
...

Bulletin of the

.

Iranian Mathematical Society

.

ISSN: 1017-060X (Print)

.

ISSN: 1735-8515 (Online)

.

Vol. 40 (2014), No. 3, pp. 585–607

.

Title:

.

On inverse problem for singular Sturm-
Liouville operator with discontinuity conditions

.

Author(s):

.

R. Amirov and N. Topsakal

.

Published by Iranian Mathematical Society

.

http://bims.ims.ir



Bull. Iranian Math. Soc.
Vol. 40 (2014), No. 3, pp. 585–607
Online ISSN: 1735-8515

ON INVERSE PROBLEM FOR SINGULAR

STURM-LIOUVILLE OPERATOR WITH

DISCONTINUITY CONDITIONS

R. AMIROV AND N. TOPSAKAL∗

(Communicated by Mahmoud Hesaaraki)

Abstract. In this study, properties of spectral characteristic are
investigated for singular Sturm-Liouville operators in the case where
an eigen parameter not only appears in the differential equation but
is also linearly contained in the jump conditions. Also Weyl func-
tion for considering operator has been defined and the theorems
which related to uniqueness of solution of inverse problem accord-
ing to Weyl function and two spectra have been proved.
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1. Introduction

We consider the boundary value problem L for the equation:

(1.1) ℓ (y) := −y′′ + C

x
y + q (x) y = λy, λ = k2

on the interval 0 < x < π, where λ is spectral parameter; C ∈ R.
Let us define the boundary value problem L for the equation 1.1 with

the boundary conditions

(1.2) y (0) = 0, y (π) = 0
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and with the jump conditions

(1.3)

{
y (d+ 0) = αy (d− 0)
y′ (d+ 0) = α−1y′ (d− 0) + 2kβy (d− 0)

where α, β ∈ R, α ̸= 1, α > 0, d ∈
(π
2
, π
)
, q (x) is a real valued bounded

function and q (x) ∈ L2 (0, π) .
The boundary value problems that contain the spectral parameter in

boundary conditions linearly were investigated in [8]-[11] . In [4],[6]-
[11], [14]-[16] ,[30] an operator-theoretic formulation of the problems
(1.1)-(1.3) has been given

The inverse problem of reconstructing the material properties of a
medium from data collected outside of the medium is of central impor-
tance in disiplines ranging from engineering to the geo-sciences. For
example, discontinuous inverse problems appear in electronics for con-
structing parameters of heterogeneous electronic lines with desirable
technical characteristics [25, 23]. After reducing corresponding math-
ematical model we come to boundary value problem L where q (x) must
be constructed from the given spectral information which describes de-
sirable amplitude and phase characteristics. Spectral information can
be used to reconstruct the permittivity and conductivity profiles of a
one-dimensional discontinuous medium[18, 27]. Boundary value prob-
lems with discontinuities in an interior point also appear in geophysical
models for oscillations of the Earth [3, 19]. Here, the main discontinu-
ity is caused by reflection of the shear waves at the base of the crust.
Further, it is known that inverse spectral problems play an important
role for investigating some nonlinear evolution equations of mathemat-
ical physics. Discontinuous inverse problems help to study the blow-up
behavior of solutions for such nonlinear equations. We also note that
inverse problem considered here appear in mathematics for investigating
spectral properties of some classes of differential, integro-differential and
integral operators.

When q (x) is a first order singular generalized function, singular
Sturm-Liouville operator which has a potential as q = u′ by using con-
cept of generalized derivative shuch that u ∈ L2 (0, 1) has been defined
in [28, 29]. Also the equation

(1.4) ℓa (y) := −y′′ (x) + C

xa
y (x) + q (x) y (x) , 0 < x < π



587 Amirov and Topsakal

was considered, where C is a real number, q (x) is a real valued bounded
function. The self-adjoint extensions of differential operators generated
by the differential expression ℓa (y) which has a potential q = u′ such that
u ∈ L2 (0, 1) was studied. When a ̸= 2, 4, 6, ... the generalized functions
are in correspondence with to the functions |x|−a sgnx by using the
method of canonical regularization [10]. When a < 3/2, the generalized
functions which are so obtained can be shown as generalized derivative
of functions from the space L2. Therefore the Sturm-Liouville operator
which is given by the differential equation ℓa (y) is defined such that
it has a potential like q (x) = |x|−a sgnx. In particular, it has shown
in [12] that if q (x) is known a priori on [0, π/2] then q (x) is uniquely
determined on [π/2, π] by the eigenvalues.

