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Abstract. Classes of Abaffy-Broyden-Spedicato (ABS) methods
have been introduced for solving linear systems of equations. The
algorithms are powerful methods for developing matrix factoriza-
tions and many fundamental numerical linear algebra processes.
Here, we show how to apply the ABS algorithms to devise algo-
rithms to compute the WZ and ZW factorizations of a nonsingular
matrix as well as the WTW and ZTZ factorizations of a symmetric
positives definite matrix. We also describe the QZ and the QW
factorizations, withQ orthogonal, and show how to appropriate the
parameters of the ABS algorithms to compute these factorizations.
Keywords: ABS algorithms, WZ factorization, ZW factorization,
WTW factorization, ZTZ factorization, QZ factoriation, QW fac-
torization.
MSC(2010): Primary: 65F05; Secondary: 46L05, 11Y50.

1. Introduction

ABS class of algorithms was constructed for the solution of linear
systems utilizing some basic ideas such as projection and rank one up-
date techniques [1, 3]. The ABS class later was extended to solve opti-
mization problems [3] and systems of linear Diophantine equations (see
[5, 6, 16, 17]). A scaled version of the linear ABS class was described in
[3]. Reviews of ABS methods can be found in [22, 23].

A basic ABS algorithm starts with a nonsingular matrix H1 ∈ Rn×n
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(Spedicato’s parameter), as a basis for the null space corresponding to
the empty coefficient matrix (no equations). Given the Abaffian matrix
Hi with rows generating the null space of the first i − 1 equations, the
ABS algorithm computes Hi+1 as a null space generator of the first i
equations. Consider the following linear system,

(1.1) Ax = b, x ∈ Rn, A ∈ Rn×n, b ∈ Rn,

where rank(A) is arbitrary. Obviously, the system (1.1) is equivalent to
the following scaled system,

(1.2) V TAx = V T b,

where V, the scaling matrix, is an arbitrary nonsingular n × n matrix,
named as the scaling parameter.

Let aTi be the ith row of A. A tailored scaled ABS algorithm as ap-
plied to A can be described as follows, where the output variable r gives
the rank of A.

Algorithm 1. The scaled ABS (SABS) algorithm.

(1) Let H1 ∈ Rn×n be arbitrary and nonsingular and v1 ∈ Rn×n be
an arbitrary nonzero vector. Set i = 1 and r = 0.

(2) Compute si = HiA
T vi.

(3) If si = 0, then set Hi+1 = Hi, and go to (5) (the ith row is
dependent on the first i− 1 rows).

(4) If {si ̸= 0}, then Compute pi = HT
i fi, where fi ∈ Rn (Broyden’s

parameter), is an arbitrary vector satisfying sTi fi ̸= 0 and update Hi by

(1.3) Hi+1 = Hi −
HiA

T viq
T
i Hi

qTi HiAT vi
,

where qi ∈ Rn (Abaffy’s parameter) is an arbitrary vector satisfying
sTi qi ̸= 0. Let r = r + 1.

(5) If i = n, then Stop (columns of HT
i+1 generate the null space

of A) else define vi+1 ∈ Rn, an arbitrary vector linearly independent of
v1, . . . , vi. Let i = i+ 1 and go to (2).
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The matrices Hi are generalizations of projections matrices. They prob-
ably first appeared in a book by Wedderburn [25] . They have been
named Abaffians since the First International Conference on ABS Meth-
ods (Luoyang, China, 1991).

One important result of the ABS algorithms is the establishment of an
implicit matrix factorization V TAP = L, where L is a lower triangular
matrix (see [3]).

Definition 1.1. Let A ∈ Rn×n, P ∈ Rn×n and V ∈ Rn×n. The pair
(P, V ) is said to be A-conjugate if the matrix L = V TAP is lower tri-
angular, and the pair (P, V ) is said to be A-biconjugate if D = V TAP
is nonsingular diagonal.

Theorem 1.2. Let A ∈ Rn×n and V ∈ Rn×n. The SABS algorithms
produce all of the possible A-conjugate pairs (P, V ).

Proof. See Theorem 4 in [2]. □
Corollary 1.3. All matrix factorizations can be produced by using the
SABS algorithm with proper definitions of the parameters.

