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Abstract. In the present work, a new stochastic algorithm is pro-
posed to solve multiple dimensional Fredholm integral equations of
the second kind. The solution of the integral equation is described
by the Neumann series expansion. Each term of this expansion
can be considered as an expectation which is approximated by a
continuous Markov chain Monte Carlo method. An algorithm is
proposed to simulate a continuous Markov chain with probabil-
ity density function arisen from an importance sampling technique.
Theoretical results are established in a normed space to justify the
convergence of the proposed method. The method has a simple
structure and it is a good candidate for parallelization because of
the fact that many independent sample paths are used to estimate
the solution. Numerical results are performed in order to confirm
the efficiency and accuracy of the present work.
Keywords: Fredholm integral equations, Monte Carlo method,
continuous Markov chain, Neumann series expansion, importance
sampling.
MSC(2010): Primary: 60G99; Secondary: 45B05.

1. Introduction

Multiple dimensional Fredholm integral equations of the second kind
are arisen directly from mathematical modeling of real world problems
in applied sciences such as computer graphics, mathematical physics
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and engineering [5, 6]. For example, continuous particle transport prob-
lems can be formulated as Fredholm integral equations of the second
kind with dimensions up to 7, [7]. Therefore, the choice of appropriate
approach to solve multiple dimensional Fredholm integral equations is
very important. But it is difficult to find the exact solution of these
equations. So far, many numerical algorithms and various stochastic
algorithms are introduced, discussed and developed to solve

(1.1) ψ(x ) =

∫
Γ
k(x ,y)ψ(y)dy + S(x ),

where x = (x1, x2, . . . , xs),y = (y1, y2, . . . , ys) ∈ Γ =
∏s

i=1[ai, bi], S(x )
and k(x ,y) are given functions, respectively on D = L2(

∏s
i=1[ai, bi]),

E = D ×D and ψ(x ) is unknown on D.
Numerical algorithms obtain deterministic approximated solutions. In
[10], a fast wavelet collocation method is developed to solve integral
equations on polygons. Two dimensional triangular orthogonal func-
tions have been used to approximate the solution in [8]. A numerical
algorithm based on discrete Galerkin method and Richardson- type ex-
trapolation schemes is considered to solve these equations in [3]. Some
iterative corrections for finite element solutions of two dimensional Fred-
holm integral equations of the second kind have been done in [11].
The approximated solutions based on stochastic algorithms are not de-
terministic. Monte Carlo methods are stochastic tools for solving mul-
tiple dimensional integral equations. In the work [7], adaptive Monte
Carlo methods are applied to solve matrix equations arisen from multi-
ple integral equations. Also, it is well known that Monte Carlo meth-
ods are preferable for solving multiple integrals, such as those arising
from approximations of integral equations [2, 4, 9]. The error of Monte

Carlo approximations for solving integrals is proportional to N−1/2 for
N sample points and the error of standard composite numerical inte-

gration procedures is proportional to N
−α+1

p where p is the dimension
of integral and α is the precision of the numerical integration method,
for example α = 1 for the trapezoidal rule and α = 3 for Simpson’s
rule. It is clear that Monte Carlo methods can have significant accu-
racy advantages over other methods especially for large dimensions p
[2]. In this article, instead of approximating the multiple integrals with
classical MC algorithms, we approximate them with a simple structure
Markov Chain Monte Carlo method.
The goal of this paper is to introduce a new stochastic method to solve
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multiple dimensional integral equations of the second kind. Our main
idea is to use continuous Markov chain for solving these equations. The
proposed method has an acceptable accuracy, low cost, desirable speed
and simple structure simultaneously. Theoretical results are established
in normed spaces to justify the convergence of the method. According
to our best knowledge of research works, the proposed method has not
been studied before and it is applied to multiple integral equations for
the first time.
The paper is organized as follows: Introducing an integral operator, the
Neumann series expansion of the solution of multiple dimensional Fred-
holm integral equations of the second kind is described in Section 2.
We also discuss the theoretical results on the convergence condition and
the error estimation in normed space. Continuous Markov chain Monte
Carlo method via importance sampling technique for solving these equa-
tions is described in Section 3 and the convergence of the method is
discussed theoretically. Furthermore, an algorithm is considered to sim-
ulate the random pathes. Numerical experiments are given in Section 4
and our conclusions and future directions are given in Section 5.

