ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 40 (2014), No. 2, pp. 423-431

Title: Gorenstein global dimensions for Hopf algebra actions

Author(s):

Q. Pan and F. Cai

Published by Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 40 (2014), No. 2, pp. 423–431 Online ISSN: 1735-8515

GORENSTEIN GLOBAL DIMENSIONS FOR HOPF ALGEBRA ACTIONS

Q. PAN^{*} AND F. CAI

(Communicated by Siamak Yassemi)

ABSTRACT. Let H be a Hopf algebra and A an H-bimodule algebra. In this paper, we investigate Gorenstein global dimensions for Hopf algebras and twisted smash product algebras $A \star H$. Results from the literature are generalized.

Keywords: Hopf algebras, Gorenstein global dimensions, Morita equivalences, twisted smash products.

MSC(2010): Primary: 16T05; Secondary: 18G25.

1. Introduction

Enochs, Jenda and Holm [4–6] introduced Gorenstein projective, injective and flat dimensions for arbitrary (not necessarily finitely generated) module. Using them, Bennis and Mahdou [2] established the (weak) Gorenstein global dimension of a ring, which behaves like the classical (weak) global dimension. For a Hopf algebra over a field k, the left global dimension and the weak global dimension coincide with the projective dimension and the flat dimension of k respectively. A natural question is whether they hold for Gorenstein global dimensions. In Section 2, we shall give an affirmative answer.

Let H be a Hopf algebra and A a bimodule algebra. In 1998, Wang and Li [13] constructed the twisted smash product algebra $A \star H$. The usual smash product, the Drinfel'd double and the Doi-Takeuchi's algebra are all special cases of $A \star H$. Section 3 is devoted to investigating its left Gorenstein global dimensions.

C2014 Iranian Mathematical Society

Article electronically published on April 30, 2014.

Received: 30 May 2012, Accepted: 11 March 2013.

^{*}Corresponding author.

Throughout this paper, R is a ring, k is a field, A is an algebra and H is a Hopf algebra with antipode S. ${}_{R}\mathcal{M}$ denotes the category of left R-modules, \mathcal{P} denotes the class of projective left R-modules and \mathcal{I} denotes the class of injective right R-modules. We always work over k and use Sweedler's notations [12].

1.1. A left integral in H is an element $l \in H$ such that $hl = \epsilon(h)l$ for every $h \in H$. A right integral is defined similarly. The space of left (right) integrals in H is denoted by $\int_l (\int_r)$. If $\int_l = \int_r$, then we say H is unimodular.

1.2. Let A be both an algebra and a left H-module by the action \rightarrow : $H \otimes A \rightarrow A$. If for any $h \in H, a, b \in A, h \rightarrow (ab) = \Sigma(h_1 \rightarrow a)(h_2 \rightarrow b), h \rightarrow 1_A = \epsilon(h)1_A$ hold, then A is called a *left H-module algebra*.

1.3. Let A be both an algebra and a right H-module by the action $\leftarrow : A \otimes H \to A$. If for any $h \in H, a, b \in A$, $(ab) \leftarrow h = \Sigma(a \leftarrow h_1)(b \leftarrow h_2)$, $1_A \leftarrow h = \epsilon(h)1_A$ hold, then A is called a right H-module algebra.

1.4. Let A be both an algebra and an H-bimodule. If A is both a left H-module algebra and a right H-module algebra, then A is called an H-bimodule algebra.

1.5. A left *R*-module *M* is *Gorenstein projective* if there exists a $Hom_R(-, \mathcal{P})$ -exact exact sequence $\cdots \to P_1 \to P_0 \to P^0 \to P^1 \to \cdots$ with every P^i, P_i projective such that $M = \ker(P^0 \to P^1)$. *Gorenstein injective left R-modules* are defined dually. A left *R*-module *M* is *Gorenstein flat* if there is an $\mathcal{I} \otimes_R$ --exact exact sequence $\cdots \to F^1 \to F^0 \to F_0 \to F_1 \to \cdots$ with every F^i, F_i flat such that $M = \ker(F_0 \to F_1)$.