Choices of the parameters H1, zi and qi determine particular methods
within the class so that various matrix factorizations are derived. The
implicit QR factorization via Gram-Schmidt algorithms of A is given
by the choices H1 = I, qi = fi = ai and vi = ei [3], and the implicit
LU factorization of A via Gaussian elimination techniques is given by
the choices H1 = I and qi = fi = vi = ei [3]. The LX factorization
[24], Krylov’s method [3], and Broyden’s method [4] are all special cases
of the ABS methods that are obtained by proper parameter settings.
Furthermore, in a recent work we have shown that a specialized appli-
cation of integer ABS methods leads to the Smith normal form of an
integer matrix, having utility for solving linear Diophantine systems of
equations [12].

Here, we show how to choose the parameters of the SABS algorithms
for computing theWZ andWZ factorizations as well as the W TW and
the ZTZ factorizations of a symmetric positive definite matrix. We also
compute the QZ and the QW factorizations, where Q is an orthogonal
matrix using the ABS algorithms.
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The remainder of our work is organized as follows. In Section 2, we
explain the WZ factorization. In Section 3, we discuss some character-
istcs of nested submatrices of a matrix A which are used for computing
new matrix factorizations. In Section 4, we present a new formulation of
the existence condition for the WZ factorization of a matrix and com-
pute the WZ and ZW factorizations using the SABS algorithm. There,
we also show how to derive the W TW and the ZTZ factorizations of a
positive definite matrix as well as the QZ and the QW factorizations.
We conclude in Section 5.

2. WZ factorization

Definition 2.1. Let s be a real number, and denote by ⌊s⌋ (⌈s⌉), the
greatest (least) integer less (bigger) than or equal to s.

Definition 2.2. A matrix A = (ai,j) ∈ Rn×n is called a W-matrix if
ai,j = 0, for all (i,j) with i > j and i+j > n or with i < j and i+j ≤ n.
The transpose of a W-matrix is called a Z-matrix. Thus, these matrices
have the following forms:

(2.1) W =


• ◦ ◦ ◦ •
• • ◦ • •
• • • • •
• • ◦ • •
• ◦ ◦ ◦ •

 , Z =


• • • • •
◦ • • • ◦
◦ ◦ • ◦ ◦
◦ • • • ◦
• • • • •

 ,

where the empty bullets stand for zero and the other bullets stand for
possible nonzeros.

Definition 2.3. We say that a matrix A is factorized in the WZ form
if

(2.2) A = WZ,

where the matrix W is a W-matrix and Z is a Z-matrix.

To solve a system of linear equations, the WZ factorization splitting
procedure proposed in [10, 13, 20] is convenient for parallel computing.
Detailed analyses of this factorization can be found in [8, 10]. The WZ
factorization offers a parallel method for solving dense linear systems
(1.1), where A is a square n × n matrix, and b is an n-vector [11]. A
characterization for the existence of the WZ factorization is given in
[14, 18]. A backward error analysis for the WZ factorization is provided
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in [21]. A pivoting strategy for a modified WZ factorization is proposed
in [26].

The following theorems express the conditions for the existence of a
WZ factorization of a nonsigular matrix (see [18]). Later in Section 4,
we give a new set of conditions useful for our purposes.

Theorem 2.4. (Factorization Theorem) Let A ∈ Rn×n be nonsingu-
lar. The matrix A has a WZ factorization if and only if for every k,
1 ≤ k ≤ s, with s = ⌊n/2⌋, if n is even, and s = ⌈n/2⌉, if n is odd, the
submatrix

(2.3)

∆k =



a1,1 · · · a1,k a1,n−k+1 · · · a1,n
... · · ·

...
... · · ·

...
ak,1 · · · ak,k ak,n−k+1 · · · ak,n

an−k+1,1 · · · an−k+1,k an−k+1,n−k+1 · · · an−k+1,n
... · · ·

...
... · · ·

...
an,1 · · · an,k an,n−k+1 · · · an,n


2k,2k

of A is invertible.

Proof. See Theorem 2 in [18]. □
Theorem 2.5. If A ∈ Rn×n is nonsingular, then a WZ factorization can
always be obtained by pivoting. That is, there exists a row permutation
matrix Π and the factors W and Z such that

(2.4) ΠA = WZ.

Proof. See Theorem 3 in [18]. □
Theorem 2.6. Every symmetric positive definite matrix has a WZ fac-
torization.

Proof. See [18, 19]. □

When A is a symmetric positive definite matrix, it is possible to factor
A in the Cholesky factorization form A = LLT , for some lower trian-
gular matrix L. A variant of the classical Cholesky factorization, called
Cholesky QIF, is given by Evans [7, 9]. Existence and stability of this
factorization are proved by Khazal [15].
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3. Nested submatrices

It is well known that a nonsingular square matrix A has an LU factor-
ization if and only if it is strongly nonsingular (the determinant of every
leading principal submatrix is nonzero). Every sequence of nonsingular
nested submatrices leads to a special matrix factorization.