In this study, the case of a = 1 has been investigated. Then u (x) =
C lnx and (Γy) (x) = y′ (x)− u (x) y (x) . The jump conditions (1.3) are
different from [2] and [31]. Because the eigen parameter appears not only
in the differential equations, but it also appears in the jump conditions.
In section 3, properties of characteristic function of L0 and asymptotic
behaviors of spectral characteristics of considering operator have been
given such that the remaining parts are in the space ℓ2 as in [2].

In section 4, Weyl function for considering operator has been defined
and the theorem which is related to uniqueness of solution of inverse
problem according to Weyl function has been proved.

In section 5, it has been proved that the system of the eigenfunctions
of the boundary value problem L is complete and forms an orthogonal
basis in L2 (0, π) .

2. Representation for the solution

We define y1 (x) = y (x) , y2 (x) = (Γy) (x) = y′ (x)−u (x) y (x),u (x) =
C lnx and let us write the expression of left hand side of equation (1.1)
as follows:

(2.1) ℓ (y) = − [(Γy) (x)]′ − u (x) (Γy) (x)− u2 (x) y + q (x) y = k2y

then equation (1.1) reduces to the system;

(2.2)

{
y′1 − y2 = u (x) y1
y′2 + k2y1 = −u (x) y2 − u2 (x) y1 + q (x) y1

with the boundary conditions

(2.3) y1 (0) = 0, y1 (π) = 0
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and with the jump conditions

(2.4)

{
y1 (d+ 0) = αy1 (d− 0)

y2 (d+ 0) = α−1y2 (d− 0) + 2 [kβ − α−u (d)] y1 (d− 0) .

Matrix form of system (2.2) is

(2.5)

(
y1
y2

)′
=

(
u 1

−k2 − u2 + q − u

)(
y1
y2

)
or y′ = Ay such thatA =

(
u (x) 1

−k2 − u2 (x) + q (x) − u (x)

)
,

(
y1
y2

)
.

x = 0 is a regular singular end point for equation (2.5) and Theorem
2 in [26] (see Remark 1-2, p.56) extends to interval [0, π] .

Now let us consider the following theorem in [28].

Theorem 2.1 ([28]). Let A (x) be n×n matrix whose entires are func-
tions belonging to the space L1 (0, 1) , and let f ∈ [L1 (0, 1)]

n be a vector-
function. Then for every c ∈ [0, 1] the equation

y′ = A (x) y + f, y (c) = ξ, ξ ∈ Cn,

has a unique solution y (x) and y′ (x) is absolutely continuous on [0, 1] .
If a sequence of matrices Aϵ (x) with entires from the space L1 (0, 1) , is
such that ∥Aϵ (x)−A (x)∥L1

→ 0 as ϵ → 0, then the solutions of the
equations

y′ϵ = Aϵ (x) yϵ + f, yϵ (c) = ξ ∈ Cn,

converge uniformly on [0, 1] ( and even in the form of the spaceW 1
1 [0, 1])

to the function y (x). Moreover, the estimate

|y (x)− yϵ (x)| ≤ C ∥f∥L1
∥Aϵ (x)−A (x)∥L1

holds, where the constant C does not depend on f and ϵ.

If we apply this theorem to our equation, there exists only one so-
lution of the system (2.2) which satisfies the initial conditions y1 (ξ) =

υ1, y2 (ξ) = υ2 for each ξ ∈ [0, π] , υ = (υ1, υ2)
T ∈ C2, especially the

initial conditions y1 (0) = 1, y2 (0) = ik.

Definition 2.2. The first component of the solution of system (2.2)
which satisfies the initial conditions y1 (ξ) = υ1, y2 (ξ) = (Γy) (ξ) = υ2
is called the solution of equation (1.1) which satisfies the same initial
conditions.

