Bulletin of the Iranian Mathematical Society Vol. 35 No. 1 (2009), pp 111-117.

A MEAN ERGODIC THEOREM FOR ASYMPTOTICALLY QUASI-NONEXPANSIVE AFFINE MAPPINGS IN BANACH SPACES SATISFYING OPIAL'S CONDITION

S. SAEIDI

ABSTRACT. Our purpose is to prove that if C is a weakly compact convex subset of a Banach space E satisfying Opial's condition and $T: C \to C$ is an asymptotically quasi-nonexpansive affine mapping such that $F(T) \neq \emptyset$, then for all $x \in C$, $\{T^n x\}$ is weakly almostconvergent to some $z \in F(T)$.

1. Introduction

Let E be a real normed space, C be a nonempty subset of E and T be a self mapping on C. T is said to be nonexpansive provided that $||Tx - Ty|| \leq ||x - y||$, for all $x, y \in C$. Denote by F(T), the set of fixed points of T. The first nonlinear ergodic theorem for nonexpansive mappings with bounded domains in a Hilbert space was established by Baillon [1]: Let C be a nonempty closed convex subset of a Hilbert space H and let T be a nonexpansive mapping of C into itself. If the set F(T) of fixed points of T is nonempty, then for each $x \in C$, the Cesaro means $S_n(x) = \frac{1}{n} \sum_{k=0}^n T^k x$ converge weakly to some $y \in F(T)$. This theorem was extended to a uniformly convex Banach space whose norm is Frechet differentiable by Bruck in [2]. Gornicki [6] proved that

MSC(2000): Primary: 47H09, 47H10

Keywords: Affine mapping, asymptotically quasi nonexpansive mapping, fixed point, weakly almost-convergence, nonlinear ergodic, retraction.

Received: 10 November 2007, Accepted: 8 July 2008

^{© 2009} Iranian Mathematical Society.

¹¹¹

if E is a uniformly convex Banach space satisfying Opial's condition, C is a nonempty bounded closed convex subset of E, and $T: C \to C$ is an asymptotically nonexpansive mapping, then for each $x \in C$, the Cesaro means $\frac{1}{n} \sum_{j=0}^{n-1} T^{j+k} x$ converges weakly to a fixed point of Tuniformly in $k \in \mathbb{N} \cup \{0\}$. Since the nonlinear mean ergodic theorem for contractions in a Hilbert space has been proved by Baillon, other proofs and generalizations of the theorem have been presented by many authors (see, for example, [2, 7, 9, 10, 11, 6] and the references therein).

Here, we prove the mean ergodic theorem for asymptotically quasi nonexpansive affine mappings in a Banach space satisfying Opial's condition. However, our mappings are assumed to be affine, but our results extend the similar mean ergodic theorems to more general spaces.

2. Preliminaries

Let E be a real normed space and let C be a closed convex nonempty subset of E. Consider a mapping $T: C \to C$; T is said to be quasinonexpansive [3] provided that $||Tx - f|| \leq ||x - f||$, for all $x \in C$ and $f \in F(T)$; T is called asymptotically nonexpansive [5] if there exists a sequence $\{u_n\}$ in $[0,\infty)$ with $\lim_{n\to\infty} u_n = 0$ such that $||T^n x - T^n y|| \leq 1$ $(1+u_n)||x-y||$, for all $x, y \in C$ and $n \in \mathbb{N}$; T is called asymptotically quasi-nonexpansive if there exists a sequence $\{u_n\}$ in $[0,\infty)$ with $\lim_{n\to\infty} u_n = 0 \text{ such that } ||T^n x - f|| \le (1+u_n)||x - f||, \text{ for all } x \in C,$ $f \in F(T)$ and $n \in \mathbb{N}$; T is said to be affine if $T(\alpha x + (1 - \alpha)y) = \alpha Tx + (1 - \alpha)y$ $(1-\alpha)Ty$, for all $\alpha \in [0,1]$ and $x, y \in C$; T is said to be *semi-compact* if, for any sequence $\{x_n\}$ in C such that $||x_n - Tx_n|| \to 0 \ (n \to \infty)$, there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $x_{n_i} \to x^* \in C$; T is said to be *retraction* if $T^2 = T$. From the above definitions, it follows that a nonexpansive mapping must be asymptotically nonexpansive, and an asymptotically nonexpansive mapping with fixed point must be asymptotically quasi-nonexpansive, but the converse does not hold. A Banach space E is said to satisfy Opial's condition if whenever $\{x_n\}$ is a sequence in E which converges weakly to x, then,

$$\liminf_{n \to \infty} \|x_n - x\| < \liminf_{n \to \infty} \|x_n - y\| \quad \text{for all } y \in E, \ y \neq x.$$

It is well known that every Hilbert space satisfies Opial's property [8].

