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Abstract. In this work we deal with actions of vector groupoid
which is a new concept in the literature. After we give the defini-
tion of the action of a vector groupoid on a vector space, we obtain
some results related to actions of vector groupoids. We also apply
some characterizations of the category and groupoid theory to vec-
tor groupoids. As the second part of the work, we define the notion
of a crossed module over a vector groupoid. Finally, we show that
the category VG of the vector groupoids is equivalent to the cate-
gory CModVG of the crossed modules over a vector groupoid.
Keywords: Groupoid, action, crossed module, vector groupoid.
MSC(2010): Primary: 20L05; Secondary: 20L99.

1. Introduction

The concept of groupoid was first introduced by Brandt [2]. But,
after the topological and differentiable versions of the groupoid were
introduced by Ehresmann in 1950’s, the theory of groupoids has been
extensively developed and found many applications and generalisations
in areas such as algebraic topology, differential topology, noncommuta-
tive geometry and theoretical physics.

The concept of action is one of the most important tools in algebraic
topology. The concept plays an important role in category theory es-
pecially in the study of groupoids (in the sense of Ehresmann). The
concept of a groupoid action on a set was introduced by Ehresmann
[9] and is fairly well-known. Subsequently the action of groupoids has
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Actions of vector groupoids 566

been studied extensively in algebraic and differential topology. Many
mathematicians studied various aspects of groupoid actions in 1 sense
of algebraic, topological and differentiable categories [5, 12, 13].

Another algebraic concept considered in this paper is a crossed mod-
ule. Crossed modules have been used widely, and in various contexts,
since their definition by Whitehead in his investigation of the algebraic
structure of second relative homotopy groups [17]. The crossed mod-
ules have been constructed over different algebraic structures (such as
groups, algebras, groupoids, etc.). The crossed modules over groupoids
was given by Brown and Higgins [6]. Also many mathematicians studied
crossed module over groupoids [1, 7]. We consider crossed moduless over
groupoids in this work.

Specially, to show that two categories are equivalent is one of the im-
portant problems in the algebraic topology. There are certain categories
which are equivalent to the categories of actions of (topological or differ-
entiable) groupoids in the algebraic topology. For example, Gabriel and
Zisman showed the equivalence of the category GdCov(G) of coverings
of a groupoid G and the category GdOp(G) of actions of G on sets [10].
The topological version of my results is studied by Brown et al in [5].
Furthermore, there are also other equivalences of the categories related
to (higher dimensional or structured) groupoids [8, 11].

In this work we deal with crossed modules and actions of vector
groupoids which are new concepts in the literature and which has ap-
plications in geometry and other areas. It was defined by Poputa and
Ivan [15, 16]. After they gave the definition of vector groupoid, they ob-
tained some results and characterizations. We first define an action of
a vector groupoid on a vector space. Also we give some new definitions
related to vector groupoids that we need to study crossed modules of
vector groupoids. We obtain some results related to actions of vector
groupoids. Afterwards we introduce the concept of crossed module of
vector groupoids. We construct the categories of the category VG of
vector groupoids and the category CModVG crossed modules of vector
groupoids. Finally we show that the equivalence of the categories VG
and CModVG.

Since actions and crossed modules of vector groupoids rely heavily
on groupoid theory, we begin with a brief review of groupoid Theory in
Section 2. This includes definition and elementary properties of groupoid
in Section 2.1 and actions of groupoids on sets in Section 2.2. In Section
3, we present the concept of vector groupoid defined by Poputa and Ivan
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and we give some results about vector groupoids. We devote Section 4
to the actions of vector groupoids. In Section 5, we describe the crossed
module of vector groupoids and present the main results of the work.

2. Groupoids

In this section, we recall the definition of groupoid and some basic
properties of groupoids.

2.1. Groupoids and Their Basic Properties.

Definition 2.1. A groupoid is a category in which every arrow is invert-
ible. More precisely, a groupoid consists of two sets G and G(0) called
the set of arrows (or morphisms) and the set of objects of groupoid re-

spectively, together with two maps α, β : G → G(0) called source and
target maps respectively, a map ϵ : G(0) → G, x 7→ ϵ(x) = 1x called the
object map, an inverse map i : G → G, a 7→ a−1 and a composition
(b, a) 7→ b ◦ a defined on the pullback

G(2) = G α ×
β
G = {(b, a) | α(b) = β(a)}.

