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ABSTRACT. Let V be an n-dimensional complex inner product space.
Suppose H is a subgroup of the symmetric group of degree m, and
x : H — C is an irreducible character (not necessarily linear).
Denote by Vi (H) the symmetry class of tensors associated with
H and x. Let K(T) € End(Vy(H)) be the operator induced by
T € End(V). The decomposable numerical range W, (T) of T is a
subset of the classical numerical range W (K (T)) of K(T) defined
as:

Wy (T) = {(K(T)z",z") : " is a decomposable unit tensor}.
In this paper, we study the interplay between the geometric proper-
ties of Wy (T') and the algebraic properties of 7. In fact, we extend
some of the results of [C. K. Li and A. Zaharia, Decomposable nu-
merical range on orthonormal decomposable tensors, Linear Algebra
Appl. 308 (2000), no, 1-3, 139-152] and [C. K. Li and A. Zaharia,
Induced operators on symmetry classes of tensors, Trans. Amer.
Math. Soc. 354 (2002), no. 2, 807-836], to non-linear irreducible
characters.
Keywords: Symmetry class of tensors, decomposable numerical

range, induced operator.
MSC(2010): Primary: 20C15; Secondary: 15A69, 15A60.

1. Introduction

In this paper, we study the decomposable numerical range of an op-
erator T', which is defined by the induced operator K(7T') acting on sym-
metry classes of tensors. The decomposable numerical range W, (T") of
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On the decomposable numerical range of operators 388

T is the set of complex numbers of the form (K (T)z*,z*) with * rang-
ing over all decomposable unit vectors in Vi (H), where V, (H) is the
symmetry class of tensors associated with H and y. This concept has
been studied extensively because of its applications in many branches of
pure and applied mathematics (see e.g., [1, 2, 3, 7, 8]).

In Section 2, we give a review of the symmetry classes of tensors; see
[9, 10] for general background. In Section 3, we study some properties of
the induced operator. Section 4 is devoted to the study of the relations
between geometric properties of W, (T') and algebraic properties of T.

2. Symmetry classes of tensors

Let V be an n-dimensional inner product space over C and H be
a subgroup of the full symmetric group S,,. Let @™ V be the tensor
product of m copies of V and for any ¢ € H, define the permutation
operator

Suppose x is a complex irreducible character of H and define the
symmetrizer,

T(x, H) = 7;;; S x(0)P(o),

occeH
where |H| denotes the order of H. The range of T'(y, H),

Vi(H) = T(x, H)(Q V)

is called the symmetry class of tensors associated with H and x. The
elements in V, (H) of the form

T(x, H)(v1 @2 ® -+ @ vpn)

are called decomposable symmetrized tensors and are denoted by
U] * Vg % -+ - % Uy, (or briefly v*). The inner product on V induces an
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inner product on V) (H) such that

(W', v) = X 5™ () [ w v

’ ’ oceH i=1

Let {e1,...,en} be an orthonormal basis of V' and suppose I'y, ,, is the
set of all m-tuples of integers a = («a(l),...,a(m)) with

1 < a(i) <n. For a = (afl),...,a(m)) € I'y, , we use the nota-
tion ey, for the decomposable symmetrized tensor eq 1) -« * €q(m). It is
clear that V) (H) is generated by all €}, a € I, ,. We define an action
of H on I'y, , by

ao = (a(o(l)),...,a(c(m))),

for any 0 € H and o € 'y, ,,. Given two elements o, 3 € Iy, 5, We say
that @ ~ g if and only if o and S lie in the same orbit. Suppose A is
the set of minimum elements of orbits of this action with respect to the
lexicographic order and let H, denote the stabilizer subgroup of « (see
[9]). Define

Q= {O[ S I‘m,n : [Xu 1Ha] 7é 0},
where [ , ] denotes the inner product of characters (see [5]). It is well

known that e, # 0, if and only if a € Q (see for example [10]). Suppose
A =ANQ. For any a € A, we have the subspace

Vi=(e\ :0€H),

« oo

where (set of vectors) denotes the subspace generated by a given set of
vectors.
It is proved [10] that

(5 ¢5) =4 o if o 3,
eon € - '

’ % ZoeHa x(o) if a=p,
and thus

et 2 = X}jf 3 w0

O’EHa
Hence we have the orthogonal decomposition [10]

wgnzzjm.

acA
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It is also proved that
S :=dim V) = x(1)[x, 1m,],
and in particular, if y is linear, then s, = 1. So the set
{eX : ac A}

is a basis of V,(H). In the general case, let @ € A and suppose

Cho1> Caosr -1 Cooy
is a basis of V. Let
Ay ={ao1,a09,...,a04}.
Then we define A = Uaca Aa- It is clear that
ACAcCQ,
and the set
{e}, : ac A}

is a basis of V) (H). But in general, this basis may be non-orthogonal
(see [6]). Let m;(«) be the number of occurrences of j in the sequence

a € A.