1.6. For a left *R*-module *M*, the Gorenstein projective dimension $Gpd_R(M)$ is at most *n* if there is an exact sequence $0 \to G_n \to G_{n-1} \to \cdots \to G_1 \to G_0 \to M \to 0$ with every G_i Gorenstein projective. The Gorenstein injective dimension $Gid_R(M)$ is defined dually, the Gorenstein flat dimension $Gfd_R(M)$ is defined similarly.

1.7. For any ring R, [2, Theorem 1.1] shows that

$$\sup\{Gpd_R(M)|M \in {}_R\mathcal{M}\} = \sup\{Gid_R(M)|M \in {}_R\mathcal{M}\}.$$

The common value is called the *left Gorenstein global dimension* of R and denote it by l.Ggldim(R). Similarly, we set

 $l.wGgldim(R) = \sup\{Gfd_R(M) | M \in {}_R\mathcal{M}\}$

and call this quantity the left weak Gorenstein global dimension of R.

By [3, Theorem 2.2], l.Ggldim(R) = 0 if and only if R is quasi-Frobenius. R is left Gorenstein hereditary [8] if every submodule of a projective left R-module is Gorenstein projective, i.e., $l.Ggldim(R) \leq 1$.

Pan and Cai

1.8. Two rings R and R' are Morita equivalent [1] in case ${}_{R}\mathcal{M} \approx {}_{R'}\mathcal{M}$, that is, there are two covariant functors $F : {}_{R}\mathcal{M} \to {}_{R'}\mathcal{M}$ and $G : {}_{R'}\mathcal{M} \to {}_{R}\mathcal{M}$ such that $GF \cong 1_{{}_{R}\mathcal{M}}$ and $FG \cong 1_{{}_{R'}\mathcal{M}}$.

Lemma 1.1. Let R and R' be Morita equivalent rings via inverse equivalent functors $F : {}_{R}\mathcal{M} \to {}_{R'}\mathcal{M}$ and $G : {}_{R'}\mathcal{M} \to {}_{R}\mathcal{M}$, and let M be a left R-module. Then M is Gorenstein projective if and only if F(M) is Gorenstein projective.

Proof. Assume that M is a Gorenstein projective left R-module. Then there is a left R-module exact sequence $\mathbb{P} = \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow P^0 \rightarrow P^1 \rightarrow \cdots$ with every P_i, P^i projective such that $Hom_R(\mathbb{P}, Q)$ is exact for any projective left R-module Q and $M = \ker(P^0 \rightarrow P^1)$. By [1, Proposition 21.4 and Proposition 21.6], we get a left R'-module exact sequence

$$F(\mathbb{P}) = \cdots \to F(P_1) \to F(P_0) \to F(P^0) \to F(P^1) \to \cdots$$

with every $F(P_i)$, $F(P^i)$ projective and $F(M) = \ker(F(P^0) \to F(P^1))$. For any projective left R'-module Q', since G(Q') is projective as a left R-module by [1, Proposition 21.6] and $Hom_{R'}(F(\mathbb{P}), Q')congHom_R(\mathbb{P}, G(Q'))$ by [1, Lemma 21.3], $Hom_{R'}(F(\mathbb{P}), Q')$ is exact. Hence F(M) is Gorenstein projective.

Similarly, if F(M) is a Gorenstein projective left R'-module, then GF(M) is a Gorenstein projective left R-module, i.e., M is Gorenstein projective.

Proposition 1.2. Let R and R' be Morita equivalent rings. Then

l.Ggldim(R) = l.Ggldim(R').

Proof. Assume l.Ggldim(R) = n, a nonnegative integer. For any left R'-module M, there is a left R-module exact sequence $0 \to G_n \to \cdots \to G_1 \to G_0 \to G(M) \to 0$ with every G_i Gorenstein projective. By [1, Proposition 21.4] and Lemma 1.1, we get a left R'-module exact sequence

$$0 \to F(G_n) \to \cdots \to F(G_1) \to F(G_0) \to M \to 0$$

with every $F(G_i)$ Gorenstein projective. Then $Gpd_{R'}(M) \leq n$. This means that $l.Ggldim(R') \leq l.Ggldim(R)$. Similarly, $l.Ggldim(R) \leq l.Ggldim(R')$.