These maps should satisfy the following conditions:

(1) α(b ◦ a) = α(a) and β(b ◦ a) = β(b), for all (b, a) ∈ G(2),
(2) c ◦ (b ◦ a) = (c ◦ b) ◦ a such that α(b) = β(a) and α(c) = β(b), for

all a, b, c ∈ G,
(3) α(1x) = β(1x) = x, for all x ∈ G(0),
(4) a ◦ 1α(a) = a and 1β(a) ◦ a = a, for all a ∈ G,

(5) α(a−1) = β(a) and β(a−1) = α(a), a−1 ◦a = 1α(a) and a ◦a−1 =
1β(a) [3, 4, 12, 14].

We denote a groupoid G over G(0) by (G,G(0)) or (G,G(0), α, β, i, ◦)
or G. We sometimes use the notation ba instead of the composition b◦a,
if no confusion arises.

Let G be a groupoid. For all x, y ∈ G(0), we use the notation G(x, y)
for the set of all arrows a ∈ G such that α(a) = x and β(a) = y. For

x ∈ G(0), we write StGx for the set of all arrows started at x, and
CoStGx for the set of all arrows ended at x. The object or vertex group
at x is G{x} = {a ∈ G | α(a) = β(a) = x}.

A groupoid G is called connected (or transitive) if G(x, y) is non

empty for all x, y ∈ G(0). The maximal connected subgroupoids of G
are called the (connected) components of G [3, 14].
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Definition 2.2. Let G and H be two groupoids. A groupoid morphism
from H to G is a pair (f, f0) of maps f : H → G and f0 : H(0) → G(0)

such that αG ◦ f = f0 ◦ αH , βG ◦ f = f0 ◦ βH and f(b ◦ a) = f(b) ◦ f(a)
for all (b, a) ∈ H(2) [3, 13, 14].

We denote the groupoid morphism (f, f0) by f for brevity. If f is also
bijective then it is called a groupoid isomorphism.

The left-translation (right translation) corresponding to a ∈ G(x, y)
is the map La : CoStGx → CoStGy, b 7→ a ◦ b (Ra : StGy → StGx, b 7→
b ◦ a) which is an isomorphism. The inner automorphism corresponding
to a ∈ G(x, y) is the map Ia : G(x, x) → G(y, y), b 7→ a ◦ b ◦ a−1 [3, 14].

Let us recall some basic properties of the groupoid homomorphisms
in the following proposition.

Proposition 2.3. Suppose G and H are groupoids and f : G → H is a
groupoid homomorphism.
i) Given x ∈ G(0) we have f(x) ∈ H(0).
ii) Given a ∈ G we have f(a−1) = f(a)−1.
iii) For all a ∈ G we have β(f(a)) = f(β(a)) and α(f(a)) = f(α(a))
[3, 14].

Thus, we can construct the category Gpd of the groupoids and their
homomorphisms.

Let G be a groupoid. A subgroupoid of G is a subcategory H of G
such that a ∈ H ⇒ a−1 ∈ H; that is, H is a subcategory which is also
a groupoid. We say H is full (wide) if H is a full (wide) subcategory
[3, 14].

We recall the definition of normal subgroupoid.
Let G be a groupoid. A subgroupoid N of G is called normal if N

is wide in G (i.e. N (0) = G(0)) and, for any objects x, y of G and
a ∈ G(x, y), aN(x)a−1 ⊆ N(y), from which it easily follows that

aN(x)a−1 = N(y).

Example 2.4. For a set X, the cartesian product X ×X is a groupoid
over X, called the coarse groupoid. The maps α and β are the natural
projections onto the second and first factors, respectively. The object
map is x 7→ (x, x) and the composition is given by (x, y)(y, z) = (x, z).
The inverse of (x, y) is simply (y, x). Note that any subgroupoid of the
coarse groupoid is nothing but an equivalence relation on X. If G is
a groupoid over X, then the map (α, β) : G → X × X is a groupoid
homomorphism over X and its image is a subgroupoid of the coarse
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groupoid of X and this subgroupoid is given by the equivalence relation
∼G [3, 14].

2.2. Actions of Groupoids. In this section we recall the definition of
the action of a groupoid G on a set X. Also it will be presented some
examples and properties related to the action of groupoids.

Definition 2.5. Let G be a groupoid and let M be a set. Let J : M →
G(0) be a map. A left action of G on M via J is a map ϕ : Gα×JM →
M, (a, x) 7→ a.x satisfying the conditions

i) J(a.x) = β(a) ii) b.(a.x) = (b ◦ a).x iii) (1J(x))
.x = x,

for any a, b ∈ G, x ∈ M. In this case, we also call the set M as a left
G-set. Similarly, we can define a right action of G on M [5, 10, 14].

Two simple examples for Definition 2.5 are:
(1) Any groupoid G acts on itself from both sides by the composi-

tion of G. The moments are α and β for the left and right actions,
respectively [14].

(2) Any groupoid G acts on G(0) from both sides with moment idG(0) .
The left action is a · x = α(a) and the right action is x · a = β(a) [14].

