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Abstract. LetH be a Hopf algebra and A anH-bimodule algebra.
In this paper, we investigate Gorenstein global dimensions for Hopf
algebras and twisted smash product algebras A ⋆ H. Results from
the literature are generalized.
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1. Introduction

Enochs, Jenda and Holm [4–6] introduced Gorenstein projective, in-
jective and flat dimensions for arbitrary (not necessarily finitely gen-
erated) module. Using them, Bennis and Mahdou [2] established the
(weak) Gorenstein global dimension of a ring, which behaves like the
classical (weak) global dimension. For a Hopf algebra over a field k, the
left global dimension and the weak global dimension coincide with the
projective dimension and the flat dimension of k respectively. A natu-
ral question is whether they hold for Gorenstein global dimensions. In
Section 2, we shall give an affirmative answer.

Let H be a Hopf algebra and A a bimodule algebra. In 1998, Wang
and Li [13] constructed the twisted smash product algebra A ⋆ H. The
usual smash product, the Drinfel’d double and the Doi-Takeuchi’s alge-
bra are all special cases of A ⋆ H. Section 3 is devoted to investigating
its left Gorenstein global dimensions.
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Throughout this paper, R is a ring, k is a field, A is an algebra and H
is a Hopf algebra with antipode S. RM denotes the category of left R-
modules, P denotes the class of projective left R-modules and I denotes
the class of injective right R-modules. We always work over k and use
Sweedler’s notations [12].

1.1. A left integral in H is an element l ∈ H such that hl = ϵ(h)l
for every h ∈ H. A right integral is defined similarly. The space of left
(right) integrals in H is denoted by

∫
l (

∫
r). If

∫
l =

∫
r, then we say H

is unimodular.
1.2. Let A be both an algebra and a left H-module by the action

⇀: H ⊗A→ A. If for any h ∈ H, a, b ∈ A, h ⇀ (ab) = Σ(h1 ⇀ a)(h2 ⇀
b), h ⇀ 1A = ϵ(h)1A hold, then A is called a left H-module algebra.

1.3. Let A be both an algebra and a right H-module by the action
↼: A⊗H → A. If for any h ∈ H, a, b ∈ A, (ab) ↼ h = Σ(a ↼ h1)(b ↼
h2), 1A ↼ h = ϵ(h)1A hold, then A is called a right H-module algebra.

1.4. Let A be both an algebra and an H-bimodule. If A is both a
left H-module algebra and a right H-module algebra, then A is called
an H-bimodule algebra.

1.5. A left R-module M is Gorenstein projective if there exists a
HomR(−,P)-exact exact sequence · · · → P1 → P0 → P 0 → P 1 → · · ·
with every P i, Pi projective such that M = ker(P 0 → P 1). Gorenstein
injective left R-modules are defined dually. A left R-moduleM is Goren-
stein flat if there is an I ⊗R −-exact exact sequence · · · → F 1 → F 0 →
F0 → F1 → · · · with every F i, Fi flat such that M = ker(F0 → F1).

1.6. For a left R-module M , the Gorenstein projective dimension
GpdR(M) is at most n if there is an exact sequence 0 → Gn → Gn−1 →
· · · → G1 → G0 → M → 0 with every Gi Gorenstein projective. The
Gorenstein injective dimension GidR(M) is defined dually, the Goren-
stein flat dimension GfdR(M) is defined similarly.

1.7. For any ring R, [2, Theorem 1.1] shows that

sup{GpdR(M)|M ∈ RM} = sup{GidR(M)|M ∈ RM}.
The common value is called the left Gorenstein global dimension of R
and denote it by l.Ggldim(R). Similarly, we set

l.wGgldim(R) = sup{GfdR(M)|M ∈ RM}
and call this quantity the left weak Gorenstein global dimension of R.

By [3, Theorem 2.2], l.Ggldim(R) = 0 if and only if R is quasi-
Frobenius. R is left Gorenstein hereditary [8] if every submodule of a
projective left R-module is Gorenstein projective, i.e., l.Ggldim(R) ≤ 1.
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1.8. Two rings R and R′ are Morita equivalent [1] in case RM ≈
R′M, that is, there are two covariant functors F : RM → R′M and
G : R′M → RM such that GF ∼= 1

RM and FG ∼= 1
R′M.

Lemma 1.1. Let R and R′ be Morita equivalent rings via inverse equiv-
alent functors F : RM → R′M and G : R′M → RM, and let M be a
left R-module. Then M is Gorenstein projective if and only if F (M) is
Gorenstein projective.

