Corollary 4.5. Let χ be not of the determinant type. Let $T \in \text{End}(V)$. Then T is (i) Hermitian, (ii) positive semi-definite if and only if $W_\chi(T + \eta I) \subseteq S$ for all $\eta \in S$ with (i) $S = \mathbb{R}$, (ii) $S = [0,\infty)$.

Proof. If T is (i) Hermitian, (ii) positive semi-definite, then for any $\eta \in S$ with (i) $S = \mathbb{R}$, (ii) $S = [0,\infty)$, $K(T + \eta I)$ has the corresponding property. So the result follows from Proposition 4.2.

Conversely, suppose that $W_\chi(T + \eta I) \subseteq \mathbb{R}$ for all $\eta \in \mathbb{R}$. If $\eta \in \mathbb{R}$ is not an eigenvalue of T, then $T + \eta I$ is an invertible operator. Thus $\text{rank}(T + \eta I) \geq r = \mu(\Delta)$. So, $T + \eta I$ satisfies (a) or (b) of Theorem 4.4. If (b) holds, then χ is of the special type, and $T + \eta I = T_1 \oplus 0$, where T_1 is an invertible operator acting on an r-dimensional subspace. Since $T + \eta I$ is invertible, so $T + \eta I = T_1$, i.e., $r = n$, and χ is of the determinant type, a contradiction. Thus (a) holds and there exists $\xi \in \mathbb{C}$ with $\xi^m = \pm 1$ such that $\xi(T + \eta I)$ is Hermitian.

Since the number of the mth roots of unity is finite, there exist two
distinct real numbers \(\eta_1 \) and \(\eta_2 \) such that \(\xi(T + \eta_1 I) \) and \(\xi(T + \eta_2 I) \) are Hermitian, where \(\xi \) is an \(m \)th root of unity, i.e.,
\[
\tilde{\xi}(T^* + \eta_1 I) = \xi(T + \eta_1 I), \\
\tilde{\xi}(T^* + \eta_2 I) = \xi(T + \eta_2 I).
\]
Thus \(\tilde{\xi}(\eta_1 - \eta_2)I = \xi(\eta_1 - \eta_2)I \), and we get \(\xi = \tilde{\xi} \). Hence \(T = T^* \) and the assertion holds.

Now, suppose that \(W_\chi(T + \eta I) \subseteq [0, \infty) \) for all \(\eta \in [0, \infty) \). Similar to the proof of case (i), where \(S = \mathbb{R} \), we conclude that \(T \) is a Hermitian operator. To prove that \(T \) is positive semi-definite, we show that the eigenvalues of \(T \) are all nonnegative (see [10, Corollary 2.35]).

Let \(\lambda \) be an eigenvalue of \(T \) and \(v \) be the corresponding eigenvector. Since the number of the \(m \)th roots of unity is finite, hence similar to the proof of case (i), there exist a complex number \(\xi \) with \(\xi^m = 1 \) and a decreasing sequence \(\{\eta_n\} \) of real positive numbers such that \(\eta_1 > -\lambda, \eta_n \to 0 \) and for any \(n \in \mathbb{N} \), \(\xi(T + \eta_n I) \) is positive semi-definite. This implies that \(\xi(\lambda + \eta_n) \geq 0 \) for every \(n \in \mathbb{N} \). Since \(\eta_1 > -\lambda \), so we must have \(\xi = 1 \) and hence \(\lambda + \eta_n \geq 0 \) for all \(n > 1 \). Using the fact that \(\eta_n \to 0 \) completes the proof. \(\square \)

Theorem 4.6. Suppose \(\chi \) is not of the determinant type. Let \(T \in \text{End}(V) \) and \(\eta \in \mathbb{C} \) with \(|\eta| = 1 \).

(a) \(W_\chi(T) \subseteq \eta(0, \infty) \) if and only if there exists \(\xi \in \mathbb{C} \) with \(\xi^m = \bar{\eta} \) such that \(\xi T \) is positive definite.

