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Abstract. In this paper we investigate the Green graphs for the
regular and inverse semigroups by considering the Green classes of
them. And by using the properties of these semigroups, we prove
that all of the five Green graphs for the inverse semigroups are
isomorphic complete graphs, while this doesn’t hold for the regular
semigroups. In other words, we prove that in a regular semigroup
S two Green graph ΓL(S) and ΓH(S) are isomorphic, however, the
other three Green graphs are non-isomorphic to them.
Keywords: Regular and inverse semigroup, green relations, green
graphs.
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1. Introduction

The motivation of this study is that, these graphs are independent of
any subset of the inverse semigroups where, the identification of inverse
semigroups by the Cayley graphs which studied by Kelarev in 2006 based
on a fixed subset T of the semigroup.
Let S be a finite semigroup. The left Green graph ΓL(S) for semigroup
S, is an undirected graph with t vertices L1,L2, . . . ,Lt where Li’s are the
left Green classes of semigroup S and two vertices Li and Lj are adjacent
in ΓL(S) if and only if g.c.d......(|Li|, |Lj |) > 1, (”g.c.d......” is used for
the greatest common divisor). Following the article [5], the Green graphs
for all of the Green relations in a finite semigroup have been studied.
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Indeed, the Green graphs are the generalization of conjugacy graphs
(in finite groups) for the finite semigroups and these graphs may be
use as a tool for classification of finite semigroups. In this paper we
intend to study properties of the Green graphs for the finite regular
and finite inverse semigroups. Our notations are fairly standard. In the
group and semigroup presentations one may consult [4, 7, 12] and for
the theoretical semigroup ideas one may see [6]. Also our computational
examples will be in continuations of the articles [1, 2, 3, 5]. For the
investigation of graphs related to algebraic structures and to find many
more references on graphs associated to semigroups and applications
of such graphs, we refer the readers to the articles [8, 9, 10]. The article
[11] of Kelarev succeeded to identify the inverse semigroups by using the
Cayley graphs Cay(S, T ), where S is a semigroup and T is any subset of
S. Our identification and comparison of regular and inverse semigroups
in terms of Green graphs dose not use any subset of the semigroup and
exactly based on the intrinsic property of the Green relations on the
semigroup. The notation Kn is used for the complete graph with n
vertices.

For a finite semigroup S, an equivalence relation L on S is defined by
the rule that aLb, if and only if, S1a = S1b, where S1 = S if S possess
an identity element, otherwise S1 = S ∪ {1}, such that, 1s = s1 = s, for
every s ∈ S. Similarly we define the equivalence relation R by the rule
that aRb, if and only if, aS1 = bS1. It is well known that L is a right
congruence and R is a left congruence. The intersection of L and R is
denoted by H and the join of L and R is denoted by D. Also the two
sided Green relation J on S is defined by the rule that aJ b, if and only
if, S1aS1 = S1bS1. The L-class (resp. R-class, H-class, J -class and
D-class) containing the element a will be denoted by La = [a]L (resp.
Ra = [a]R, Ha = [a]H, Ja = [a]J and Da = [a]D).

We collect the main results as follows:

Proposition A. A D-class of a finite semigroup S, is a regular class if
and only if it contains an idempotent element.

Proposition B. Let S be a finite semigroup. The following statements
are equivalent:
1) S is an inverse semigroup.
2) S is a regular semigroup and its idempotents commute.
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3) Each L-class and each R-class contains an idempotent element.

Proposition C. Let S be a finite regular semigroup. Then, ΓD(S) ≃
ΓJ (S) ≃ ΓR(S). Moreover, ΓL(S) ≃ ΓH(S) which is a complete graph.

Proposition D. For every finite inverse semigroup S, all of the five
Green graphs are of degree |E(S)| which are complete isomorphic graphs,
where E(S) is the set of idempotents of S.