Now we recall a concept which is called a stable subgroup.
Let G be a groupoid over G(0), and (M,J) a G−space. For u ∈ G(0),

we call Gu = α−1(u) ∩ β−1(u) a stable subgroup.
Gu is a group, in fact, inheriting the operation of G, Gu has a mul-

tiplication. The unit element is u and every element x ∈ Gu has an
inverse element x−1.

Example 2.6. Let X be a set with a left group action by G. We define
the action groupoid G⋉X over X to have arrows∪

x∈X,a∈G
(x

a→ a · x) = G×X

The composition law is given by (a, x)(b, a · x) = (ba, x) [5, 14].

In the case of the action of G on G(0), we can define an equivalence
relation ” ∼ ”. If x, y ∈ G(0), ∃a ∈ G such that a left action of a
on x is y, then we say that x is equivalent to y. The equivalent class
θx = {y|y = a ·x,∃a ∈ G} of x is called an x−orbit of the G in G(0). For

a right action of G on G(0), we can also define an x−orbit of G in G(0).
The two kinds of definitions are the same, in fact, if a · x = α(a) = y,
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then x · a−1 = β(a−1) = α(a) = y, i.e., x ∼ y by a in the left action,
meanwhile x ∼ y by a−1 in the right action.

Now we recall a concept which is called a stable subgroup.
Let G be a groupoid over G(0), and (M,J) a G−space. For u ∈ G(0),

we call the Gu = α−1(u) ∩ β−1(u) a stable subgroup.
Gu is a group, in fact, inheriting the operation of G, Gu has a mul-

tiplication. The unit element is u and every element x ∈ Gu has an
inverse element x−1.

3. Vector Groupoids

In this section, we will give the concept of vector groupoid defined by
Poputa and Ivan [15, 16]. Also we will present some results related to
vector groupoids.

Definition 3.1. A vector groupoid over a field K, is a groupoid (V, α, β,

⊙, i, V (0)) such that

(1) V is a vector space over K, and the set, of units V (0) is a sub-
space of V .

(2) The source and the target maps α and β are linear maps.
(3) The inversion i : V → V, a 7→ i(a) = a−1 is a linear map and

the following condition is verified:
i) a+ a−1 = α(a) + β(a), for all a ∈ V

(4) The map m : V (2) = {(a, b) ∈ V × V |α(b) = β(a)} → V, (a, b) 7→
m(a, b) = a⊙ b, satisfy the following conditions:
i) a⊙ (b+ c−β(a)) = a⊙ b+a⊙ c−a, for all a, b, c ∈ V such

that α(b) = β(a) = α(c).
ii) a⊙ (kb+(1−k)β(a)) = k(a⊙ b)+ (1−k)a, for all a, b ∈ V

such that α(b) = β(a).
iii) (b+ c−α(a))⊙a = b⊙a+ c⊙a−a, for all a, b, c ∈ V such

that α(a) = β(b) = β(c).
iv) (kb+(1−k)α(a))⊙a = k(b⊙a)+ (1−k)a, for all a, b ∈ V

such that α(a) = β(b) [15, 16].

We sometimes use the notation ab instead of the composition a ⊙ b,
if no confusion arises.

From Definition 3.1 we have the following corollary.

Corollary 3.2. Let (V, α, β,⊙, i, V (0)) be a vector groupoid. Then:
i) The source and the target maps α and β are linear epimorphisms.
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ii) The inversion i : V → V is a linear automorphism.
iii) The fibres α−1(0), β−1(0) and the isotropy group V (0) = α−1(0) ∩
β−1(0) are vector subspaces of the vector space V [15, 16].

Clearly, there are some extra algebraic rules in a vector groupoid. Let
us recall these rules in the following propositions.

Proposition 3.3. Let (V, α, β,⊙, i, V (0)) be a vector groupoid. Then
the following assertions hold [15, 16]:
i) 0 ◦ a = a, ∀a ∈ α−1(0),
ii) a ◦ 0 = a,∀a ∈ β−1(0),
iii) a− α(a) = b− α(b) ⇒ a = b, ∀a, b ∈ β−1(0),
iv) a− β(a) = b− β(b) ⇒ a = b, ∀a, b ∈ α−1(0).

Proposition 3.4. Let (V, V (0)) be a vector groupoid over a field K.
Then:
i) tβ : α−1(0) → β−1(0), tβ(a) = β(a)− a is a linear isomorphism,
ii) tα : β−1(0) → α−1(0), tα(a) = α(a) − a is a linear isomorphism
[15, 16].