A mean ergodic theorem

3. Mean convergence theorems

The proof of the following lemma is elementary.

Lemma 3.1. Let C be a nonempty bounded convex subset of a normed space E and $T: C \to C$ be an affine mapping. Then,

$$\lim_{n \to \infty} \|S_n(x) - TS_n(x)\| = 0,$$

uniformly in $x \in C$, where $S_n = \frac{1}{n} \sum_{k=0}^{n-1} T^k$.

Theorem 3.2. Let C be a nonempty convex subset of a normed space E and T : C \rightarrow C be an asymptotically quasi-nonexpansive affine mapping with $F(T) \neq \emptyset$. Then, for all $x \in C$ and $z \in F(T)$, $\lim_{n \to \infty} \|\frac{1}{n} \sum_{j=0}^{n-1} T^{j+k} x - z\|$ exists uniformly in k in $\mathbb{N} \cup \{0\}$.

Proof. Put $u = \max u_i$ for which $||T^i y - z|| \leq (1 + u_i)||y - z||$, for all $y \in C$ and $z \in F(T)$. Let z be an arbitrary element of F(T) and consider x in C. Set $D = \{y \in C : ||y - z|| \leq (1 + u)||x - z||\}$. We note that $x, z, T^i x \in D, \forall i \in \mathbb{N}, T(D) \subset D$ and D is a bounded convex subset of C. So, we can assume that C is bounded. Fix $\varepsilon > 0$ and set $M_0 = \sup\{||y|| : y \in C\}$. Consider two sequences $\{k_m\}$ and $\{l_n\}$ in $\mathbb{N} \cup \{0\}$. We have,

$$\frac{1}{m} \sum_{j=0}^{m-1} T^{j+k_m+l_n} x = \frac{1}{mn} \sum_{j=1}^{n-1} (n-j) (T^{j+k_m+l_n-1}x - T^{j+k_m+l_n+m-1}x) + \frac{1}{m} \sum_{j=0}^{m-1} \frac{1}{n} \sum_{h=0}^{n-1} T^{j+h+k_m+l_n} x.$$

Then,

$$\begin{split} \|\frac{1}{m}\sum_{j=0}^{m-1}T^{j+k_m+l_n}x - z\| &\leq \|\frac{1}{mn}\sum_{j=1}^{n-1}(n-j)(T^{j+k_m+l_n-1}x - T^{j+k_m+l_n+m-1}x)\| \\ &+ \|\frac{1}{m}\sum_{j=0}^{m-1}\frac{1}{n}\sum_{h=0}^{n-1}T^{j+h+k_m+l_n}x - z\| \\ &\leq \frac{1}{mn}\sum_{j=1}^{n-1}(n-j)2M_0 + \frac{1}{m}\sum_{j=0}^{m-1}\|T^{j+k_m}(\frac{1}{n}\sum_{h=0}^{n-1}T^{h+l_n}x) - z\| \end{split}$$

Saeidi

$$\leq \frac{M_0 n}{m} + (1 + \frac{1}{m} \sum_{j=0}^{m-1} u_{j+k_m}) \|\frac{1}{n} \sum_{h=0}^{n-1} T^{h+l_n} x - z\|$$

Note that, for each n, we have,

$$\lim_{m \to \infty} \left\| \frac{1}{m} \sum_{j=0}^{l_n - 1} T^{j+k_m} x \right\| \le \lim_{m \to \infty} \frac{l_n M_0}{m} = 0,$$

and

$$\lim_{m \to \infty} \|\frac{1}{m} \sum_{j=m}^{m+l_n-1} T^{j+k_m} x\| \le \lim_{m \to \infty} \frac{l_n M_0}{m} = 0.$$

Thus, for each n,

$$\begin{split} \limsup_{m \to \infty} \|\frac{1}{m} \sum_{j=0}^{m-1} T^{j+k_m} x - z\| \\ = \limsup_{m \to \infty} \|\frac{1}{m} \sum_{j=0}^{l_n-1} T^{j+k_m} x + \frac{1}{m} \sum_{j=l_n}^{m+l_n-1} T^{j+k_m} x - \frac{1}{m} \sum_{j=m}^{m+l_n-1} T^{j+k_m} x - z\| \\ = \limsup_{m \to \infty} \|\frac{1}{m} \sum_{j=l_n}^{m+l_n-1} T^{j+k_m} x - z\| \\ = \limsup_{m \to \infty} \|\frac{1}{m} \sum_{j=0}^{m-1} T^{j+k_m+l_n} x - z\| \le \|\frac{1}{n} \sum_{h=0}^{n-1} T^{h+l_n} x - z\|. \end{split}$$

Therefore, we have shown,

$$\limsup_{m \to \infty} \left\| \frac{1}{m} \sum_{j=0}^{m-1} T^{j+k_m} x - z \right\| \le \liminf_{n \to \infty} \left\| \frac{1}{n} \sum_{h=0}^{n-1} T^{h+l_n} x - z \right\|,$$

for arbitrary sequences $\{k_m\}$ and $\{l_n\}$ in $\mathbb{N} \cup \{0\}$. This leads to the desired conclusion.