2. Gorenstein global dimensions for Hopf algebras

Lemma 2.1. Let H be a Hopf algebra and X any left H-module.

- (1) If P is a projective left H-module, then so is $P \otimes_k X$.
- (2) If F is a flat left H-module, then so is $F \otimes_k X$.

Proof. (1) If P is a projective left H-module, then there is a left H-module Q such that $P \oplus Q \cong H^{(I)}$ for some set I, thus $P \otimes_k X \oplus Q \otimes_k X \cong (H \otimes_k X)^{(I)}$. Since $H \otimes_k X$ is free as a left H-module, $P \otimes_k X$ is projective.

(2) If F is a flat left H-module, then there is a directed set Λ such that $F \cong \varinjlim F_{\lambda}$, where $\lambda \in \Lambda$ and F_{λ} is a free left H-module, thus $F \otimes_k X \cong \varinjlim (F_{\lambda} \otimes_k X)$. By (1), $F_{\lambda} \otimes_k X$ is a projective (flat) left H-module, hence $F \otimes_k X$ is flat. \Box

Proposition 2.2. Let H be a Hopf algebra and X any left H-module.

- (1) If M is a Gorenstein projective left H-module, then so is $M \otimes_k X$.
- (2) If N is a Gorenstein flat left H-module, then so is $N \otimes_k X$.

Proof. We only give the proof of part (1). If M is a Gorenstein projective left H-module, then there is a $Hom_H(-, \mathcal{P})$ -exact exact sequence $\mathbb{P} = \cdots \to P_1 \to P_0 \to P^0 \to P^1 \to \cdots$ with every P^i, P_i projective such that $M = \ker(P^0 \to P^1)$. Thus we get an exact sequence

$$\mathbb{P} \otimes_k X = \cdots \to P_1 \otimes_k X \to P_0 \otimes_k X \to P^0 \otimes_k X \to P^1 \otimes_k X \to \cdots$$

such that $M \otimes_k X = \ker(P^0 \otimes_k X \to P^1 \otimes_k X)$. By Lemma 2.1(1), every $P^i \otimes_k X$ and every $P_i \otimes_k X$ are projective. For any projective left *H*-module Q,

$$Hom_H(\mathbb{P}\otimes_k X, Q) \cong Hom_k(X, Hom_H(\mathbb{P}, Q)),$$

hence $Hom_H(\mathbb{P} \otimes_k X, Q)$ is exact, as desired.

It is trivial that k is a left H-module, i.e., $h \cdot k = \epsilon(h)k$.

Theorem 2.3. $l.Ggldim(H) = Gpd_H(k)$ and $l.wGgldim(H) = Gfd_H(k)$.

Proof. We only prove the first equality. Clearly, $Gpd_H(k) \leq l.Ggldim(H)$. We shall prove the reverse inequality. Assume that $Gpd_H(k) = n < \infty$. Then there is an exact sequence

$$0 \to G_n \to G_{n-1} \to \dots \to G_1 \to G_0 \to k \to 0$$

where every G_i is a Gorenstein projective left *H*-module. For any left *H*-module *X*, we get an exact sequence

$$0 \to G_n \otimes_k X \to G_{n-1} \otimes_k X \to \dots \to G_1 \otimes_k X \to G_0 \otimes_k X \to k \otimes_k X \to 0.$$

Since $k \otimes_k X \cong X$ and every $G_i \otimes_k X$ is Gorenstein projective by Proposition 2.2(1), $Gpd_H(X) \leq n$. This shows $l.Ggldim(H) \leq Gpd_H(k)$. \Box

3. Gorenstein global dimensions for twisted smash products

Definition 3.1. Let H be a Hopf algebra and A an H-bimodule algebra. The twisted smash product $A \star H$ is defined as follows: $A \star H = A \otimes H$ as k-modules and its multiplication is given by

$$(a \star h)(b \star g) = \Sigma a(h_1 \rightharpoonup b \leftarrow S(h_3)) \star h_2 g$$

for any $a, b \in A$ and $h, g \in H$.

By [13], $A \star H$ is an associative algebra with unit $1_A \star 1_H$. Clearly, $i_A: A \to A \star H, \ a \mapsto a \star 1_H \text{ and } i_H: H \to A \star H, \ h \mapsto 1_A \star h \text{ are two}$ algebra embedding maps.