It was shown in [1] by the successive approximations method that (see
[24]) the following theorem is true.
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Theorem 2.3 ([1]). For each solution of system (2.2) which satisfies the

initial conditions

(
y1
y2

)
(0) =

(
1
ik

)
and the jump conditions (2.4)

the following expression is true: for x < d{
y1 = eikx +

∫ x
−xK11 (x, t) e

iktdt

y2 = ikeikx + b (x) eikx +
∫ x
−xK21 (x, t) e

iktdt+ ik
∫ x
−xK22 (x, t) e

iktdt,

for x > d
y1 = (α+ + β) eikx + (α− − β) eik(2d−x) +

∫
−xxK11 (x, t) e

iktdt

y2 = ik
(
α+eikx − α−eik(2d−x)

)
+ ikβ

(
eikx + α−eik(2d−x)

)
+b (x)

[
(α+ + β) eikx + (α− − β) eik(2d−x)

]
+
∫ x
−xK21 (x, t) e

iktdt+ ik
∫ x
−xK22 (x, t) e

iktdt

where

b (x) = −1

2

∫ x

0

[
u2 (s)− q (s)

]
e
−
1

2

∫ x
s u(t)dt

ds

K11 (x, x) =
(α+ + β)

2
u (x)

K21 (x, x) = b′ (x)−1

2

∫ x

0

[
u2 (s)− q (s)

]
K11 (s, s) ds−

1

2

∫ x

0
u (s)K21 (s, s) ds

K22 (x, x)= −(α+ + β)

2
[u (x) + 2b (x)]

K11 (x, 2d− x+ 0)−K11 (x, 2d− x− 0) =
(α− − β)

2
u (x)

∂Kij (x, .)

∂x
,
∂Kij (x, .)

∂t
∈ L2 (0, π) , i, j = 1, 2.

3. Properties of the spectrum

Let us denote problem L as L0 in the case of C = 0 and q (x) ≡ 0.
It is easily shown that when C = 0 and q (x) ≡ 0, the solution φ0 (x, k)
satisfying the initial conditions φ0 (0, k) = 0, (Γφ0) (0, k) = k and the
jump conditions (2.4) is shown as

φ0 (x, k) =
y0 (x, k)− y0 (x, k)

2i

=

{
sin kx , for x < d
(α+ − iβ) sin kx+ (α− + iβ) sin k (2d− x) , for x > d
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Let ∆0 (k) be a characteristic function of problem L0. Then the char-
acteristic equation of problem L0 is of the form

(3.1) ∆0 (k) =
(
α+ − iβ

)
sin kπ +

(
α− + iβ

)
sin k (2d− π) = 0.

We denote characteristic function, eigenvalues sequence and normal-
izing constant sequence by ∆ (k) , {kn} and {αn} , respectively. Denote

(3.2) ∆ (k) = ⟨ψ (x, k) , φ (x, k)⟩ ,
where

⟨y (x) , z (x)⟩ := y (x) (Γz) (x)− (Γy) (x) z (x) .

According to the Liouville formula, ⟨ψ (x, k) , φ (x, k)⟩ does not depend
on x.

Definition 3.1. The functions y (x, λ) , z (x, µ) ∈ D (L) are called or-
thogonal, if following equality is valid:∫ x

0
y (x, λ) z (x, µ)dx+

2αβ

(λ+ µ)
y (d− 0, λ) z (d− 0, µ) = 0.

Definition 3.2. For y (x, λ) ∈ D (L) , the norming constants αn are
defined as follows:

(3.3) αn =

x∫
0

y2 (x, λn) dx+
αβ

(λ+ µ)
y2 (d− 0, λn) .

We shall assume that φ (x, k) , C (x, k) and ψ (x, k) are solutions of
equation (1.1) under the following initial conditions:

φ (0, k) = 0, (Γφ) (0, k) = k, ψ (π, k) = 0, (Γψ) (π, k) = −1,

C (0, k) = 1, (ΓC) (0, k) = 0

Clearly, for each x, ⟨ψ (x, k) , φ (x, k)⟩ is entire in k and

(3.4) ∆ (k) = V (φ) = U (ψ) = φ (π, k) = ψ (0, k) .