3. Some properties of induced operators

Let V be an n-dimensional inner product space over C. Let H be a
subgroup of the full symmetric group S,, and suppose x is a complex
irreducible character of H. For any T € End(V), there is a unique
induced operator K (T') acting on V, (H) satisfying

K(T)vy vy =Tvy %% Top,.

Indeed V, (H) is an invariant subspace of @™ T" and K (T') is the restric-
tion @™ T to V), (H) (see [10, p. 185]). Clearly K((T) = ¢mK(T), € €
C.

If H = Sy, and x = 11is the principal character of H, then V, (H) is the
mth completely symmetric space over V and K(T') is the mth induced
power of T, usually denoted by P, (7). If H = S,, and x is the alter-
nating character, that is x(o) = sgn(o), then V| (H) is the mth exterior
space over V and K(T) is the mth compound of 7', usually denoted by
Cn(T). If H = {1}, where 1 is the identity in S,, (x = 1 is the only
irreducible character of H), then V,(H) = @™V and K(T) = Q™ T is
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the mth tensor power of T

The following contains some properties of the induced operator.

Proposition 3.1. [10]. Let S, T be linear operators on V' and assume
A#Q.
(a): K(Iv) = Iy, ()
(b): K(ST)=K(S)K(T).
(c): T is invertible if and only if K(T) is . Moreover, we have
K(TY = K(T)™!.
(d): K(T*) = K(T)*.
(e): If T is normal, unitary, positive (semi)-definite, Hermitian or
skew-Hermitian (when m is odd), then so is K(T).
(£): If T has eigenvalues Ay, ..., \,, then for any o € S, K(T)
has eigenvalues [[}_, AZ;()Q), aeA.
(g): If rank (T) = r, then rank (K(T)) = [Ty » ﬂA]
We shall use p(A) to denote the smallest integer r such that
L, v 0 A # (. Similarly we can define u(A), but it is clear that

u(A) = u(A). By Proposition 3.1, if rank (T') = r, then rank (K (T)) =
Ty, » N p(A)]. Thus an operator T on V satisfies K (7T') = 0 if and only
if rank(T) < p(A).

We say that x is of determinant type if every element o € A satisfies
m
with p(A) > 1. Furthermore, we say that x is of special type if every
element o € Iy, » N A satisfies

mi(a) = -+ =my(a),

with r = p(A) > 1.

Otherwise, we say that x is of general type. Notice that the determinant
type is a particular case of the special type. One can find examples of
different types of characters in [6].

Theorem 3.2. Suppose x is not of the determinant type, and T €
End(V). Suppose n € C with |n| = 1. Then nK(T') is positive definite
if and only if there exists & € C with €™ = n such that £T is positive
definite.
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Proof. The necessity part is clear. The converse is proved in
[6, Theorem 5.3]. O

Theorem 3.3. [6]. Suppose x is not of the determinant type. Let
T € End(V). Then K(T) is unitary or a nonzero scalar operator if and
only if T has the corresponding property.

Theorem 3.4. Let r = p(A) and T' € End(V) with rank(T) > r. Let
n € C with |n| = 1. Then nK(T) is (i) Hermitian, (ii) positive semi-
definite if and only if one of the following holds:

(a) There exists & € C such that T has the corresponding property, where
&M = +n for case (i) and £™ =n for case (ii) .

(b) x is of the special type, and T = Ty ® 0, where Ty is an invertible
operator acting on an r-dimensional subspace Vi of V', and n (det Tl)m/’"
is real or positive according to case (i) or (ii).

Proof. The necessary part is proved in [6, Theorem 5.5]. Now we prove
the converse. If (a) holds, then the assertion is clear. Suppose (b) holds.
Then V =V1 & Vﬁ such that V is invariant under both 7" and T™; T}
is the restriction of T on V3, and the restriction of 7' on Vi is the zero
operator. Thus

&V - @M PRn*
By applying T'(x, H) to the both sides of the equation above, we get
Vi(H) = Viy (H) @D Vi (H)*.

It is easy to see that Vi, (H) is invariant under both K (T") and K(T')*;
K (Ty) is the restriction of K(T') on Vi, (H).

Now suppose u € Vi, (H)*. Then v = T(x,H)(z), where
z € (@™ Vh)*, because Vi, (H)* =T(x, H)((Q™ Vi)*).