It is trivial that $A \star H$ is free as a left A-module, this is also true on the right:

Proposition 3.2. Let H be a finite dimensional Hopf algebra and A an *H*-bimodule algebra. Then the map

$$\phi: A \star H \to H \otimes A, a \star h \mapsto \Sigma h_2 \otimes (S^{-1}(h_1) \rightharpoonup a \leftarrow h_3)$$

gives an isomorphism of right A-modules, where the right A-actions on $A \star H$ and $H \otimes A$ are defined respectively as follows

$$(a \star h) \cdot b = \Sigma a(h_1 \rightharpoonup b \leftarrow S^{-1}(h_3)) \star h_2, \quad (h \otimes a) \cdot b = h \otimes ab.$$

Proof. We define

$$\psi: H \otimes A \to A \star H, \quad h \otimes a \mapsto \Sigma(h_1 \rightharpoonup a \leftarrow S^{-1}(h_3)) \star h_2.$$

It is easy to check that ϕ and ψ are two right A-module maps, and $\psi \phi = id$ and $\phi \psi = id$.

Let $A^{(-)}:_{A\star H} \mathcal{M} \to {}_{A}\mathcal{M}$ and ${}^{(-)}A: \mathcal{M}_{A\star H} \to \mathcal{M}_{A}$ be the left and right restriction functors respectively.

Lemma 3.3. Let H be a finite dimensional Hopf algebra. Then

- (1) $(A \star H \otimes_A -, A^{(-)})$ and $(A^{(-)}, A \star H \otimes_A -)$ are double adjunctions. (2) $(-\otimes_A A \star H, (-) A)$ and $((-)A, -\otimes_A A \star H)$ are double adjunctions.

Proof. Since H is finite dimensional, the assertions may directly follow from the adjoint isomorphism theorem and the functor isomorphisms $Hom_A(A \star H, -) \simeq A \star H \otimes_A - \text{ and } Hom_A(A \star H, -) \simeq - \otimes_A A \star H.$

Corollary 3.4. Let H be a finite dimensional Hopf algebra.

(1) If P is a projective left A-module, then $A \star H \otimes_A P$ is a projective left $A \star H$ -module.

(2) If P is a projective left $A \star H$ -module, then P is a projective left A-module.

Lemma 3.5. Let H be a finite dimensional Hopf algebra. If G is a Gorenstein projective left A-module, then $A \star H \otimes_A G$ is a Gorenstein projective left $A \star H$ -module.

Proof. Let $\mathbb{P} = \cdots \to P_{-2} \to P_{-1} \to P_0 \to P_1 \to \cdots$ be an exact sequence with every P_i projective such that $Hom_A(\mathbb{P}, Q)$ is exact for any projective left A-module Q and $G = \ker(P_0 \to P_1)$. By Corollary 3.4(1), every $A \star H \otimes_A P_i$ is a projective left $A \star H$ -module. Hence $A \star H \otimes_A \mathbb{P}$ is an exact sequence of projective left $A \star H$ -modules such that $A \star H \otimes_A G = \ker(A \star H \otimes_A P_0 \to A \star H \otimes_A P_1)$ since $A \star H$ is a free right A-module. Moreover, for any projective left $A \star H$ -module Q',

$$Hom_{A\star H}(A\star H\otimes_A \mathbb{P},Q')\cong Hom_A(\mathbb{P},Q'),$$

hence $\operatorname{Hom}_{A \star H}(A \star H \otimes_A \mathbb{P}, Q')$ is exact by Corollary 3.4(2).

It is easy to see that the equality

$$(3.1) a \star h = (a \star 1_H)(1_A \star h)$$

holds for any $a \in A$ and $h \in H$. If H is a finite dimensional semisimple Hopf algebra, then we can choose a right integral t such that $\epsilon(t) = 1$. Thus we have

(3.2)
$$\Sigma hS(t_1) \otimes t_2 = \Sigma S(t_1) \otimes t_2 h.$$

By [10, Formula 15], we have $1 \otimes t = \Sigma S^{-1}(t_3)g^{-1}t_1 \otimes t_2$, where g is the distinguished group-like element of H. If H^* is unimodular, then g = 1, thus we get

(3.3)
$$\Sigma 1 \otimes t_1 \otimes t_2 = \Sigma S^{-1}(t_4) t_1 \otimes t_2 \otimes t_3$$

Proposition 3.6. Let H be a finite dimensional semisimple Hopf algebra such that H^* is unimodular. If M is a left $A \star H$ -module, then M is a direct summand of $A \star H \otimes_A M$.