By using the representation of the function y (x, k) for the solution
φ (x, k) :

φ (x, k) = φ0 (x, k) +

∫ x

0
K̃11 (x, t) sin ktdt

is obtained. Therefore characteristic function of the problem L is ob-
tained as

(3.5) ∆ (k) = ∆0 (k) +

∫ x

0
K̃11 (x, t) sin ktdt

where K̃11 (x, t) = K11 (x, t)−K11 (x,−t) .
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Lemma 3.3. (Lagrange Fomula) Let y, z ∈ D (L∗
0). Then

(L∗
0y, z) =

∫ π

0
ℓ (y) zdx = (y, L∗

0z) + [y, z]
(
|d−0
0 + |πd+0

)
where
[y, z]

(
|d−0
0 + |πd+0

)
=
[
(Γz) (x) y (x)− (Γy) (x) z (x)

] (
|d−0
0 + |πd+0

)
.

Proof. We have
(L∗

0y, z) = −
∫ π
0 (y′ − u y)′ zdx−

∫ π
0 u (y

′ − u y) zdx−
∫ π
0

(
u2 − q (x)

)
yzdx

=
∫ π
0 (y′ − u y) (z′ − uz) dx−

∫ π
0

(
u2 − q (x)

)
yzdx

− (Γy) (x) z (x)
(
|d−0
0 + |πd+0

)
=
∫ π
0 yℓ (z) dx+[y, z]

(
|d−0
0 + |πd+0

)
= (y, L∗

0z)+[y, z]
(
|d−0
0 + |πd+0

)
.

□

Lemma 3.4. The zeros {kn} of the characteristic function coincide with
the eigenvalues of the boundary value problem L. The functions φ (x, kn)
and ψ (x, kn) are eigenfunctions and there exists a sequence {γn} such
that

(3.6) ψ (x, kn) = γnφ (x, kn) , γn ̸= 0.

Proof. 1) Let k0 be a zero of the function ∆ (k) . Then by virtue of
equation (3.2) and (3.3), ψ (x, k0) = γ0φ (x, k0) and the functions ψ (x, k0)
,φ (x, k0) satisfy the boundary condition (1.2). Hence, k0 is an eigenvalue
and ψ (x, k0) , φ (x, k0) are eigenfunctions related to k0.

2) Let k0 be an eigenvalue of L, and let y0 be a corresponding eigen-
functions. Then U (y0) = V (y0) = 0. Clearly y0 (0) = 0.Without loss of
generality we put (Γy0) (0) = ik. Hence y0 (x) ≡ φ (x, k0) . Thus, from
equation (3.3), ∆ (k0) = V (φ (x, k0)) = V (y0 (x)) = 0 is obtained. □

Lemma 3.5. The roots of characteristic equation ∆0 (k) = 0 are sepa-
rate i.e., inf

n ̸=m

∣∣k0n − k0m
∣∣ = a > 0.

Proof. Let us assume that sequence
{
k0n
}
has two subsequences

{
k0np

}
and

{
k̃0np

}
such that k0np

̸= k̃0np
, k0np

and k̃0np
→ ∞ as p → ∞

and lim
p→∞

∣∣∣k0np
− k̃0np

∣∣∣ = 0.

If we use orthogonality of eigenfunctions φ0

(
x, k0np

)
and φ0

(
x, k̃0np

)
of problem L0 in space L2 (0, π)
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0 =

∫ π

0
φ0

(
x, k0np

)
φ0

(
x, k̃0np

)
dx+

2αβ(
k0np

+ k̃0np

)φ0

(
d− 0, k0np

)
φ0

(
d− 0, k̃0np

)

=

∫ π

0
φ0

(
x, k0np

)
φ0

(
x, k0np

)
dx+

∫ π

0
φ0

(
x, k0np

) [
φ0

(
x, k̃0np

)
− φ0

(
x, k0np

)]
dx

+
2αβ(

k0np
+ k̃0np

)φ0

(
d− 0, k0np

)
φ0

(
d− 0, k0np

)