Since

(®mV1)J- = V1J‘®V1®- . .®V1_|_V1®V11-®. V4 VR .®V1®V1J—7
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S0z =) w) ® -+ ® Wy, where at least one of the w; belongs to Vf—.
Hence

K(Tyu = K(T)T(x,H)z
= K(T)(D_wis--xwn)

= ZTwl*---*Twm
= 0, (1 CKerT).

This implies that K(T') = K(T1) & 0.

Since x is of the special type, so by Theorem 4.1 in [6], K (T") is a multiple
of an orthogonal projection Pr on V, (H), i.e., K(T) = {Pr. Indeed Pp
is the natural projection from V, (H) onto V1, (H). Thus the restriction
Pr on V1, (H) is the identity. Since K (T1) is the restriction K (T") on to
Viy(H), so K(T1) = & 1. Now we show that £ = ( detTl)%. Suppose T;
has eigenvalues Aq,..., A.. Then

[129, aelu ,nA
j=1

are the eigenvalues of K (T7). Since x is of the special type, so by
Theorem 4.1 in [6], mi(a) = - - = m,(a) = =* for every a € I',, » NA.
Hence

m

T T T B
T2 =T]A = [TTN] = (det 7)™,
j=1 j=1 j=1
is the only eigenvalue of Tj. Thus & = (det T})+ . Therefore n K(T) =
n(det Tl)%PT. Since Pr is an orthogonal projection and by assumption

n (det Tl)m/ " is real or positive, so the result follows from the fact that
every orthogonal projection is a positive semi-definite operator. O

4. Decomposable numerical range

Let V be a finite dimensional inner product space over C and
T € End(V). Let H be a subgroup of the full symmetric group S,
and let x be a complex irreducible character of H. The decomposable
numerical range of T is defined by

Wy (T) = {(K(T)z",z") : 2 is a decomposable unit tensor in V) (H)}.
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Evidently, when m = 1, W, (T') reduces to the classical numerical range
W (T). Since the set of decomposable unit tensors is usually a proper
subset of the unit vectors in V) (H), we have

W(T) € W(K(T)),

and the inclusion is often strict.
The following lemma can be easily proved by using elementary properties
of induced operators.

Lemma 4.1. Let T € End(V). Then

(a) For any pe C, W, (uT) = p" W, (T).

b) The set W, (T) is invariant under unitary similarities, i.e., W, (T') =
Wy (U*TU) for any unitary operator U.

There is an interesting interplay between the geometric properties of
W (T) and the algebraic properties of the operator T. For example, we
have the following result (see [4]).

Proposition 4.2. Let T' € End(V).

(a) W(T) ={A} if and only if T = AI.

(b) W(T) C R if and only if T is Hermitian.

(c) W(T) C (0,00) if and only if T is positive definite.

(d) W(T) has no interior point if and only if T is a normal operator with
eigenvalues lying on a straight line.

In [7], Proposition 4.2 was generalized to the decomposable numerical
range, when the irreducible character y is linear. In this paper, it is gen-
eralized to arbitrary irreducible characters. The following theorem is a
generalization of Theorem 3.5 in [8], to non-linear irreducible characters
of G. We need the following result of Robinson [11].

Proposition 4.3. A linear operator L on V. (H) satisfies (Lv*, v*) =0
for all decomposable tensors v* = vy * - * vy, € Vi (H) if and only if
L=0.

Theorem 4.4. Let r = pu(A) and T' € End(V) with rank(T) > r. Let
n € C with |n| = 1. Then W, (T) is a subset of
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(i) nR or (ii) n]0, 00) if and only if one of the following conditions holds.

(a) There exists & € C such that T is (i) Hermitian or (ii) positive semi-
definite, where ™ = +7 for case (i) and &™ =7 for case (ii).

(b) x is of the special type and T' = T1 ®0, where Ty is an operator acting
on an r-dimensional subspace Vi of V and fi(det T1)= is (i) real or (ii)
nonnegative according to case (i), or (ii).

Proof. If x and T satisfy (a) or (b), then 7K (T") is (i) Hermitian (i7)
positive semi-definite by Theorem 3.4. So W, (T') is a subset of 7R or
n[0, 00), by Proposition 4.2.

Conversely, suppose W, (T') € 7R or 1[0, 00). Then

() =KD" v) = p(K ()" 07) = a(K (T)o", %)
= (", K(T)") = (K (T)o",v")
= (KD, v) = (K (T)o",v")

= 0,

for all unit decomposable tensors v* € Vi (H). By Proposition 4.3,
nK(T)* —nK(T) =0, i.e., nK(T) is Hermitian.
Applying Theorem 3.4, we see that T satisfies (a) or (b). O

Corollary 4.5. Let x be not of the determinant type. Let T € End(V').
Then T is (i) Hermitian, (ii) positive semi- definite if and only if
Wy (T +nI) CS forallne S with (i) S =R, (ii) S = [0,00).