Proof. We define

$$\phi: A \star H \otimes_A M \to M, \ a \star h \otimes_A m \mapsto (a \star h) \cdot m.$$

Clearly, ϕ is a left $A \star H$ -module epimorphism. We also define

 $\psi: M \to A \star H \otimes_A M, \ m \mapsto 1_A \star S(t_1) \otimes_A (1_A \star t_2) \cdot m.$

For any $a \in A$, $m \in M$ and $h \in H$, $\psi((a \star 1_H) \cdot m) = \Sigma 1_A \star S(t_1) \otimes_A (1_A \star t_2)(a \star 1_H) \cdot m$ $= \Sigma 1_A \star S(t_1) \otimes_A (t_2 \rightarrow a \leftarrow S(t_4) \star t_3) \cdot m$ $\stackrel{(3.1)}{=} \Sigma (1_A \star S(t_1)) \otimes_A (t_2 \rightarrow a \leftarrow S(t_4) \star 1_H) (1_A \star t_3) \cdot m$ $= \Sigma (1_A \star S(t_1))(t_2 \rightarrow a \leftarrow S(t_4) \star 1_H) \otimes_A (1_A \star t_3) \cdot m$ $= \Sigma a \leftarrow S(S(t_1)t_4) \star S(t_2) \otimes_A (1_A \star t_3) \cdot m$ $\stackrel{(3.3)}{=} \Sigma a \star S(t_1) \otimes_A (1_A \star t_2) \cdot m$ $= (a \star 1_H) \cdot \psi(m),$ $\psi((1_A \star h) \cdot m)) = \Sigma 1_A \star S(t_1) \otimes_A (1_A \star t_2) (1_A \star h) \cdot m$ $= \Sigma 1_A \star S(t_1) \otimes_A (1_A \star t_2) \cdot m$ $= (1_A \star h) \cdot \psi(m).$

Hence, by equality (3.1), ψ is a left $A \star H$ -module map. Finally, it is easy to check that $\phi \psi = id_M$ since $\epsilon(t) = 1$, as desired.

Theorem 3.7. Let H be a finite dimensional semisimple Hopf algebra such that H^* is unimodular. Then $l.Ggldim(A \star H) \leq l.Ggldim(A)$.

Proof. Assume $l.Ggldim(A) = n < \infty$. For any $M \in {}_{A \star H}\mathcal{M}$, as a left A-module, there is a Gorenstein projective resolution $0 \to G_n \to \cdots \to G_1 \to G_0 \to M \to 0$ with every G_i Gorenstein projective, which induces an exact sequence

 $0 \to A \star H \otimes_A G_n \to \dots \to A \star H \otimes_A G_1 \to A \star H \otimes_A G_0 \to A \star H \otimes_A M \to 0$

since $A \star H \otimes_A -$ is exact. Since every $A \star H \otimes_A G_i$ is a Gorenstein projective left $A \star H$ -module by Lemma 3.5, $Gpd_{A\star H}(A \star H \otimes_A M) \leq n$. By [6, Proposition 2.19], $Gpd_{A\star H}(M) \leq n$ since M is a direct summand of $A \star H \otimes_A M$ as left $A \star H$ -modules. Hence $l.Ggldim(A \star H) \leq n =$ l.Ggldim(A).

Next we give a Maschke-type theorem:

Corollary 3.8. Let H be a finite dimensional semisimple Hopf algebra such that H^* is unimodular.

- (1) If A is quasi-Frobenius, then so is $A \star H$.
- (2) If A is left Gorenstein hereditary, then so is $A \star H$.