2. Proofs of propositions A and B

Let S be a finite semigroup. An element a of S is said to be regular if
there exists x ∈ S such that axa = a. A semigroup S is called regular if
every element of S is regular. An element x of S is said to be idempotent,
if and only if, x2 = x. The set of all idempotent elements of S, denoted
by E(S). If e ∈ E(S) is an idempotent element, then e = eee. So all
idempotent elements of S are regular elements. Two elements a and b
of a semigroup S are said to be inverse of each other, if and only if,
aba = a and bab = b. By an inverse semigroup we mean a semigroup in
which every element has a unique inverse.

By these definitions, first we give some elementary results many of
which of them will be used in the next section as well.

Lemma 2.1. Let e ∈ E(S) be an idempotent element. If xLe, then
xe = x, and if xRe, then ex = x.

Proof. If xLe, then x ∈ Le and there exists s ∈ S1 such that x = se. So
by ee = e, we get x = se = see = se.e = xe. The proof of the second
part is similar. □
Lemma 2.2. Let S be a finite semigroup and x ∈ S be a regular element.
Then xy and yx are idempotent elements.

Proof. By the definition of regular element is easy. □
Lemma 2.3. Let x ∈ S. Then the following statements are equivalent:
(1) x is a regular element.
(2) For some idempotent element e, xRe.
(3) For some idempotent element f, xLf .

Proof. Let x ∈ S be a regular element and for some y ∈ S, x = xyx.
Then by Lemma 2.2 the elements e = xy and f = yx are idempotent
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elements and satisfy, xRe and xLf . Suppose that xRe. Now, by Lemma
2.1, x = ex and there exists a y ∈ S1 such that e = xy. Therefore,
x = ex = xyx and x is a regular element. Similarly if xLf , then by
Lemma 2.1, x = xf and there exists a z ∈ S1 such that f = zx. So
x = xf = xzx and x is a regular element. □
Lemma 2.4. Let x ∈ S be a regular element. Then the D − class, Dx

is a regular class.

Proof. We say the D-class, Dx is a regular class, if all elements of this
class are regular. Let x be a regular element, then by the Lemma 2.3 the
class Dx contains an idempotent e, that is, Dx = De. Now, let z ∈ Dx,
zDe, then there exists u ∈ Dx such that eRu and uLz. Therefore,
there exist r, s, s

′ ∈ S such that e = ur, u = eu, u = sz, z = s
′
u.

Consequently, z = s
′
u = s

′
eu = s

′
esz = s

′
ursz = z.rs.z, and z is a

regular element. □
In particular, De is a regular class for each idempotent e ∈ E(S).

Lemma 2.5. Let D be a regular D-class, then each L-class Lx ⊆ D and
each R-class Rx ⊆ D contains an idempotent.

Proof. Let x ∈ D. Then for some y ∈ S, x = xyx. Moreover xy and yx
are idempotent elements. So, xLyx and xRxy. This yields yx ∈ Lx and
xy ∈ Rx. □

These lemmas are useful to give detailed proofs of Propositions A and
B. However one may also consult Propositions 2.3.1, 2.3.2 and Theorem
5.1.1 of Howie [6].

Proof of Proposition A. Using Lemmas 2.2, 2.4 and 2.5 or consult
the Propositions 2.3.1 and 2.3.2 of [6]. □
Lemma 2.6. Each regular element x ∈ S has an inverse element.

Proof. Let x ∈ S be a regular element. Then for some y ∈ S, x = xyx
and yxy = y(xyx)y = yxy.xy = yxy.xyxy = yxy.x.yxy. So yxy is a
regular element. Also x = xyx = xyx.yx = x.yxy.x. Therefore, yxy is
an inverse element of x. □

Let S be a finite inverse semigroup and e ∈ E(S). Then eee = e. So,
for all idempotents e of an inverse semigroup S, e−1 = e and E(S) is a
semilattice.
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Lemma 2.7. Let S be an inverse semigroup. Then the set of idempo-
tents E(S) forms a subsemigroup of S. Moreover, E(S) is a semilattice,
that is, the idempotents of S commute.