Proposition 3.5. Let (V,+, ·, α, β,⊙, i, V (0)) be a vector groupoid over

a field K and u ∈ V (0). Then the following assertions exist:
i) The isotropy group V (u) = {a ∈ V | α(a) = β(a) = u} endowed with
the laws

⊞ : V × V → V, (a, b) 7→ a⊞ b = a+ b− u, ∀a, b ∈ V (u)

and

⊠ : K × V → V, (k, a) 7→ k ⊠ a = ka+ (1− k)u, ∀k ∈ K, ∀a ∈ V (u)

has a structure of vector space over K.
ii) The vector space (V (u),⊞,⊠) together with the restrictions of struc-
ture maps α, β, i to V (u) and the composition

⊡ : V (u)(2) = V (u)× V (u) → V (u)

(3.1) (a, b) 7→ a⊡ b = (a− u)⊙ (b− u) + u, ∀a, b ∈ V (u)

has a structure of vector groupoid with a single unit over K [15, 16].

We call (V (u),⊞,⊠, α, β,⊡, i, V (u)(0) = {u}) the isotropy vector group-
oid at u ∈ V (0) of V [15, 16].

Let us define the concept of vector subgroupoid.
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Definition 3.6. Let (V, V (0)) be a vector groupoid over a field K. A

vector subgroupoid of V is a pair of vector subspaces V ′ ⊂ V , V (0)
′
⊂

V (0) such that α(V ′) ⊂ V (0)
′
, β(V ′) ⊂ V (0)

′
, 1x ∈ V ′ for all x ∈ V (0)

′
,

and V ′ is closed under the composition and the inversion in V . A vector

subgroupoid (V ′, V (0)
′
) of (V, V (0)) is called wide if V (0)

′
= V (0), and is

called full if V ′(x, y) = V (x, y) for all x, y ∈ V (0)
′
.

The identity vector subgroupoid of (V, V (0)) is the vector subgroupoid

∆V = {1x | x ∈ V (0)}. The inner vector subgroupoid of (V, V (0)) is the
vector subgroupoid IV =

∪
x∈V (0)

V (x, x).

Definition 3.7. Let V be a vector groupoid on V (0). A normal vector
subgroupoid of V is a wide vector subgroupoid N such that for any n ∈ N
and any v ∈ V with α(v) = α(n) = β(n), we have v ⊙ n⊙ v−1 ∈ N .

Definition 3.8. Let (V1, α1, β1, V
(0)
1 ) and (V2, α2, β2, V

(0)
2 ) be two vec-

tor groupoids. A vector groupoid morphism (or homomorphism) is a
groupoid morphism (or homomorphism) f : V1 → V2 such that f is a
linear map [15, 16].

Example 3.9. Let (V, V (0)) and (V ′, V ′(0)) be vector groupoids over a
field K and f : V → V ′ be a homomorphism of vector groupoids. Then
kerf , the set of all v ∈ V for which f(v) is an identity arrow of V ′,
has clearly the structure of vector subspace. kerf is the wide vector
subgroupoid of V , and so is a normal vector subgroupoid of V . In fact,
it is obvious that kerf is wide in V , and for n ∈ kerf(x), v ∈ V (x, y)
the normality follows from

f(v ⊙ n⊙ v−1) = f(v)⊡ f(n)⊡ f(v−1) = f(v)⊡ f(v−1) = 1.

Therefore, we can construct the category VG of vector groupoids and
their homomorphisms.

Definition 3.10. Let V be a vector groupoid on V (0). V is transitive if
V (x, y) ̸= ∅ for all x, y ∈ V (0). V is totally intransitive if V (x, y) = ∅
for all x, y ∈ V (0).

As an example, it is obvious that the identity vector subgroupoid and
the inner vector subgroupoid of a vector groupoid (V, V (0)) are totally
intransitive.
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4. Action of Vector Groupoids

In this section we will be interested primarily in the concept of action
of a vector groupoid on a vector space. Also we present some results
related to the actions of vector groupoids.

Definition 4.1. Let V be a vector groupoid over V (0) and S be a vector
space. Let λ : S → V (0) be a linear map. If there exists a linear map

ϕ : V α ×λ S → S, (v, s) 7→ v · s

which satisfy the following conditions, then we say that ”the vector
groupoid V acts on the vector space S via the linear map λ”:
i) λ(v · s) = β(v),
ii) w · (v · s) = (w ⊙ v) · s,
iii) 1λ(s) · s = s.

Then S is said to be a (left) V -space. Similarly, we can define the
right action of V on S.

Example 4.2. Let (V, α, β,⊙, i, V (0)) be a vector groupoid over a field

K. Then V acts on the vector space S = V (0) via the linear map λ =
Id : S = V (0) → V (0). Indeed, let us define the map

ϕ : V α ×λ V (0) → V (0), (v, x) 7→ ϕ(v, x) = v · x = β(v).