Proof. If T is (i) Hermitian, (i7) positive semi-definite, then for any
n € S with (i) S =R, (ii) S = [0,00), K(T + nI) has the corresponding
property. So the result follows from Proposition 4.2.

Conversely, suppose that W, (T'+nl) C R for alln € R. If n € R
is not an eigenvalue of T', then T + nl is an invertible operator. Thus
rank(T + nl) > r = u(A). So, T + nl satisfies (a) or (b) of Theorem
4.4. If (b) holds, then y is of the special type, and T'+ nl = 11 @ 0,
where T} is an invertible operator acting on an r-dimensional subspace.
Since T+ nl is invertible, so T+ nl = 11, i.e., r = n, and x is of the
determinant type, a contradiction. Thus (a) holds and there exists £ € C
with ™ = £1 such that £(7" + n!l) is Hermitian.

Since the number of the mth roots of unity is finite, there exist two
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distinct real numbers 71 and 72 such that £(T'+n1I) and £(T 4 n21) are
Hermitian, where £ is an mth root of unity, i.e.,

T +ml) = &T+mli),

T +md) = &(T+nad).

Thus £(ny — n2)I = &(ny — m2)I, and we get € = €. Hence T = T* and
the assertion holds.

Now, suppose that W, (T'+nI) C [0,00) for all n € [0,00). Similar to
the proof of case (i), where S = R, we conclude that T" is a Hermitian
operator. To prove that T is positive semi-definite, we show that the
eigenvalues of T are all nonnegative (see [10, Corollary 2.35]).

Let A be an eigenvalue of T' and v be the corresponding eigenvec-
tor. Since the number of the mth roots of unity is finite, hence sim-
ilar to the proof of case (i), there exist a complex number ¢ with
&™ =1 and a decreasing sequence {n,} of real positive numbers such
that 71 > —A, 1, — 0 and for any n € N, {(T + n,,[) is positive semi-
definite. This implies that £(A+m,) > 0 for every n € N. Since 71 > — A\,
so we must have £ = 1 and hence A + 1, > 0 for all n > 1. Using the
fact that 1, — 0 completes the proof. O

Theorem 4.6. Suppose x is not of the determinant type. Let T €
End(V) and n € C with |n| = 1.

(a) Wy (T') € n(0,00) if and only if there exists §& € C with ™ = 7 such
that £T is positive definite.

(b) W(T') is a singleton if and only if T is a scalar operator.

Proof.

(a) Suppose W, (T) € 1(0,00). Then 7 W, (T) C (0,00). So

(MK (T)x*,2*) > 0 for all unit decomposable tensors z*. Therefore
nK(T) is positive definite. By Theorem 3.2, we see that there exists
& € C with €™ = 77 such that £ T is positive definite.

Conversely, assume that there exists £ € C with ¢&™ = 7 such that
&T is positive definite. Then nK(T) = ¢"K(T) = K(£T) is posi-
tive definite. So W(nK(T)) C (0,00), by Proposition 4.2. Therefore
Wy(T) € W(K(T)) C (0, ).

(b) If T = &I for some & € C, then K(T) = {™I. So W\ (T) = {{™}
by definition. Conversely, let W, (T) = {¢} for some £ € C. Then
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(K(T)z*,z*) = & for all unit decomposable tensors z* € V,(H). So
((K(T) — &I)x*,x*) = 0. Therefore, by Proposition 4.3, K(T') = ¢&I.
Now, we see that T is a scalar operator from Theorem 3.3. O

By Theorem 4.4, we know that if x is not of the determinant type,
then W, (T') is a subset of a line passing through the origin if and only if
&T is Hermitian for some £ € C. In the following theorem, we determine
the conditions under which W, (T') is a subset of a line not passing
through the origin.

Theorem 4.7. Suppose x is not of the determinant type, and
T € End(V) is non-scalar. Then W, (T) is a subset of a line not passing

through the origin if and only if for every a € A,
(my(a),...,mp(«)) is a permutation of (k,...,k,k+1,....,k+1),
—_——
t

where m = nk+t with 1 <t <n, and T is an invertible normal operator
such that one of the following holds:

(a): t =1 and the eigenvalues of T' lie on a line not passing through

the origin;
(b): 1 <t <n—1 and one of the eigenvalues of T has multiplicity
n—1;

(c): t =n—1 and the eigenvalues of T~1 lie on a line not passing
through the origin.

Proof. Similar to the case of linear characters (see Theorem 3.8 in [8]).
O
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