Proof. Let e, f ∈ E(S), and x be (unique) inverse of ef (x = (ef)−1).
Then ef = ef.x.ef = ef.xe.ef or ef = ef.x.ef = ef.fx.ef . And
xe.ef.xe = xefx.e = xe , fx.ef.fx = f.xefx = fx. So x = (ef)−1 =
xe = fx. Also x ∈ E(S) since, x2 = xe.fx = x.ef.x = x.x−1.x = x.
Thus, for all e, f ∈ E(S), ef ∈ E(S), that is, E(S) is a subsemigroup
of S. Furthermore for all e, f ∈ E(S), ef, fe ∈ E(S) and ef.fe.ef =
efef = (ef)2 = ef , fe.ef.fe = fefe = (fe)2 = fe. Therefore fe =
(ef)−1 = ef and E(S) is commutative. □

Proof of Proposition B. Use Lemmas 2.5, 2.6, and 2.7 or consult
Theorem 5.1.1 of [6]. □

Note that for an inverse semigroup S, x−1E(S)x ⊆ E(S) holds for
every x ∈ S. Moreover, the Green relations L,R and D may be rede-
fined as follows:
(1) xLy ⇐⇒ x−1x = y−1y.
(2) xRy ⇐⇒ xx−1 = yy−1.
(3) eDf ⇐⇒ ∃z ∈ S such that e = zz−1 and f = z−1z, for the idempo-
tents e and f.

3. Proofs of Propositions C and D

Let S be a finite semigroup then, ΓD(S) ≃ ΓJ (S) is a quick conse-
quence of the identification of the Green relations D and J (see [6]).
Now for a finite regular semigroup S, we can prove Proposition C.

Proof of Proposition C. By the above comment, ΓJ (S) ≃ ΓD(S).
So it is sufficient to show that ΓR(S) ≃ ΓJ (S). For every J -class
[x]J , if y ∈ [x]J , there exist u1, v1, u2, v2 ∈ S such that y = u1xv1
and x = u2yv2. So, y = u1xv1 = (u1x)v1 = x′v1 and then y ∈ [x′]R.
Also if y ∈ [z]R, then there exists k ∈ S such that y = zk, and by the
regularity of S, there exists r ∈ S such that z = zrz. So y = zrzk =
z(rz)k = zlk ∈ [l]J . Thus, every J -class is equal to an R-class. Now,
if [x1]J = [x′1]R and [x2]J = [x′2]R such that g.c.d.(|[x1]J |, |[x2]J |) >
1, then, g.c.d.|[x′1]R|, |[x′2]R|) > 1. Thus there is a bijection between
the vertex sets of ΓR(S) and ΓJ (S) such that two adjacent vertices
of ΓR(S) map two the adjacent vertices of ΓJ (S). This shows that
ΓR(S) ≃ ΓJ (S). For the other part of the proposition it is obvious that
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each H-class of the semigroup S is a subset of a L-class. Let x ∈ [a]L.
Then, there exist u, v ∈ S such that x = ua and a = vx. By regularity of
S, there exists r ∈ S such that a = ara. So x = ua = uara = ua(ra) =
uak ∈ [a]J = [a]R, and x ∈ [a]L ∩ [a]R = [a]H. This proves that
ΓH(S) ≃ ΓL(S) which is a complete graph by considering the regularity
condition and definition of H relation. □

We note that if all of the five Green graphs of a semigroup S are iso-
morphic, then the semigroup S is regular. For, let S be a finite semi-
group that all of its five Green graphs are isomorphic. Then for a fixed
element x ∈ S, there exists a J -class [a]J such that x ∈ [a]J . So,
there are u, v, u′, v′ ∈ S such that x = uav and a = u′xv′. The re-
lations x = uav and a = u′xv′ imply u ∈ [x]R and v ∈ [x]L. Con-
sequently, there exist r, s ∈ S such that u = xr and v = sx. So
x = uav = (xr)a(sx) = x(ras)x = xkx. This implies that x is a regular
element and consequently S is a regular semigroup.