+
2αβ(

k0np
+ k̃0np

)φ0

(
d− 0, k0np

) [
φ0

(
d− 0, k̃0np

)
− φ0

(
d− 0, k0np

)]

≥
∫ d

0
φ0

(
x, k0np

)
φ0

(
x, k0np

)
dx+

∫ π

0
φ0

(
x, k0np

) [
φ0

(
x, k̃0np

)
− φ0

(
x, k0np

)]
dx

+
2αβ(

k0np
+ k̃0np

)φ0

(
d− 0, k0np

)
φ0

(
d− 0, k0np

)

+
2αβ(

k0np
+ k̃0np

)φ0

(
d− 0, k0np

) [
φ0

(
d− 0, k̃0np

)
− φ0

(
d− 0, k0np

)]

=

∫ d

0
sin2 k0np

xdx+

∫ π

0
φ0

(
x, k0np

) [
φ0

(
x, k̃0np

)
− φ0

(
x, k0np

)]
dx

+
2αβ(

k0np
+ k̃0np

)φ0

(
d− 0, k0np

)
φ0

(
d− 0, k0np

)

+
2αβ(

k0np
+ k̃0np

)φ0

(
d− 0, k0np

) [
φ0

(
d− 0, k̃0np

)
− φ0

(
d− 0, k0np

)]

=
d

2
−

sin 2k0np
d

2k0np

+
2αβ(

k0np
+ k̃0np

) sin2 k0np
d

(3.7) +

∫ π

0
φ0

(
x, k0np

) [
φ0

(
x, k̃0np

)
− φ0

(
x, k0np

)]
dx

From the representation of function φ0 (x, k) , we get that

p→ ∞lim
∣∣∣φ0

(
x, k̃0np

)
− φ0

(
x, k0np

)∣∣∣ = 0,

i.e., as p → ∞,
∣∣∣φ0

(
x, k̃0np

)
− φ0

(
x, k0np

)∣∣∣ uniformly converges to zero

with respect to x in the interval [0, π] . For this reason, if we pass through

the limit as p→ ∞ then inequality
d

2
≤ 0 is obtained.

This contradiction gives the proof of Lemma 3.5. □

Lemma 3.6. Eigenvalues of problem L are simple that is
.
∆(kn) ̸= 0.
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Proof. Since φ (x, k) and ψ (x, k) are solutions of equation (1.1)

−ψ′′ (x, k) +
[
u′ (x) + q (x)

]
ψ (x, k) = kψ (x, k)

−φ′′ (x, kn) +
[
u′ (x) + q (x)

]
φ (x, kn) = knφ (x, kn) .

If the first equation is multiplied by φ (x, kn), the second equation is
multiplied by ψ (x, k) and subtracting them side by side and finally in-
tegrating over the interval [0, π] , the equalities

d

dx
⟨ψ (x, k) , φ (x, kn)⟩ = (k − kn)ψ (x, k)φ (x, kn)

⟨ψ (x, k) , φ (x, kn)⟩
[
|d−0
0 + |πd+0

]
= (k − kn)

∫ π

0
ψ (x, k)φ (x, kn) dx

are obtained.
If jump conditions (1.3) and (3.3), (3.6), are satisfied then∫ π

0
ψ (x, kn)φ (x, kn) dx = −

.
∆(kn) as k → kn is obtained.

From Lemma 3.4, we get that

(3.8) αnγn = −
.
∆(kn) .

It is obvious that
.
∆(kn) ̸= 0. So the lemma is proved. □

Now, consider the problems

L :



−y′′ + [u′ (x) + q (x)] y = λy,
(Γy) (0)− hy (0) = 0
(Γy) (π) +Hy (π) = 0
y (d+ 0) = αy (d− 0)

(Γy) (d+ 0) = α−1 (Γy) (d− 0) + 2
[√

λβ − α−u (d)
]
y (d− 0)

and

L̃ :


−y′′ + [u′ (x) + q (x)] y = µy,
(Γy) (0)− hy (0) = 0

(Γy) (π) + H̃y (π) = 0
y (d+ 0) = αy (d− 0)
(Γy) (d+ 0) = α−1 (Γy) (d− 0) + 2

[√
µβ − α−u (d)