In 2006, Jiao and Dong [7] gave the duality theorem for twisted smash product algebras: If H is a finite dimensional cocommutative Hopf algebra, then there is an isomorphism of algebras:

$$(A \star H) \# H^* \cong A \otimes (H \# H^*) \cong A \otimes M_n(k) \cong M_n(A).$$

Thus $(A \star H) \# H^*$ is Morita equivalent to A.

Theorem 3.9. Let H be a finite dimensional semisimple cosemisimple cocommutative Hopf algebra. Then $l.Ggldim(A \star H) = l.Ggldim(A)$.

Proof. Since H is cosemisimple, H^* is unimodular by [9, Corollary 2.2.4]. Then,

$$\begin{aligned} l.Ggldim(A) &= l.Ggldim((A \star H) \# H^*) \\ &\leq l.Ggldim(A \star H) \leq l.Ggldim(A). \end{aligned}$$

This means that $l.Ggldim(A \star H) = l.Ggldim(A)$.

Corollary 3.10. Let H be a finite dimensional semisimple cosemisimple cocommutative Hopf algebra. Then

- (1) $A \star H$ is quasi-Frobenius if and only if so is A.
- (2) $A \star H$ is left Gorenstein hereditary if and only if so is A.

Corollary 3.11. Let H be a finite dimensional cocommutative Hopf algebra. If char(k) does not divide $\dim_k(H)$, then

- (1) $l.Ggldim(A \star H) = l.Ggldim(A).$
- (2) $A \star H$ is quasi-Frobenius if and only if so is A.
- (3) $A \star H$ is left Gorenstein hereditary if and only if so is A.

Proof. Since H is cocommutative, $S^2 = id$ by [9, Corollary 1.5.12]. Consequently, by [11, Proposition 2], H is semisimple and cosemisimple if and only if char(k) does not divide dim $_k(H)$. Hence (1)-(3) follow from Theorem 3.9 and Corollary 3.10.

Acknowledgments

The authors wish to thank the referee for his/her helpful comments. This work is supported by the National Natural Science Foundation of China (11301268) and the Fundamental Research Funds for the Central Universities (KJQN201416).

Pan and Cai

References

- F. W. Anderson and K. R. Fuller, Rings and categories of modules, Graduate Texts in Mathematics, 13, Springer-Verlag, New York-Heidelberg, 1974.
- [2] D. Bennis and N. Mahdou, Global Gorenstein dimensions, Proc. Amer. Math. Soc. 138 (2010), no. 2, 461–465.
- [3] D. Bennis, N. Mahdou and K. Ouarghi, Rings over which all modules are strongly Gorenstein projective, *Rocky Mountain J. Math.* 40 (2010), no. 3, 749-759.
- [4] E. E. Enochs, O. M. G. Jenda and B. Torrecillas, Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan 10 (1993), no. 1, 1–9.
- [5] E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995), no. 4, 611–633.
- [6] H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), no. 1-3, 167–193.
- [7] Z. M. Jiao and L. H. Dong, A duality theorem for twisted smash product algebras, Adv. Algebra Anal. 4 (2006), no. 3, 1–11.
- [8] N. Mahdou and M. Tamekkante, On (strongly) Gorenstein (semi)hereditary rings, Arab. J. Sci. Eng. 36 (2011), no. 3, 431–440.
- [9] S. Montgomery, Hopf Algebras and their Actions on Rings, CBMS, Amer. Math. Soc., Providence, 1993.
- [10] D. E. Radford, Minimal quasitriangular Hopf algebras, J. Algebra 157 (1993), no. 2, 285–315.
- [11] D. E. Radford, The trace and Hopf algebras, J. Algebra 163 (1994), no. 3, 583– 622.
- [12] M. E. Sweedler, Hopf Algebras, W. A. Benjamin, Inc., New York, 1969.
- [13] S. H. Wang and J. Q. Li, On twisted smash products for bimodule algebras and the Drinfeld double, *Comm. Algebra* 26 (1998), no. 8, 2435–2444.

(Qunxing Pan) College of Finance, Nanjing Agricultural University, Nanjing, 210095, China

E-mail address: pqxjs98@njau.edu.cn

(Faqun Cai) Department of Economic Management, Nanjing College of Chemical Technology, Nanjing, 210048, China

E-mail address: cfq1217@163.com