We firstly show that ϕ satisfies the conditions of action.
i) Id(v ·x) = v ·x = β(v). Hence the first condition of action is verified.
ii) We have ϕ(v, ϕ(w, x)) = ϕ(v, β(w)) = β(v) and ϕ((v ⊙ w), x) =
β(v ⊙ w) = β(v). Hence ϕ(v, ϕ(w, x)) = ϕ((v ⊙ w), x). That is, the
second condition is verified.
iii) It is obvious that ϕ(1Id(x), x) = β(1Id(x)) = β(1x) = x.

Secondly we must show that the action is linear. Indeed, if we use the
linearity of β, we have

ϕ((v, x) + (w, x)) = ϕ(v + w, x+ x)

= β(v + w)

= β(v) + β(w)

= ϕ(v, x) + ϕ(w, x),

Hence, it follows that the action ϕ is linear.
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It follows from the rules for an action that an element v in V (x, y)
defines a linear isomorphism v♯ : λ

−1[x] → λ−1[y], s 7→ v·s. The action is

said to be transitive if for all objects x, y in V (0), s ∈ λ−1[x], s
′ ∈ λ−1[y],

there is an element v ∈ V (x, y) such that v · s = s
′
.

If s ∈ λ−1[x], the stability group of s is the subgroup V (s) of V , which
consists of elements v such that v · s = s. Such an element v is said to
stabilize s, and s is said to be fixed point of v.

Let us now give the concept of action vector groupoid by an example,
which will be a useful tool in Theorems 5.4 and 5.5.

Example 4.3. Let (V, α, β,⊙, ϵ, i, V (0)) be a vector groupoid acting on

vector space S via λ : S → V (0). Thus we can construct a vector groupoid
with the space of objects that is the vector space S and the space of
morphisms is vector space V α ×λ S. It is called action vector groupoid
and denoted by V × S ⇒ S or by (V × S, α1, β1,⊠, ϵ1, i1, S).

In the vector groupoid (V × S, α1, β1,⊠, ϵ1, i1, S) a morphism from

an object s to another object s
′
is a pair (v, s) such that the equality

ϕ(v, s) = v · s = s
′
is verified. Namely, we have the set (V × S)(s, s

′
) =

{(v, s) | v ∈ V (s, s
′
) and v · s = s

′}. Also we can list the structure maps
of the vector groupoid (V × S, α1, β1,⊠, ϵ1, i1, S) as follows:

the source map is defined by α1(v, s) = s,

the target map is defined by β1(v, s) = v · s = ϕ(v, s) = s
′
,

the object map is defined by ϵ1(s) = (1λ(s), s) = (ϵ(λ(s)), s),

the composition map is defined by (v, s) ⊠ (w, s
′
) = (v ⊙ w, s) such

that s
′
= v · s,

and the inverse map is defined by i1(v, s) = (v−1, v · s), where v−1

denotes the inverse element of v in the vector groupoid V .
Now let us prove that the conditions (1)-(4) from Definition 3.1 hold.
For the first condition, we show that the equality

(v, s)⊠[(w, s
′
)+(u, s

′′
)−ϵ1(β(v, s))] = (v, s)⊠(w, s

′
)+(v, s)⊠(u, s

′′
)−(v, s)

holds, where α(w, s
′
) = β(v, s) = α(u, s

′′
). The morphisms at the left

side of the equality are as follows:
(v · s) : s 7→ v · s,
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(w, s
′
) + (u, s

′′
) : v · s+ v · s 7→ w · (v · s) + u · (v · s),

ϵ1(β(v, s)) = ϵ1(v · s) : v · s 7→ v · s.

Hence, it follows that the morphism at the left side is a morphism as

(v, s)⊠ [(w, s
′
) + (u, s

′′
)− ϵ1(β(v, s))] : s 7→ w · (v · s) + u · (v · s)− v · s.

The morphisms at the right side of the equality are explicitly:
(v, s)⊠ (w, s

′
) : s 7→ w · (v · s),

(v, s)⊠ (u, s
′′
) : s 7→ u · (v · s),

−(v, s) : −s 7→ −v · s.

If we sum these morphisms, the morphism at right side of the equality
is

(v, s)⊠ (w, s
′
) + (v, s)⊠ (u, s

′′
)− (v, s) : s 7→ w · (v · s) + u · (v · s)− v · s.

Hence, it follows that both sides of the equality determine the same
morphism. Thus, the first condition of being vector groupoid holds.

Since the source map α1 is projection onto second factor and the ac-
tion is linear, α1 and β1 are clearly linear maps. Hence the condition
(2) of Definition 3.1 holds.