(b) \(W_\chi(T) \) is a singleton if and only if \(T \) is a scalar operator.

Proof.

(a) Suppose \(W_\chi(T) \subseteq \eta(0, \infty) \). Then \(\bar{\eta} W_\chi(T) \subseteq (0, \infty) \). So \((\bar{\eta}K(T)x^*, x^*) > 0 \) for all unit decomposable tensors \(x^* \). Therefore \(\bar{\eta}K(T) \) is positive definite. By Theorem 3.2, we see that there exists \(\xi \in \mathbb{C} \) with \(\xi^m = \bar{\eta} \) such that \(\xi T \) is positive definite.

Conversely, assume that there exists \(\xi \in \mathbb{C} \) with \(\xi^m = \bar{\eta} \) such that \(\xi T \) is positive definite. Then \(\bar{\eta}K(T) = \xi^mK(T) = K(\xi T) \) is positive definite. So \(W(\bar{\eta}K(T)) \subseteq (0, \infty) \), by Proposition 4.2. Therefore \(W_\chi(T) \subseteq W(K(T)) \subseteq \eta(0, \infty) \).

(b) If \(T = \xi I \) for some \(\xi \in \mathbb{C} \), then \(K(T) = \xi^m I \). So \(W_\chi(T) = \{\xi^m\} \) by definition. Conversely, let \(W_\chi(T) = \{\xi\} \) for some \(\xi \in \mathbb{C} \). Then
$(K(T)x^*,x^*) = \xi$ for all unit decomposable tensors $x^* \in V_\chi(H)$. So $((K(T) - \xi I)x^*,x^*) = 0$. Therefore, by Proposition 4.3, $K(T) = \xi I$.

Now, we see that T is a scalar operator from Theorem 3.3.

By Theorem 4.4, we know that if χ is not of the determinant type, then $W_\chi(T)$ is a subset of a line passing through the origin if and only if ξT is Hermitian for some $\xi \in \mathbb{C}$. In the following theorem, we determine the conditions under which $W_\chi(T)$ is a subset of a line not passing through the origin.

Theorem 4.7. Suppose χ is not of the determinant type, and $T \in \text{End}(V)$ is non-scalar. Then $W_\chi(T)$ is a subset of a line not passing through the origin if and only if for every $\alpha \in \hat{\Delta}$,

$$(m_1(\alpha), \ldots, m_n(\alpha))$$

is a permutation of $(k, \ldots, k, k+1, \ldots, k+1)$,

where $m = nk + t$ with $1 \leq t < n$, and T is an invertible normal operator such that one of the following holds:

(a): $t = 1$ and the eigenvalues of T lie on a line not passing through the origin;

(b): $1 < t < n - 1$ and one of the eigenvalues of T has multiplicity $n - 1$;

(c): $t = n - 1$ and the eigenvalues of T^{-1} lie on a line not passing through the origin.

Proof. Similar to the case of linear characters (see Theorem 3.8 in [8]).

Acknowledgments

This research work was supported by Sahand University of Technology. The authors thank the referee for his/her useful comments.

References

[7] C. K. Li and A. Zaharia, Decomposable numerical range on orthonormal decom-
[8] C. K. Li and A. Zaharia, Induced operators on symmetry classes of tensors,
[10] R. Merris, Multilinear Algebra, Gordon and Breach Science Publisher, Amster-
dam, 1997.

(Yousef Zamani) FACULTY OF SCIENCES, SAHAND UNIVERSITY OF TECHNOLOGY,
P.O. Box 53317-11111, TABRIZ, IRAN
E-mail address: zamani@sut.ac.ir

(Sima Ahsani) FACULTY OF SCIENCES, SAHAND UNIVERSITY OF TECHNOLOGY,
P.O. Box 53317-11111, TABRIZ, IRAN
E-mail address: s-ahsani@sut.ac.ir