2. Neumann Series Expansion to Solve Fredholm integral
equations

Let us define the integral operator K such that

(Kψ)(x ) =

∫
Γ
k(x ,y)ψ(y)dy ,

and

(Knψ)(x ) =

∫
Γ
k(x ,yn−1)(K

n−1ψ)(yn−1)dyn−1.(2.1)

where K0 is supposed to be the identity function. Equation (1.1) may
be written in the operational form as

(2.2) ψ = S +Kψ.

To solve (1.1), we apply the following recursive equation:

(2.3) ψ(n+1) = Kψ(n) + S, n = 0, 1, 2, . . . .

Assuming ψ0 = 0 and K0 ≡ I, we have

(2.4) ψ(n+1) = S +KS + . . .+KnS =

n∑
m=0

KmS.
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Taking the limit, we obtain the Neumann series

(2.5) lim
n→∞

ψ(n) =

∞∑
m=0

KmS.

Before proceeding further, we discuss the error estimation and the con-
vergence condition of Equation (2.5).

2.1. Convergence condition and error estimation. To discuss the
convergence and the error of the estimated solution, we define the fol-
lowing norm for the linear operator K.

Definition 2.1. Let K : U → W be a linear operator between two
normed spaces. The norm of K is defined by

∥K∥ = sup{∥Kψ∥ : ∥ψ∥ = 1}.

Lemma 2.2. For all ψ ∈ U , the following inequality holds:

(2.6) ∥Kψ∥ ≤ ∥K∥.∥ψ∥.

The proof of lemma (2.2) is clear. The condition for the convergence
of recursive equation (2.3) is given by the following theorem. Note that
the infinity norm is used.

Theorem 2.3. If the inequality

(2.7) sup{|k(x,y)| : (x,y) ∈ (

s∏
i=1

[ai, bi])
2} < 1∏s

i=1(bi − ai)

holds, the recursive equation (2.3) is convergent.

Proof. If M = sup{|k(x ,y)| : (x ,y) ∈ (
∏s

i=1[ai, bi])
2}, then

|(Kψ)(x ,y)| ≤M

s∏
i=1

(bi − ai)∥ψ∥∞.

Therefore we have ∥Kψ∥∞ ≤ M
∏s

i=1(bi − ai)∥ψ∥∞. Considering the
definition (2.1) and the inequality (2.7), we can write

(2.8) ∥K∥ ≤M

s∏
i=1

(bi − ai) < 1.

Now subtracting the formulae (2.3) and (2.2), we have

ψ(n+1) − ψ = K(ψ(n) − ψ),



451 Farnoosh and Aalaei

and applying Lemma (2.2) recursively, we get
(2.9)

∥ψ(n+1) − ψ∥∞ = ∥K(ψ(n) − ψ)∥∞ ≤ ∥K∥.∥ψ(n) − ψ∥∞
≤ ∥K∥2.∥ψ(n−1) − ψ∥∞ ≤ · · · ≤ ∥K∥n+1.∥ψ∥∞.

Finally using Equation (2.8), we obtain

lim
n→∞

∥ψ(n+1) − ψ∥∞ = 0.

□

Theorem 2.4. Assume that ∥K∥ < 1. Then for n ≥ 1 the absolute

and relative errors of the estimated solution ψ(n) satisfy the following
inequalities

(2.10) ∥ψ(n) − ψ∥∞ ≤ ∥K∥n

1− ∥K∥
∥ψ(1)∥∞,

(2.11)
∥ψ(n) − ψ∥∞

∥ψ∥∞
≤ ∥K∥n.