Corollary 3.3. Let C be a nonempty closed convex subset of a normed space E and $T : C \to C$ be a semi-compact asymptotically quasi-nonexpansive affine mapping such that either C is bounded and T is continuous or $F(T) \neq \emptyset$. Then, for each $x \in C$, the Cesaro means $\frac{1}{n} \sum_{j=0}^{n-1} T^{j+k} x$ converge strongly to some $z \in F(T)$, uniformly in k in $\mathbb{N} \cup \{0\}$.

114

Proof. We first assume that C is bounded. Then, using Lemma 3.1, the semi-compactness and continuity of T, $S_n(x)$ has a limit point which is a fixed point of T. Now, we apply Theorem 3.2 to conclude the result. Also, if we consider the case $F(T) \neq \emptyset$, then it is easy to show that T is continuous and, as in the proof of Theorem 3.2 with no lose of generality, we may assume that C is bounded. Therefore, both conditions lead to the same conclusion.

A more general case of the following lemma is proved in [4]. For the sake of convenience, we give a proof.

Lemma 3.4. (Demiclosedness Principle). Assume that C is a closed convex subset of a normed space E and $T : C \to E$ is a continuous affine mapping. Then, I - T is demiclosed; that is, whenever $\{x_n\}$ is a sequence in C weakly converging to some $x \in C$ and the sequence $\{(I - T)x_n\}$ strongly converges to some y, it follows that (I - T)x = y.

Proof. Let $\{x_n\}$ be a sequence in C weakly converging to some $x \in C$ and the sequence $\{(I - T)x_n\}$ strongly converges to some y. By considering the mapping $T_y z = Tz + y$, for all $z \in C$, without lose of generality, we can assume that y = 0. Then, $||x_n - Tx_n|| \to 0$, as $n \to \infty$. Since T is continuous and affine, then $F_{\epsilon}(T) = \{x \in C : ||x - Tx|| \le \epsilon\}$ is closed and convex for all $\epsilon > 0$. Therefore, $x \in F_{\epsilon}(T)$ for each $\epsilon > 0$, and then $x \in F(T)$. That is, (I - T)x = 0.

The following theorem is our main result.

Theorem 3.5. Suppose C is a locally weakly compact convex subset of a Banach space E satisfying Opial's condition and $T : C \to C$ is an asymptotically quasi-nonexpansive affine mapping such that $F(T) \neq \emptyset$. Then, for each $x \in C$, the Cesaro means $\frac{1}{n} \sum_{j=0}^{n-1} T^{j+k}x$ converge weakly to some $z \in F(T)$ uniformly in $k \in \mathbb{N} \cup \{0\}$. That is, $\{T^nx\}$ is weakly almost-convergent to some $z \in F(T)$.

Proof. Since $F(T) \neq \emptyset$, then *T* is continuous and, as in the proof of Theorem 3.2, we may assume that *C* is bounded and then weakly compact. Pick an arbitrary sequence $\{k_n\} \subset \mathbb{N} \cup \{0\}$. We show that $\Phi_n = \frac{1}{n} \sum_{j=0}^{n-1} T^{j+k_n} x$ converges weakly to a fixed point of *T*. Let $\Phi_{n_k} \rightharpoonup f_1, \Phi_{m_k} \rightharpoonup f_2$ and $f_1 \neq f_2$. Applying Lemmas 3.1 and 3.4, we have $f_1, f_2 \in F(T)$. Then, considering Theorem 3.2 we put $r_1 :=$

Saeidi

 $\lim_{n\to\infty} \|\Phi_n - f_1\|$ and $r_2 := \lim_{n\to\infty} \|\Phi_n - f_2\|$. By Opial's condition, we conclude,

$$r_{1} = \lim_{k \to \infty} \|\Phi_{n_{k}} - f_{1}\| < \lim_{k \to \infty} \|\Phi_{n_{k}} - f_{2}\| = r_{2}$$
$$= \lim_{k \to \infty} \|\Phi_{m_{k}} - f_{2}\| < \lim_{k \to \infty} \|\Phi_{m_{k}} - f_{1}\| = r_{1},$$