Proof. Assume that M is a Gorenstein projective left R-module. Then
there is a left R-module exact sequence P = · · · → P1 → P0 → P 0 →
P 1 → · · · with every Pi, P

i projective such that HomR(P, Q) is exact
for any projective left R-module Q and M = ker(P 0 → P 1). By [1,
Proposition 21.4 and Proposition 21.6], we get a left R′-module exact
sequence

F (P) = · · · → F (P1) → F (P0) → F (P 0) → F (P 1) → · · ·
with every F (Pi), F (P

i) projective and F (M) = ker(F (P 0) → F (P 1)).
For any projective leftR′-moduleQ′, sinceG(Q′) is projective as a leftR-
module by [1, Proposition 21.6] and HomR′(F (P), Q′)congHomR(P, G(Q′)) by
[1, Lemma 21.3], HomR′(F (P), Q′) is exact. Hence F (M) is Gorenstein
projective.

Similarly, if F (M) is a Gorenstein projective left R′-module, then
GF (M) is a Gorenstein projective left R-module, i.e., M is Gorenstein
projective. □
Proposition 1.2. Let R and R′ be Morita equivalent rings. Then

l.Ggldim(R) = l.Ggldim(R′).

Proof. Assume l.Ggldim(R) = n, a nonnegative integer. For any left
R′-module M , there is a left R-module exact sequence 0 → Gn → · · · →
G1 → G0 → G(M) → 0 with every Gi Gorenstein projective. By [1,
Proposition 21.4] and Lemma 1.1, we get a left R′-module exact sequence

0 → F (Gn) → · · · → F (G1) → F (G0) →M → 0

with every F (Gi) Gorenstein projective. Then GpdR′(M) ≤ n. This
means that l.Ggldim(R′) ≤ l.Ggldim(R). Similarly, l.Ggldim(R) ≤
l.Ggldim(R′). □

2. Gorenstein global dimensions for Hopf algebras

Lemma 2.1. Let H be a Hopf algebra and X any left H-module.
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(1) If P is a projective left H-module, then so is P ⊗k X.
(2) If F is a flat left H-module, then so is F ⊗k X.

Proof. (1) If P is a projective left H-module, then there is a left H-

module Q such that P⊕Q ∼= H(I) for some set I, thus P⊗kX⊕Q⊗kX ∼=
(H⊗kX)(I). SinceH⊗kX is free as a leftH-module, P⊗kX is projective.

(2) If F is a flat left H-module, then there is a directed set Λ such
that F ∼= lim−→Fλ, where λ ∈ Λ and Fλ is a free left H-module, thus

F ⊗k X ∼= lim−→(Fλ ⊗k X). By (1), Fλ ⊗k X is a projective (flat) left

H-module, hence F ⊗k X is flat. □
Proposition 2.2. Let H be a Hopf algebra and X any left H-module.

(1) IfM is a Gorenstein projective left H-module, then so isM⊗kX.
(2) If N is a Gorenstein flat left H-module, then so is N ⊗k X.

Proof. We only give the proof of part (1). IfM is a Gorenstein projective
left H-module, then there is a HomH(−,P)-exact exact sequence P =
· · · → P1 → P0 → P 0 → P 1 → · · · with every P i, Pi projective such
that M = ker(P 0 → P 1). Thus we get an exact sequence

P⊗k X = · · · → P1 ⊗k X → P0 ⊗k X → P 0 ⊗k X → P 1 ⊗k X → · · ·
such that M ⊗k X = ker(P 0 ⊗k X → P 1 ⊗k X). By Lemma 2.1(1),
every P i ⊗kX and every Pi ⊗kX are projective. For any projective left
H-module Q,

HomH(P⊗k X,Q) ∼= Homk(X,HomH(P, Q)),

hence HomH(P⊗k X,Q) is exact, as desired. □
It is trivial that k is a left H-module, i.e., h · k = ϵ(h)k.

Theorem 2.3. l.Ggldim(H)=GpdH(k) and l.wGgldim(H) = GfdH(k).

Proof. We only prove the first equality. Clearly, GpdH(k) ≤ l.Ggldim(H).
We shall prove the reverse inequality. Assume that GpdH(k) = n < ∞.
Then there is an exact sequence

0 → Gn → Gn−1 → · · · → G1 → G0 → k → 0

where every Gi is a Gorenstein projective left H-module. For any left
H-module X, we get an exact sequence

0 → Gn⊗kX → Gn−1⊗kX → · · · → G1⊗kX → G0⊗kX → k⊗kX → 0.

Since k⊗kX ∼= X and every Gi⊗kX is Gorenstein projective by Propo-
sition 2.2(1), GpdH(X) ≤ n. This shows l.Ggldim(H) ≤ GpdH(k). □
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3. Gorenstein global dimensions for twisted smash products

Definition 3.1. Let H be a Hopf algebra and A an H-bimodule algebra.
The twisted smash product A ⋆ H is defined as follows: A ⋆ H=A⊗H
as k-modules and its multiplication is given by

(a ⋆ h)(b ⋆ g) = Σa(h1 ⇀ b ↼ S(h3)) ⋆ h2g

for any a, b ∈ A and h, g ∈ H.