]
y (d− 0)

whereH ̸= H̃ . Let {λn}n≥0 and {µn}n≥0 be eigenvalues of the problems

L (q (x) , h,H) and L̃
(
q (x) , h, H̃

)
.
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Lemma 3.7. The eigenvalues of the problems L and L̃ are interlace,
i.e.,
(3.9)

λn < µn < λn+1, if H̃ > H and µn < λn < µn+1 , if H > H̃, n ≥ 0

Proof. As in the proof of Lemma 3.6, we get that

d

dx
⟨φ (x, λ) , φ (x, µ)⟩ = (λ− µ)φ (x, λ)φ (x, µ)

and so

(λ− µ)

∫ π

0
φ (x, λ)φ (x, µ) dx = ⟨φ (x, λ) , φ (x, µ)⟩

[
|d−0
0 + |πd+0

]
= φ (π, λ) (Γφ) (π, µ)− (Γφ) (π, λ)φ (π, µ)

+2αβ
(√

λ−√
µ
)
φ (d− 0, λ)φ (d− 0, µ)

=
1

H̃ −H

[
∆̃ (λ)∆ (µ)− ∆̃ (µ)∆ (λ)

]
.

Hence

(λ− µ)

∫ π

0
φ (x, λ)φ (x, µ) dx

=
1

H̃ −H

[
∆̃ (λ)− ∆̃ (µ)

λ− µ
∆(µ)− ∆(λ)−∆(µ)

λ− µ
∆̃ (µ)

]
+2αβ

(√
λ−√

µ
)
φ (d− 0, λ)φ (d− 0, µ)

As µ→ λ

(3.10)∫ π

0
φ2 (x, λ) dx+

αβ√
λ
φ2 (d− 0, λ) =

1

H̃ −H

[ .

∆̃ (λ)∆ (λ)−
.
∆(λ) ∆̃ (λ)

]
where

.
∆(λ) =

d

dλ
∆(λ) ,

.

∆̃ (λ) =
d

dλ
∆̃ (λ) . From equation (3.10) −∞ <

λ <∞ , if ∆̃ (λ) ̸= 0

1

∆̃2 (λ)

[∫ π

0
φ2 (x, λ) dx+

αω√
λ
φ2 (d− 0, λ)

]
= − 1

H̃ −H

d

dλ

(
∆(λ)

∆̃ (λ)

)
is obtained.
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If H̃ > H then
∆ (λ)

∆̃ (λ)
is monotonically decreasing in the set of R \

{µn, n ≥ 0} Thus it is obvious that lim
λ→µ±0

n

∆(λ)

∆̃ (λ)
= ±∞ .

When H > H̃ if we write the equality (3.10) as

1

∆2 (λ)

[∫ π

0
φ2 (x, λ) dx+

αβ√
λ
φ2 (d− 0, λ)

]
= − 1

H − H̃

d

dλ

(
∆̃ (λ)

∆ (λ)

)
,

−∞ < λ < ∞,∆(λ) ̸= 0, we get that the function
∆̃ (λ)

∆ (λ)
is monotoni-

cally decreasing in R\{λn, n ≥ 0} and it is clear that lim
λ→λ±0

n

∆̃ (λ)

∆ (λ)
= ±∞

From here we obtain (3.9). □

Lemma 3.8. The eigenvalues of problem L have the following asymp-
totic behavior

(3.11) kn = k0n +
dn
k0n

+
δn
k0n

where δn ∈ ℓ2 and

dn =
(α+ + β) cos

(
k0n + εn

)
π − (α− − β) cos

(
k0n + εn

)
(2d− π)

2
.
∆0 (k0n)

u (π)

is a bounded sequence.

Proof. Denote

Gn =
{
k : |k| =

∣∣k0n∣∣+ σ

2
, n = 0,±1,±2, ...

}
Gδ =

{
k :
∣∣k − k0n

∣∣ ≥ δ, n = 0,±1,±2, .., δ > 0.
}

where δ is sufficiently small positive number
(
δ ≪ σ

2

)
.

As shown in [5] that for k ∈ Gδ , |∆0 (k)| ≥ Cδe
|Imk|π.