which is a contradiction. It means that $f_1 = f_2$. This leads to the weak convergence, of Φ_n to a fixed point of T. To prove the uniform convergence we show for a fixed z in F(T) and arbitrary sequences $\{k_n\} \subset \mathbb{N} \cup \{0\}$ that $\frac{1}{n} \sum_{j=0}^{n-1} T^{j+k_n} x$ converges weakly to z. We consider two sequences $\{k_n\}$ and $\{l_n\}$ in $\mathbb{N} \cup \{0\}$. By the first part of the proof, $\frac{1}{n} \sum_{j=0}^{n-1} T^{j+k_n} x$ and $\frac{1}{n} \sum_{j=0}^{n-1} T^{j+l_n} x$ converge weakly to fixed points of T, say f and g, respectively. We show that f = g. To this end, let $f \neq g$. Then, using Theorem 3.2 and the Opial's condition, we have,

$$\lim_{n \to \infty} \|\frac{1}{n} \sum_{j=0}^{n-1} T^{j+k_n} x - f\|$$

$$< \lim_{n \to \infty} \left\| \frac{1}{n} \sum_{j=0}^{n-1} T^{j+k_n} x - g \right\| = \lim_{n \to \infty} \left\| \frac{1}{n} \sum_{j=0}^{n-1} T^{j+l_n} x - g \right\|$$
$$< \lim_{n \to \infty} \left\| \frac{1}{n} \sum_{j=0}^{n-1} T^{j+l_n} x - f \right\| = \lim_{n \to \infty} \left\| \frac{1}{n} \sum_{j=0}^{n-1} T^{j+k_n} x - f \right\|.$$

This is a contradiction and consequently f = g. This leads to the desired conclusion.

Proposition 3.6. Suppose C is a locally weakly compact convex subset of a Banach space E satisfying Opial's condition and $T: C \to C$ is an asymptotically (quasi-)nonexpansive affine mapping such that $F(T) \neq \emptyset$. Then, there exists a (quasi-)nonexpansive affine retraction P form C onto F(T) such that PT = TP = P and $Px \in \bigcap_{i=0}^{\infty} \overline{co}\{T^kx : k \ge i\}$, for each $x \in C$.

Proof. Considering Theorem 3.5, we put,

$$Px = w - \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} T^{j+k} x,$$

A mean ergodic theorem

for each $x \in C$, for which the limit is uniform in k. Note that $Px \in F(T)$ and $Px \in \bigcap_{i=0}^{\infty} \overline{co} \{T^k x : k \geq i\}$. Now, consider a sequence $\{k_n\}$ such that $k_n \to \infty$. Then, using the lower semi-continuity of the norm we have,

$$\|Px - f\| \le \lim_{n \to \infty} \|\frac{1}{n} \sum_{j=0}^{n-1} T^{j+k_n} x - f\|$$

$$\le \lim_{n \to \infty} (1 + \frac{1}{n} \sum_{j=0}^{n-1} u_{j+k_n}) \|x - f\| = \|x - f\|,$$

for each $x \in C$ and $f \in F(T)$. This means that P is quasi-nonexpansive. The proof for the nonexpansiveness case is similar.

References

- J. B. Baillon, Un theoreme de type ergodique pour les contractions non lineaires dans un espace de Hilbert, C.R. Acad. Sci. Paris Ser. A-B 280 (1975) 1511-1514.
- [2] R. E. Bruck, A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces, *Israel J. Math.* **32** (1979) 107-116.
- [3] J.B. Diaz and F.T. Metcalf, On the structure of the set of subsequential limit points of successive approximations, Bull. Amer. Math. Soc. 73 (1967) 516-519.
- [4] J. Garcia-Falset and E. Llorens-Fuster, Fixed point theory for almost convex functions, *Nonlinear Anal.* **32** (1998) 601-608.
- [5] K. Goebel and W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972) 171-174.
- [6] J. Gornicki, Nonlinear ergodic theorems for asymptotically nonexpansive mappings in Banach spaces satisfying Opial's condition, J. Math. Anal. Appl. 161(2) (1991), 440-446.
- [7] N. Hirano, A proof of the mean ergodic theorem for nonexpansive mappings in Banach space, Proc. Amer. Math. Soc. 78 (1980) 361-365.
- [8] Z. Opial, Weakconverg ence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967) 591-597.
- [9] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979) 274-276.
- [10] S. Saeidi, Convergence of an implicit iteration for affine mappings in normed and Banach spaces, Bull. Iran. Math. Soc. Vol. 33(2) (2007) 27-35.
- [11] P. K. Tam and K. K. Tan, Mean ergodic theorems for affine operators, Math. Computer Modelling 32 (2000) 1417-1421.

Shahram Saeidi

Department of Mathematics, University of Kurdistan, Sanandaj 416, Iran., Email: shahram_saeidi@yahoo.com; sh.saeidi@uok.ac.ir