By [13], A ⋆ H is an associative algebra with unit 1A ⋆ 1H . Clearly,
iA : A → A ⋆ H, a 7→ a ⋆ 1H and iH : H → A ⋆ H, h 7→ 1A ⋆ h are two
algebra embedding maps.

It is trivial that A ⋆ H is free as a left A-module, this is also true on
the right:

Proposition 3.2. Let H be a finite dimensional Hopf algebra and A an
H-bimodule algebra. Then the map

ϕ : A ⋆ H → H ⊗A, a ⋆ h 7→ Σh2 ⊗ (S−1(h1)⇀ a ↼ h3)

gives an isomorphism of right A-modules, where the right A-actions on
A ⋆ H and H ⊗A are defined respectively as follows

(a ⋆ h) · b = Σa(h1 ⇀ b ↼ S−1(h3)) ⋆ h2, (h⊗ a) · b = h⊗ ab.

Proof. We define

ψ : H ⊗A→ A ⋆ H, h⊗ a 7→ Σ(h1 ⇀ a ↼ S−1(h3)) ⋆ h2.

It is easy to check that ϕ and ψ are two right A-module maps, and
ψϕ = id and ϕψ = id. □

Let A(−) :A⋆H M → AM and (−)A : MA⋆H → MA be the left and
right restriction functors respectively.

Lemma 3.3. Let H be a finite dimensional Hopf algebra. Then

(1) (A⋆H⊗A−, A(−)) and (A(−), A⋆H⊗A−) are double adjunctions.

(2) (−⊗AA⋆H,
(−)A) and ((−)A,−⊗AA⋆H) are double adjunctions.

Proof. Since H is finite dimensional, the assertions may directly follow
from the adjoint isomorphism theorem and the functor isomorphisms
HomA(A⋆H,−) ≃ A⋆H⊗A− and HomA(A⋆H,−) ≃ −⊗AA⋆H. □
Corollary 3.4. Let H be a finite dimensional Hopf algebra.

(1) If P is a projective left A-module, then A⋆H⊗AP is a projective
left A ⋆ H-module.
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(2) If P is a projective left A⋆H-module, then P is a projective left
A-module.

Lemma 3.5. Let H be a finite dimensional Hopf algebra. If G is a
Gorenstein projective left A-module, then A ⋆ H ⊗A G is a Gorenstein
projective left A ⋆ H-module.

Proof. Let P = · · · → P−2 → P−1 → P0 → P1 → · · · be an exact
sequence with every Pi projective such that HomA(P, Q) is exact for
any projective left A-module Q and G = ker(P0 → P1). By Corollary
3.4(1), every A ⋆ H ⊗A Pi is a projective left A ⋆ H-module. Hence
A ⋆ H ⊗A P is an exact sequence of projective left A ⋆ H-modules such
that A ⋆ H ⊗A G = ker(A ⋆ H ⊗A P0 → A ⋆ H ⊗A P1) since A ⋆ H is a
free right A-module. Moreover, for any projective left A⋆H-module Q′,

HomA⋆H(A ⋆ H ⊗A P, Q′) ∼= HomA(P, Q′),

hence HomA⋆H(A ⋆ H ⊗A P, Q′) is exact by Corollary 3.4(2). □

It is easy to see that the equality

a ⋆ h = (a ⋆ 1H)(1A ⋆ h)(3.1)

holds for any a ∈ A and h ∈ H. If H is a finite dimensional semisimple
Hopf algebra, then we can choose a right integral t such that ϵ(t) = 1.
Thus we have

ΣhS(t1)⊗ t2 = ΣS(t1)⊗ t2h.(3.2)

By [10, Formula 15], we have 1⊗ t = ΣS−1(t3)g
−1t1 ⊗ t2, where g is the

distinguished group-like element of H. If H∗ is unimodular, then g = 1,
thus we get

Σ1⊗ t1 ⊗ t2 = ΣS−1(t4)t1 ⊗ t2 ⊗ t3.(3.3)

Proposition 3.6. Let H be a finite dimensional semisimple Hopf alge-
bra such that H∗ is unimodular. If M is a left A ⋆ H-module, then M
is a direct summand of A ⋆ H ⊗A M .

Proof. We define

ϕ : A ⋆ H ⊗A M →M, a ⋆ h⊗A m 7→ (a ⋆ h) ·m.