Let us now show that the inverse map i1 of V × S is linear. Let
a, b ∈ V × S and k1, k2 ∈ K where a = (v, s) and b = (w, t). Then we
have

i1(k1a+ k2b) = i1(k1(v, s) + k2(w, t))

= i1((k1v, k1s) + (k2w, k2t))

= i1(k1v + k2w, k1s+ k2t)

= ((k1v + k2w)
−1, (k1v + k2w) · (k1s+ k2t))

= (k1v
−1 + k2w

−1, (k1v · k1s) + (k2w · k2t))
= (k1v

−1 + k2w
−1, k1(v · s) + k2(w · t))

= (k1v
−1, k1(v · s)) + (k2w

−1, k2(w · t))
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= k1(v
−1, v · s)) + k2(w

−1, w · t)
= k1i1(v, s) + k2i1(w, t)

= k1i1(a) + k2i1(b).

Hence the inverse map i1 is linear. We verify the condition (1) of 3.1.3
of Definition 3.1 in [16], i.e., for all (v, s) ∈ V×S, such that α(v) = λ(s),

β(v) = λ(s
′
) = λ(v · s) it follows that:

(v, s) + (v, s)−1 = ϵ1(α1(v, s)) + ϵ1(β1(v, s)).

Indeed,

(v, s) + (v, s)−1 = (v, s) + (v−1, v · s)
= (v + v−1, s+ v · s)
= (ϵ(α(v)) + ϵ(β(v)), s+ v · s)
= (ϵ(λ(s)) + ϵ(λ(v · s)), s+ v · s)
= (ϵ(λ(s)), s) + (ϵ(λ(v · s)), v · s)
= ϵ1(s) + ϵ1(v · s)
= ϵ1(α1(v, s)) + ϵ1(β1(v, s)).

Thus the condition (1) of 3.1.3 of Definition 3.1 in [16] holds.
Similarly, it can be easily shown that the condition (4) of Definition

3.1 holds. Consequently, (V ×S, α1, β1,⊠, ϵ1, i1, S) is a vector groupoid.

Proposition 4.4. The vector groupoid V × S is transitive if and only
if the action is transitive.

Proof. The proof is straightforward. Namely, (V ×S)(s, s
′
) is non-empty

if and only if there is an element v in V such that v · s = s
′
. □

The following definition gives the notion of the action of a vector
groupoid on another vector groupoid.

Definition 4.5. Let (V, V (0)) and (W,W (0)) be vector groupoids over

a field K and let λ : W → V (0) be a homomorphism, where V (0) is
considered as a vector groupoid, consists of units. Then we say that V
acts on W via λ if for each v ∈ V (x, y) and each element a in the vector
groupoid λ−1[x] there is given an element v · a in the vector groupoid
λ−1[y] such that the following conditions hold:
i) v1 · (v2 · w) = (v1 ⊙ v2) · w, for all v1, v2 ∈ V and w ∈ W
ii) 1λ(w) · w = w, for all w ∈ W
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iii) v · (w2 ⊡ w1) = (v · w2)⊡ (v · w1), for all v ∈ V and w1, w2 ∈ W .

If W is discrete, the above definition coincides with the usual action
of a vector groupoid on a vector space.

Remark 4.6. For any vector groupoid V , we can regard V (0) as the
discrete vector subgroupoid of V on V (0). Thus, since V (0) is discrete
vector subgroupoid of V on V (0) and λ : W → V (0) is a morphism, the
vector groupoid W is the sum

W =
⊔

x∈V (0)

Wx = λ−1[x]

of the vector groupoids Wx = λ−1[x] for all x ∈ V (0).

An element v in V (x, y) defines a morphism v♯ : Wx → Wy of vector
groupoids such that

1♯ = 1 , (v1 ⊙ v2)♯ = v1,♯v2,♯

when it can be defined. Thus an action of V on W defines a functor
W ′ : V → VG, where VG is the category of vector groupoids, by W ′(x) =

Wx for x ∈ V (0) and W ′(v) = v♯ for v ∈ V . Conversely, a functor
W ′ : V → VG defines an action of V on the sum of the vector groupoids
W ′(x), x ∈ V (0), in an obvious way.

Definition 4.7. Let V be a vector groupoid with the object space V (0)

acting on vector spaces S and T . A linear map ϕ : S → T is V -
equivariant if and only if λS(s) = λT (ϕ(s)) and ϕ(v · s) = v ·ϕ(s) for all
s ∈ S and v ∈ Vλ(s).

The conditions in the definition are equivalent to the commutativity
of the diagrams.

S T

V(0)

f

lS lT

xS xTV

. .