Proof. The following inequalities hold clearly,

(2.12)
∥ψ(n+1) − ψ(n)∥∞ = ∥ψ(n+1) − ψ − (ψ(n) − ψ)∥∞

≥ ∥ψ(n) − ψ∥∞ − ∥ψ(n+1) − ψ∥∞
≥ (1− ∥K∥)∥ψ(n) − ψ∥∞

On the other hand, by using Lemma (2.2) and Equation (2.3) recursively,
we can write
(2.13)

∥ψ(n+1) − ψ(n)∥∞ ≤ ∥K∥.∥ψ(n) − ψ(n−1)∥∞ ≤ · · · ≤ ∥K∥n.∥ψ(1)∥∞
Considering equations (2.13) and (2.12) together, one can get

(1− ∥K∥)∥ψ(n) − ψ∥∞ ≤ ∥K∥n.∥ψ(1)∥∞
and therefore we obtain Equation (2.10). To prove Equation (2.11), note
that it is another form of Equation (2.9). □

In the next section, the solution of multiple dimensional integral equa-
tion is estimated using Monte Carlo method. It means that a random
variable is defined as the unbiased estimator of ψ(n). Note that the sim-
ulation strategy, described in the next section, estimate the sum of the
first n+ 1 terms of the Neumann series.
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3. Continuous Markov chain Monte Carlo method

The Monte Carlo methods share the characteristic that they rely upon
random paths generated by a proposal density. They differ only by how
they use these random paths. Our proposed Monte Carlo method is
estimating the function ψ(x ) by an importance sampling technique us-
ing a continuous probability density function to simulate these random
paths.

3.1. Importance sampling technique. Suppose we are estimating
the multiple integral

(3.1) ξ =

∫
Γ
h(x )dx

where x = (x1, x2, . . . , xs) and h(x ) is any function such that the inte-
gral exists. Let g(x ) be any probability density function on Γ. Then
Equation (3.1) can be considered as

(3.2) ξ =

∫
Γ

h(x )

g(x )
g(x )dx = E[

h(x )

g(x )
].

An unbiased estimator of ξ is

ξ̂ =
1

m

m∑
i=1

h(X i)

g(X i)

where X 1,X 2, . . . ,Xm are identically and independently distributed
random vectors with density g. Then the variance of ξ can be obtained
by:

varξ̂ =
1

m
var(

h(X )

g(X )
) =

1

m
(

∫
h2(x )

g(x )
dx − ξ2)

Theorem 3.1. The minimum of varξ̂ is equal to

varξ̂0 =
1

m
[(

∫
|h(x)|dx)2 − ξ2]

where the random variable X is distributed with probability density

(3.3) g(x) =
|h(x)|∫
|h(x)|dx
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To prove Theorem (3.1), see [1]. It is clear that if h(x ) > 0, then

varξ̂0 = 0. However, Under this assumption, the denominator in Equa-
tion (3.3) is ξ which is required to be found, so this ideal can not be
achieved in practice. Nevertheless, it does indicate that a good choice
of the importance sampling distribution, g(x), is one that is similar in
shape to h(x).
Furthermore, we combine the Neumann series expansion, Monte Carlo
method and importance sampling technique to solve multiple dimen-
sional integral equations.

3.2. Monte Carlo method via importance sampling technique.

Consider a truncated first finite sum of terms in the Neumann se-
ries expansion of the solution (2.4) as an approximate solution of (1.1).
Using iterative equation (2.1) for each term (KmS)(x ), we have

(KmS)(x ) =

∫
Γ

∫
Γ
. . .

∫
Γ
k(x , y1)k(y1, y2) · · · k(ym−1, ym)S(ym)dy1dy2 · · · dym.

Let us define probability transition P , the initial probability density p
and

P (x ,y) =
s∏

i=1

P (xi, yi), p(x ) =
s∏

i=1

p(xi).

Under some assumption, we can consider the combined probability den-
sity function as follows

P (x ,y1,y2, . . . ,ym) = p(x )P (x ,y1)
m∏
i=2

P (y i−1,y i).

Using the importance sampling technique, we have

(KmS)(x ) =
1

p(x )

∫
Γ
· · ·

∫
Γ

k(x , y1)

P (x , y1)

m∏
i=2

k(y i−1, y i)

P (y i−1, y i)
P (x , y1, y2, · · · , ym)S(ym)dy1dy2 · · · ym.