In [3], the necessary and sufficient conditions for nonsingularity of the
leading principal submatrices of a square matrix A using the ABS class
of algorithms were given and the LU factorization was developed ac-
cordingly.

Here, we present a necessary and sufficient condition for nonsingular-
ity of an arbitrary sequence of nested submatrices of a matrix using the
ABS algorithms. Then, using the condition, we present an alternative
formulation of theWZ and ZW factorizations using the ABS algorithms.

Notation: Let A ∈ Rn×n. Here and subsequently Jn = {j1, . . . , jn}
denotes a permutation of In = {1, 2, . . . , n} and, for k = 1, . . . , n,
Jk = {j1, . . . , jk} denotes a subset of Jn. Let

(3.1) AJk = (ai,j), i, j ∈ Jk

denote a submatrix of A and

(3.2) AJ1 ⊂ AJ2 ⊂ . . . ⊂ AJn

be a sequence of nested submatrices of A. Then, we have the following
results.

Theorem 3.1. (Nested Submatrices) Let A ∈ Rn×n and H1 = I. Then,
the nested submatrices AJi , i = 1, . . . , n, are nonsingular if and only if
eTjiAHieji ̸= 0.

Proof. The proof follows the lines of the proof for Theorem 5.4 in [3]
replacing i by ji. □

Theorem 3.2. Let A ∈ Rn×n, H1 = I and aTjiHieji ̸= 0, for i =
1, . . . , n. Then, the matrices

(3.3) Hi+1 = Hi −
Hiajie

T
ji
Hi

eTjiHiaji

are well defined.
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Proof. The proof follows the lines of the proof for Theorem 5.5 in [3]
replacing i by ji. □

Theorem 3.3. Let the conditions of Theorem 3.2 be satisfied and Hi+1

be defined by (3.3). Then, the following properties hold:

(a) The jth row of Hi+1 is zero, for j ∈ Ji.

(b) The jth column of Hi+1 is equal to the jth column of H1, for j ̸∈ Ji.

Proof. See Theorem 5.5 in [3]. □

Now, let the conditions of Theorem 3.2 be satisfied. Then, we have

(3.4) V TAP = L ⇒ AP = V −TL ⇒ APV T = V −TLV T .

Different choices of the scale matrix V (as permutations) lead to in-
teresting structures for V −TLV T , resulting in the ABS algorithms to
compute new matrix factorizations. Therefore, for computing the fac-
torization (3.4) we update Hi by

(3.5) Hi+1 = Hi −
Hiv

T
i Aq

T
i Hi

qTi HiAT vi
= Hi −

Hiajiq
T
i Hi

qTi Hiaji
.

where qi ∈ Rn is an arbitrary vector satisfying aTjiHiqi ̸= 0 and compute
pji , the jith search vector, as follows:

(3.6) pji = HT
i fi,

where fi ∈ Rn is an arbitrary vector satisfying vTi AHifi = aTjiHifi ̸= 0.

Next, we present some permutations Jn so that the scaled ABS algo-
rithms produce the WZ and the ZW factorizations.

4. New matrix factorizations using ABS algorithms

Here, we compute the permutation Jn = {j1, . . . , jn} and the param-
eters qi, fi and vi of an SABS algorithm to compute some new matrix
factorizations by the class of ABS methods.
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4.1. WZ factorization using SABS algorithm. We first present
conditions for the existence of the WZ factorization and then compute
the factorization using the ABS algorithms.

Let Jn = {j1, · · · , jn} be so that

(4.1) ji =


i if i is odd,

n− i+ 1 if i is even.

Theorem 4.1. Let jk be defined by (4.1) and AJk , for k = 1, . . . , n, be
invertible. Then, there exists a WZ factorization for A, obtained by the
ABS algorithms.

Proof. According to Theorem 3.2, we have eTjiAHT
i eji ̸= 0, i = 1, . . . , n.

Now, let qi = eji , i = 1, . . . , n. Then, according to Theorem 3.3, we have

(4.2) H2i+1 =

0i,i 0 0
Ri In−2i Li

0i,i 0 0

 ,

with Ri, Li ∈ Rn−2i,i, and

(4.3) H2i =

 0i,i 0 0
Ti In−2i+1 Si

0i−1,i 0 0

 ,

where Ti ∈ Rn−2i+1,i and Si ∈ Rn−2i+1,i−1.