Id x

V

S T

f

f

More generally, we can generalize the above definition for two vector
groupoids in the following way.
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xS xV

. .

x

V

S

f

f
S

ý

ý

S

ýf

Let V and V ′ be vector groupoids acting on vector spaces S and S′,
respectively. Let f : V → V ′ be a vector groupoid homomorphism and
let ϕ : S → S′ be a linear map. In this case, if the diagram
is commutative, then ϕ is called an equivariant map.

As with group actions, the action of a vector groupoid on a vector
space defines an equivalence relation.

Definition 4.8. Let (V, V (0)) be a vector groupoid over a field K and
let S be a (left) V -space. Define the orbit equivalence relation on S
determined by V to be s ∼ t if and only if there exists v ∈ V such that
v · s = t. The orbit (or quotient) space with respect to this relation is
denoted by S/V , the elements of S/V called the orbits of the action are
denoted by V · s, and the canonical projection is (often) denoted by π,
which assigns to each s in S its orbit. When S is a right V -space, the
orbit equivalence relation is defined similarly.

In some cases S will be both a left V -space and a right W -space and
in these situations we will denote the orbit space with respect to the
V -action by S\V and the orbit space with respect to the W -action by
W/S and we will denote elements of the orbit space by V · s and s ·W ,
respectively.

Proposition 4.9. Let V be a vector groupoid and S be a V -space. Then
the orbit equivalence relation defined in Definition 4.8 is an equivalence
relation.

Proof. The proof is straightforward □

Proposition 4.10. The canonical projection π : S → S/V is a linear
map.

Proof. The proof is straightforward □

Therefore, we obtain the category of actions of vector groupoids on
vector spaces, which is a subcategory of VG. We will denote it by VGOp.
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5. Crossed module over vector groupoids

In this section we will define the concept of crossed modules over
vector groupoids. Later, we will give some examples and results about
crossed modules over vector groupoids.

Definition 5.1. A crossed module of vector groupoids consists of a pair
of vector groupoids C and V over a common object space such that C
is totally intransitive, together with an action of V on C and a linear
functor δ : C → V which is the identity on the object space and satisfies
CR1. δ(v · c) = v−1 ⊙ δ(c)⊙ v,
CR2. δ(c1) · c = c−1

1 ⊙ c⊙ c1
for c, c1 ∈ C(x, x), v ∈ V (x, y).

A crossed module of vector groupoids will be denoted by C = (C, V, δ).
Also we recall that the linear functor δ is called boundary map.

Let us now give a main example of a crossed module of vector groupoids.

Example 5.2. Let V be a vector groupoid and let IV =
∪

x∈V (0)

V (x, x)

be inner vector subgroupoid of V . Then, if we take the inclusion map
i : IV → V as the boundary map δ, we obtain a crossed module C =
(IV, V, i).

Firstly, we must define the action of V on IV . V acts on IV as
follows via the partial composition of V :

· : V × IV → IV, (v, c) 7→ v · c = v−1 ⊙ c⊙ v.

Let us now show that the conditions of action are hold.
The first condition is straightforward.
For the second condition, we take any elements c1, c2 ∈ V (x, x) ⊂ IV

and v ∈ V (x, y). Then,

v · (c1 ⊙ c2) = v−1 ⊙ (c1 ⊙ c2)⊙ v

= v−1 ⊙ c1 ⊙ v ⊙ v−1 ⊙ c2 ⊙ v

= v · c1 ⊙ v · c2.

Thus the second condition of action is hold. Finally, the third condition
is hold as follows:
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(v1 ⊙ v2) · c1 = (v1 ⊙ v2)
−1 ⊙ c1 ⊙ (v1 ⊙ v2)

= v−1
2 ⊙ v−1

1 ⊙ c1 ⊙ v1 ⊙ v2

= v−1
2 ⊙ (v1 · c1)⊙ v2

= v2 · (v1 · c1).

and

1x · c1 = 1−1
x ⊙ c1 ⊙ 1x = c1.

Also, it is obvious that the action is linear, since V has a structure of
vector space. Therefore, V acts on IV via the composition of V .

Now let us show the conditions of crossed module.
CR1.

δ(v · c) = δ(v−1 ⊙ c⊙ v) = i(v−1 ⊙ c⊙ v)

= v−1 ⊙ c⊙ v = v−1 ⊙ i(c)⊙ v

= v−1 ⊙ δ(c)⊙ v.

CR2.

δ(c1) · c = δ(c1)
−1 ⊙ c⊙ δ(c1) = i(c1)

−1 ⊙ c⊙ i(c1)

= c−1
1 ⊙ c⊙ c1.

Consequently, C = (IV, V, i) is a crossed module of the vector groupoids.