Therefore

(KmS)(x ) = E[
1

p(x )

k(x ,y1)

P (x ,y1)

m∏
i=2

k(y i−1,y i)

P (y i−1,y i)
S(ym)]

Now using Monte Carlo method to estimate this expectation, we have an
approximate solution based on the combination of Monte Carlo method
and the importance sampling technique. We then discuss this procedure
in details.
Consider independent Markov chains t0i → t1i → . . . with state space
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[ai, bi], for i = 1, · · · , s. Let us define tm = (tm1 , t
m
2 , · · · , tms ) and the

weight function wm with the following recursive formula

wm = wm−1
k(tm−1, tm)

P (tm−1, tm)
, w0 = 1.

The following theorem shows that the random variable

ηn(r) =
r(t0)

p(t0)

n∑
m=0

wmS(t
m),

is an unbiased Monte Carlo approximation using the importance sam-
pling technique to solve Fredholm integral equation.

Definition 3.2. The inner product of two continuous function f and g
with domain Γ is defined by

⟨f, g⟩ =
∫
Γ
f(x)g(x)dx.

Theorem 3.3. The mathematical expectation value of the random vari-
able ηn(r) is equal to the inner product ⟨r, ψ(n+1)⟩ i.e.,

E[ηn(r)] = ⟨r, ψ(n+1)⟩.
Proof. Since the random paths t0i → t1i → . . . → tni , for i = 1, · · · , s are
considered to be independent, the combined probability density can be
obtained by

P (t0, t1, · · · , tn) =
s∏

i=1

p(t0i )P (t
0
i , t

1
i ) · · ·P (tn−1

i , tni ),

The desired expectation is calculated as follows:

E[ηn(r)] = E[ r(t
0)

p(t0)

∑n
m=0 wmS(t

m)]

=
∫ ∫

· · ·
∫ r(t0)

p(t0)

∑n
m=0 wmS(t

m)P (t0, t1, · · · , tn)dt0dt1 . . . dtn,

where dt0dt1 . . . dtn =
∏s

i=1 dt
0
i dt

1
i . . . dt

n
i . Because

∫ 1
0 P (x, y)dy = 1,

we have

E[ηn(r)] =∑n
m=0

∫
. . .

∫
r(t0)k(t0, t1) . . . k(tm−1, tm)S(tm)dt0dt1 . . . dtn.

Thus

E[ηn(r)] = ⟨r,
n∑

m=0

KmS⟩ = ⟨r, ψ(n+1)⟩.

□
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To estimate, ⟨r, u(n+1)⟩, we consider sN random paths of length n
and calculate the sample mean

(3.4) γn(r) =
1

N

N∑
s=1

η(s)n (r).

Assuming r(x ) =
∏s

i=1 δ(xi − zi), we will obtain the approximated so-
lution in point z = (z1, z2, . . . , zs):

⟨r(x ), ψ(n+1)(x )⟩ = ⟨r(x ), (
∑n

m=0K
mS)(x )⟩

=
∫ ∫

· · ·
∫ ∏s

i=1 δ(xi − zi)(
∑n

m=0K
mS)(x1, . . . , xs)

∏s
i=1 dxi.

It is clear that
∫
δ(xi − zi)g(xi)dxi = g(zi) for an arbitrary function g

and therefore

⟨r(x ), ψ(n+1)(x )⟩ = (

n∑
m=0

KmS)(z ) = ψ(n+1)(z ),

Under this assumption, equation (3.4) approximates the solution of mul-
tiple dimensional Fredholm integral equation of the second kind.