Let pji = HT
i eji . Then, P is a Z -matrix and we have

(4.4) AP = W ⇒ A = WZ,

where Z = P−1 is a Z -matrix. □

Theorem 4.2. Let A be symmetric positive definite. Then, there exists
a ZTZ factorization for A, obtained by the ABS algorithms.

Proof. Consider the assumption of Theorem 4.1 and let vi = pi, for
i = 1, . . . , n. Then, V TAP is a diagonal matrix (see [3]), V and P are
Z -matrices and we have



407 Golpar-Raboky and Mahdavi-Amiri

(4.5) V TAP = D ⇒ A = V −TDP−1 = ZTZ,

where D is a diagonal matrix, ZT = V −TD1/2 and Z = D1/2P−1. □

4.1.1. QZ Algorithm.

Definition 4.3. We say that a matrix A is factorized in the form QZ if

(4.6) A = QZ,

where the matrix Z is a Z-matrix and Q is an orthogonal matrix (QTQ =
I).

Theorem 4.4. Let A ∈ Rn×n, H1 = I, ji be defined by (4.1), qi =
zi = aji and pji = HT

i aji , i = 1, · · · , n. Then, there exists a QZ
factorization, obtained by the ABS algorithms.

Proof. According to Theorem 5.1 in [3], the pji are orthogonal and we
have

(4.7) AP = W ⇒ AT = QZ,

where Z = W T is a Z -matrix and Q = P−T is an orthogonal matrix.
Thus, we admit a QZ factorization for AT . Of course, a QZ factorization
for A is easily found by applying the above process to AT . □

4.2. ZW factorization using SABS algorithm. Here, we present
an existence condition and compute the ZW factorization of a nonsin-
gular matrix using the ABS algorithms.

Let Jn = {j1, . . . , jn} be so that

(4.8) ji =


n
2 − i+ 1 if i is odd,

n
2 + i if i is even.

Theorem 4.5. Let jk be defined by (4.8) and AJk , for k = 1, . . . , n, be
invertible. Then, there exists a WZ factorization for A, obtained by the
ABS algorithms.
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Proof. According to Theorem 3.2, we have eTjiAHT
i eji ̸= 0, i = 1, . . . , n.

Now, let qi = eji . Then, according to Theorem 3.3, we have

(4.9) H2i+1 =

In
2
−i,n

2
−i Ri 0

0 02i 0
0 Li In

2
−i,n

2
−i

 ,

with Ri, Li ∈ R
n
2
−i,2i, and

(4.10) H2i =

In
2
−i+1,n

2
−i+1 Ti 0

0 02i−1 0
0 Si In

2
−i,n

2
−i

 ,

where Ti ∈ R
n
2
−i,2i−1 and Si ∈ R

n
2
−i+1,2i−1.

Let pji = HT
i eji . Then, P is a W -matrix and we have

(4.11) AP = Z ⇒ A = ZW,

where W = P−1 is a W -matrix. □
Theorem 4.6. Let A be symmetric positive definite. Then, there exists
a W TW factorization for A, obtained by the ABS algorithms.

Proof. Consider the assumption of Theorem 4.5 and let vi = pi, for
i = 1, . . . , n. Then, V TAP is a diagonal matrix (see [3]), V and P are
W -matrices and we have

(4.12) V TAP = D ⇒ A = V −TDP−1 = W TW,

where D is a diagonal matrix, W T = V −TD1/2 and W = D1/2P−1. □

4.2.1. QW Algorithm.

Definition 4.7. We say that a matrix A is factorized in the form QW
if

(4.13) A = QW,

where the matrix W is a W-matrix and Q is an orthogonal matrix.

Theorem 4.8. Let A ∈ Rn×n, H1 = I, ji be defined by (4.8), qi =
zi = aji and pji = HT

i aji , i = 1, . . . , n. Then, there exists an QW
factorization, obtained by the ABS algorithms.
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Proof. According to [3, Theorem 5.1], the pji ’s are orthogonal and we
have

(4.14) AP = Z ⇒ AT = QW,

where W = ZT is a W -matrix and Q = P−T is an orthogonal matrix.
Thus, we admit a QW factorization for AT . Of course, a QW factoriza-
tion for A is easily found by applying the above process to AT . □

5. Conclusions

We showed how to appropriate the parameters of ABS algorithms
to construct algorithms for computing the WZ and ZW factorizations
of a nonsingular matrix and the W TW and ZTZ factorizations of a
symmetric positives definite matrix. New formulation for the existence
conditions of the WZ factorization of a nonsingular matrix was given.
We also derived two new factorizations, the QZ and QW, with Q or-
thogonal, and showed how to compute the factorizations using the ABS
algorithms.
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