Definition 5.3. Let C = (C, V, δ) and C′ = (C ′, V ′, δ′) be two crossed
modules of vector groupoids over a common field K. A linear functor
f = (f1, f2) : C → C′ is called a homomorphism of crossed modules of
vector groupoids, if the linear maps f1 : V → V ′ and f2 : C → C ′ hold
f1δ = δ′f2 and f2(v · c) = f1(v) · f2(c).

The conditions in the definition are equivalent to be commutative of
the following diagrams:

ý

x x

. .

xf

C C

C

C
ý

C

C

ý

f f

f
f

VV

d d
ý

1

2

V
1 2

2

V
ý ý
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This yields the category CModVG of crossed modules of vector group-
oids and their homomorphisms.

Theorem 5.4. Let V be a vector groupoid over V (0). Then (V, V (0))
induces a crossed module over vector groupoids.

Proof. Let V be a vector groupoid over V (0). We will obtain a crossed
module C = (C, V, δ) of vector groupoids. For this, we will construct a
totally intransitive vector groupoid C and a vector groupoid acting on
C, both of which have the common object space. Also we must have a
linear functor δ : C → V .

The construction of C: Let us consider the isotropy groups C(x) for

all x ∈ V (0), i.e. C(x) = {v ∈ V | α(v) = β(v) = x}. Then, from
Proposition 3.5.(ii), C(x) has a structure of vector groupoid. Hence we
determine the totally intransitive vector groupoid C as

∪
x∈V (0)

C(x). That

is, C =
∪

x∈V (0)

C(x).

The action of V on C: As shown in Example 5.2, the vector groupoid
V acts on the totally intransitive vector groupoid C =

∪
x∈V (0)

C(x).

The boundary map δ : C → V : We determine the boundary map δ as
inclusion map, namely δ = i : C =

∪
x∈V (0)

C(x) → V is a homomorphism

of vector groupoids.
After these determinations, we can show that the conditions of crossed

module are hold.
CR1.

δ(v · c) = δ(v−1 ⊙ c⊙ v) = i(v−1 ⊙ c⊙ v)

= v−1 ⊙ c⊙ v = v−1 ⊙ i(c)⊙ v

= v−1 ⊙ δ(c)⊙ v.

CR2.

δ(c1) · c = δ(c1)
−1 ⊙ c⊙ δ(c1) = i(c1)

−1 ⊙ c⊙ i(c1)

= c−1
1 ⊙ c⊙ c1.

Thus C = (C, V, i) is a crossed module of vector groupoids, which we
denote it by ΓV . As a result of this proposition, we observe that this
crossed module is entirely contained in the vector groupoid (V, V (0)).

□
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Now our aim is to show how a vector groupoid V ′ can be recovered
from the crossed module C = ΓV contained in it. We state this as a
theorem.

Theorem 5.5. Let C = (C, V, δ) be a crossed module of vector groupoids.
Then C induces a vector groupoid V ′.

Proof. Let C = (C, V, δ) be a crossed module of vector groupoids. Then,
since there exists an action of V on C due to the definition of crossed
module of vector groupoids, one can construct the action vector groupoid.

Let V ′ be the product vector space V × C = {(v, c) | v ∈ V, c ∈
C(β(v))}.

Then V ′ is a vector groupoid with object space C as follows:
We consider the totally intransitive vector groupoid C as a vector

space, because C consists of the identity arrows. So we can consider
C as the object space of the V ′. The structure maps of the V ′ are as
follows:

the source map is defined by α1(v, c) = c,
the target map is defined by β1(v, c) = v · c,
the object map is defined by ε1(c) = (1c, c),
the partial composition is defined by (v, c1) ⊠ (w, c2) = (v ⊙ w, c1)

such that c2 = v · c1,
and the inverse map is defined by i1(v, c) = (v−1, v · c), where v−1

denotes the inverse element of v in the vector groupoid V .
The conditions being a vector groupoid are easily shown as in Example

4.3. □
As a main result of this work, we state the following corollary which

is the conclusion from the Theorems 5.4 and 5.5.

Corollary 5.6. The category CModVG of crossed modules of vector
groupoids and the category VG of vector groupoids are equivalent.

Proof. Firstly, let us define a functor Γ : VG → CModVG in the following
way. Let (V, V0) be a vector groupoid. From Theorem 5.4, there exists
a crossed module of vector groupoids denoted by ΓV = (C, V, i). Thus
ΓV is a crossed module of vector groupoids.

Secondly, let us define a functor Φ : CModVG → VG in the following
way. For any crossed module C = (C, V, δ) of vector groupoids, by the
Theorem 5.5, we obtain the action vector groupoid V × C with object
space C. Thus ΦC is a vector groupoid.

It is obvious that ΦΓ = 1VG and ΓΦ = 1CModVG .
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