Note that the reverse of the above comment, does not hold in general.
But for the inverse semigroups this is true, as in Proposition D.

Proof of Proposition D. Let S be a finite inverse semigroup. By
Proposition B, the semigroup S is regular and each L-class and each
R-class has exactly one idempotent. Furthermore, for each a ∈ S, we
have aRaa−1La−1Ra−1aLa, and in the inverse semigroup, aRb, if and
only if, aa−1 = bb−1 (aLb, if and only if a−1a = b−1b). The map
a −→ a−1 induces a bijection between the elements of R-class Raa−1

and the elements of L-class Laa−1 . So we may conclude that in an in-
verse semigroup S, ΓL(S) ≃ ΓR(S). Now, by the Proposition C we see
that all of the five Green graphs are isomorphic, and these graphs of
S are complete graphs of degree |E(S)| (by the Lemma 2.2 and that
|E(S)| ≥ 2). □

4. Conclusion

Certain finitely presented finite semigroups will be studied here as ex-
amples of the results of the last section. For a detailed investigation on
the structure and order of the studied semigroups one may see [1, 2, 4, 5].

(1). Consider the non-commutative finitely presented semigroup

S1 =< a, b|ab = ba1+pα−γ
, a = a1+pα , b = b1+pβ > .
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Where, p ≥ 2 is a prime, α, β and γ are integers such that α ≥ 2γ,
β ≥ γ ≥ 1, and α+ β ≥ 3.

The semigroup S1 is an example of a regular semigroup such that
E(S1) is a semilattice. For verifying the regularity of S1, we note that
the elements of S1 have one of the three forms, ai, bj and bj .ai where
1 ≤ i ≤ pα, 1 ≤ j ≤ pβ. By the definition of regularity and using the
relations of the semigroup S1 we may see that:

ai.ap
α−i.ai = ai, (1 ≤ i ≤ pα − 1),

bj .bp
β−j .bj = bj , (1 ≤ j ≤ pβ − 1),

(bj .ai).(bj(p
β−1).ai(j.p

α−γ−1)).(bj .ai) = bj .ai, (1 ≤ i ≤ pα, 1 ≤ j ≤
pβ).

Also three elements ap
α
, bp

β
and bp

β
.ap

α
are idempotent elements and

so are regular. Thus by Proposition B, this semigroup is an inverse
semigroup and the cardinality of E(S1) is 3. On the other hand, in
an inverse semigroup every L-class and every R-class contains exactly
one idempotent. So, the semigroup S1 has three L-classes and three R-
classes. Indeed, we can easily show that ΓL(S1) ≃ ΓR(S1) ≃ ΓJ (S1) ≃
ΓH(S1) ≃ ΓD(S1) ≃ K3.
(2). For every integer n ≥ 2, consider two classes of non-commutative
finitely presented semigroups as follows:

S2 =< a, b|a3 = a, bna = a, abab2 = b >,

S3 =< a, b|a3 = a, bn+1 = b, abab2 = b > .

S2 and S3 are examples of finite regular semigroups. Proving the regu-
larity is easy by using the relations of the semigroups, and using GAP
[13], we see that

ΓR(S2) = ΓJ (S2) = ΓD(S2) = K1,
ΓL(S2) = ΓH(S2) = K2.
ΓR(S3) = ΓJ (S3) = ΓD(S3) = K2,
ΓL(S3) = ΓH(S3) = K4.

(3). For every integer n ≥ 2, consider the following two classes of non-
commutative finitely presented semigroups:

S4 =< a, b|a3 = a, b2n+1 = b, ab2abn−1 = ba >,

S5 =< a, b|a3 = a, b2n+1 = b, abn−1ab2 = ba > .

The semigroups S4 and S5 are not regular, for, we may use the general
forms of their elements to show that the regularity condition does not
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hold for at least one element in each of them. The Green graphs of these
semigroups have been computed in [5] and shows taht Propositions C
and D for these semigroups does not hold.
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