3.3. Simulation of random paths. To apply the proposed method,
N continuous random paths t0i → t1i → · · · → tni are simulated, for
i = 1, 2, . . . , s, with the transition kernel

P (tm−1
i , tmi ) = ρ(tm−1

i )δ(tmi − tm−1
i ) + (1− ρ(tm−1

i ))g(tmi )

where δ(tmi − tm−1
i ) is the Dirac delta function at tm−1

i , g(x) is a prob-
ability density function on [ai, bi] and ρ(x) ∈ (0, 1). To simulate the
random paths with initial density function p and transition kernel P ,
the following algorithm is implemented for j = 1, 2, . . . , N :

1. Generate t0,ji from density p.
2. for m = 1 to n− 1

2.1. Generate a uniformly distributed τ random number.

2.1.1. If ρ(tm,j
i ) > τ then tm+1,j

i = tm,j
i ,

else
2.1.2. Generate tm+1,j

i from probability density g.

4. Numerical experiments

In this section, we demonstrate some numerical results of approxi-
mating the solution of two dimensional integral equations to verify the
proposed method. As it was mentioned a good choice of importance
sampling function is one that is similar in shape to the integrand. For
the following examples, let us consider p(x) = δ(x − zi) and g(x) the
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Beta distribution with parameters α and β.
Example 1. Consider the two dimensional Fredholm integral equation

ψ(x1, x2) =

∫ 1

0

∫ 1

0

x1
(8 + x2)(1 + y1 + y2)

ψ(y1, y2)dy1dy2 + S(x1, x2),

where

S(x1, x2) =
1

(1 + x1 + x2)2
− x1

6(8 + x2)
.

Its exact solution is ψ(x1, x2) = 1
(1+x1+x2)2

, [8]. Table 1 shows the

performance of the Monte Carlo estimator when used for estimating ψ
point-wise. The absolute difference between Mont carlo and the exact
solution is derived in table 1.

Table 1. The computed errors with N = 1000, α = 1.8
and β = 1.

(x, y) |Monte Carlo - Exact| Variance

(0.5, 0.5) 2.5203× 10−4 2.5961× 10−6

(0.4, 0.9) 7.0302× 10−4 7.4279× 10−7

(0.3, 0.7) 7.5532× 10−4 6.2406× 10−6

(0.6, 0.4) 5.3977× 10−4 1.7975× 10−6

(0.7, 0.8) 7.2548× 10−4 3.6040× 10−6

(0.5, 0.4) 9.4982× 10−4 3.8144× 10−6

Example 2. Consider the two dimensional Fredholm integral equation

ψ(x1, x2) =

∫ 1

0

∫ 1

0

1

50
ex

2
1+x2y2y

2
1 cos(y

3
1)ψ(y1, y2)dy1dy2 + S(x1, x2),

where S(x1, x2) is chosen such that its exact solution is ψ(x1, x2) =

ex2 sin(x3
1). Table 2 shows the performance of the Monte Carlo estimator

when used for estimating ψ point-wise.
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Table 2. The computed errors with N = 1000, α = 1.8
and β = 1.

(x, y) |Monte Carlo - Exact| Variance

(0.5, 0.5) 6.4682× 10−4 1.9086× 10−7

(0.6, 0.4) 5.4024× 10−5 1.9770× 10−7

(0.3, 0.7) 6.0471× 10−5 2.4937× 10−7

(0.4, 0.9) 2.3383× 10−4 2.1737× 10−7

(0.7, 0.8) 4.1495× 10−4 1.9247× 10−7

(0.8, 0.3) 6.5777× 10−4 2.6885× 10−7

5. Conclusion and future directions

Multiple dimensional Fredholm integral equations of the second kind
are usually difficult to solve analytically. In this paper, we explained a
stochastic algorithm to solve these equations. The idea was to use the
described continuous Monte Carlo method via importance sampling to
estimate each term of the truncated first finite sum of terms in the Neu-
mann series expansion of the solution. Required theories were proved
and some numerical examples were solved to show the efficiency and
accuracy of the method.
The proposed method has two significant advantages: it has a simple
structure and it is a good candidate for parallelization because of the fact
that many independent sample paths are used to estimate the solution.
In the proposed algorithm, it is enough to choose a proper probability
density function to have an efficient approximation of the solution point-
wise. The choice of optimal probability density function for importance
sampling technique is one of the main problems which is left as one of
our future research topics.
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