Clearly, ϕ is a left A ⋆ H-module epimorphism. We also define

ψ :M → A ⋆ H ⊗A M, m 7→ 1A ⋆ S(t1)⊗A (1A ⋆ t2) ·m.
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For any a ∈ A, m ∈M and h ∈ H,

ψ((a ⋆ 1H) ·m) = Σ1A ⋆ S(t1)⊗A (1A ⋆ t2)(a ⋆ 1H) ·m
= Σ1A ⋆ S(t1)⊗A (t2 ⇀ a ↼ S(t4) ⋆ t3) ·m

(3.1)
= Σ(1A ⋆ S(t1))⊗A (t2 ⇀ a ↼ S(t4) ⋆ 1H)(1A ⋆ t3) ·m
= Σ(1A ⋆ S(t1))(t2 ⇀ a ↼ S(t4) ⋆ 1H)⊗A (1A ⋆ t3) ·m
= Σa ↼ S(S(t1)t4) ⋆ S(t2)⊗A (1A ⋆ t3) ·m

(3.3)
= Σa ⋆ S(t1)⊗A (1A ⋆ t2) ·m
= Σ(a ⋆ 1H)(1A ⋆ S(t1))⊗A (1A ⋆ t2) ·m
= (a ⋆ 1H) · ψ(m),

ψ((1A ⋆ h) ·m)) = Σ1A ⋆ S(t1)⊗A (1A ⋆ t2)(1A ⋆ h) ·m
= Σ1A ⋆ S(t1)⊗A (1A ⋆ t2h) ·m

(3.2)
= Σ1A ⋆ hS(t1)⊗A (1A ⋆ t2) ·m
= (1A ⋆ h) · ψ(m).

Hence, by equality (3.1), ψ is a left A ⋆ H-module map. Finally, it is
easy to check that ϕψ = idM since ϵ(t) = 1, as desired. □
Theorem 3.7. Let H be a finite dimensional semisimple Hopf algebra
such that H∗ is unimodular. Then l.Ggldim(A ⋆ H) ≤ l.Ggldim(A).

Proof. Assume l.Ggldim(A) = n < ∞. For any M ∈ A⋆HM, as a left
A-module, there is a Gorenstein projective resolution 0 → Gn → · · · →
G1 → G0 →M → 0 with every Gi Gorenstein projective, which induces
an exact sequence

0 → A⋆H⊗AGn → · · · → A⋆H⊗AG1 → A⋆H⊗AG0 → A⋆H⊗AM → 0

since A ⋆ H ⊗A − is exact. Since every A ⋆ H ⊗A Gi is a Gorenstein
projective left A⋆H-module by Lemma 3.5, GpdA⋆H(A⋆H ⊗AM) ≤ n.
By [6, Proposition 2.19], GpdA⋆H(M) ≤ n since M is a direct summand
of A ⋆ H ⊗A M as left A ⋆ H-modules. Hence l.Ggldim(A ⋆ H) ≤ n =
l.Ggldim(A). □

Next we give a Maschke-type theorem:

Corollary 3.8. Let H be a finite dimensional semisimple Hopf algebra
such that H∗ is unimodular.

(1) If A is quasi-Frobenius, then so is A ⋆ H.
(2) If A is left Gorenstein hereditary, then so is A ⋆ H.
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In 2006, Jiao and Dong [7] gave the duality theorem for twisted smash
product algebras: If H is a finite dimensional cocommutative Hopf al-
gebra, then there is an isomorphism of algebras:

(A ⋆ H)#H∗ ∼= A⊗ (H#H∗) ∼= A⊗Mn(k) ∼=Mn(A).

Thus (A ⋆ H)#H∗ is Morita equivalent to A.

Theorem 3.9. Let H be a finite dimensional semisimple cosemisimple
cocommutative Hopf algebra. Then l.Ggldim(A ⋆ H) = l.Ggldim(A).

Proof. SinceH is cosemisimple, H∗ is unimodular by [9, Corollary 2.2.4].
Then,

l.Ggldim(A) = l.Ggldim((A ⋆ H)#H∗)
≤ l.Ggldim(A ⋆ H) ≤ l.Ggldim(A).

This means that l.Ggldim(A ⋆ H) = l.Ggldim(A). □

Corollary 3.10. Let H be a finite dimensional semisimple cosemisimple
cocommutative Hopf algebra. Then

(1) A ⋆ H is quasi-Frobenius if and only if so is A.
(2) A ⋆ H is left Gorenstein hereditary if and only if so is A.

Corollary 3.11. Let H be a finite dimensional cocommutative Hopf
algebra. If char(k) does not divide dimk(H), then

(1) l.Ggldim(A ⋆ H) = l.Ggldim(A).
(2) A ⋆ H is quasi-Frobenius if and only if so is A.
(3) A ⋆ H is left Gorenstein hereditary if and only if so is A.

Proof. Since H is cocommutative, S2 = id by [9, Corollary 1.5.12]. Con-
sequently, by [11, Proposition 2], H is semisimple and cosemisimple if
and only if char(k) does not divide dimk(H). Hence (1)-(3) follow from
Theorem 3.9 and Corollary 3.10. □
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