On the other hand [[24], Lemma 1.3.1], since

lim
|k|→+∞

e−|Imk|π (∆ (k)−∆0 (k)) = lim
|k|→+∞

∫ π

0
K̃11 (π, t) sin ktdt = 0,

for sufficiently large values of n and k ∈ Gn, we get

|∆(k)−∆0 (k)| <
Cδ

2
e|Imk|π
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Thus, for k ∈ Gn,

|∆0 (k)| > Cδe
|Imk|π >

Cδ

2
e|Imk|π > |∆(k)−∆0 (k)| .

such that n is a sufficiently large natural number.
It follows from that for sufficiently large values of n, functions ∆0 (k)

and ∆0 (k) + (∆ (k)−∆0 (k)) = ∆ (k) have the same number of ze-
ros counting multiplicities inside the contour Gn, according to Rouche’s
theorem. That is, they have the (n+ 1) number of zeros: k0, k1, ..., kn.

Analogously, it is shown by Rouche’s theorem that for sufficiently
large values of n, ∆ (k) has a unique zero inside each circle

∣∣k − k0n
∣∣ < δ.

Since δ is a sufficiently small number, the presentation kn = k0n + εn
is obtained where lim

n→∞
εn = 0.

Since k′ns are zeros of the characteristic function ∆ (k) ,

∆(kn) = ∆0

(
k0n + εn

)
+

∫ π

0
K̃11 (π, t) sin

(
k0n + εn

)
tdt = 0.

On the other hand,

∆0 (k) = α+ sin kπ + α− sin k (2d− π) = 0,

∆0

(
k0n + εn

)
=

.
∆0

(
k0n
)
εn + o (εn) .

In that case the equality

(3.12)
( .
∆0

(
k0n
)
+ o (1)

)
εn +

∫ π

0
K̃11 (π, t) sin

(
k0n + εn

)
tdt = 0

is obtained.
Since ∆0 (k) is of type ”sine” [[20] ,p. 119], the number γδ > 0 exists

such that for all n,
∣∣∣ .∆0

(
k0n
)∣∣∣ ≥ γδ > 0.

if we use conclusions on [33] (see also [17]) is used then we get that
k0n = n+ hn where sup

n
|hn| < M .

Hence, when we apply certain methods [24, p. 67] in equality (3.11),
we get that εn ∈ ℓ2. If we use the expression of εn and Theorem 2.3, then

εn =

(
α+ + β

)
cos

(
k0n + εn

)
π −

(
α− − β

)
cos

(
k0n + εn

)
(2d− π)

2
.
∆0 (k0n) k

0
n

u (π) +
δ̃n

k0n
, δ̃n ∈ ℓ2.

So for the eigenvalues kn of the problem L, asymptotic formula (3.11)
is true. Therefore the lemma is proved. □
Lemma 3.9. The normalized numbers of problem L have the asymptotic
behaviour αn = α0

n + δn where δn ∈ ℓ2.
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Proof. Since

∆ (k) = ∆0 (k) +

∫ π

0
K̃11 (π, t) sin ktdt

.
∆(kn) =

.
∆0 (kn) +

∫ π

0
tK̃11 (π, t) cos kntdt

it is clear that
.

∆0 (kn) =
.
∆0

(
k0n + εn

)
=

.
∆0

(
k0n
)
+O (εn) , cos knt = cos k0nt+O (εnt) ,

where εn ∈ ℓ2 . Then,

αnγn = −
.
∆(kn) = −

.
∆0

(
k0n
)
−
∫ π
0 tK̃11 (π, t) cos k

0
ntdt

−O (εnt)
∫ π
0 tK̃11 (π, t) cos k

0
ntdt+O (εn)

Since εn ∈ ℓ2 , K̃11 (π, .) ∈ L2 (0, π) and k
0
n = n+ hn,

δn =−
∫ π

0
tK̃11 (π, t) cos k

0
ntdt−O (εnt)

∫ π

0
tK̃11 (π, t) cos k

0
ntdt+O (εn) ∈ ℓ2,

αnγn = α0
nγ

0
n + δn where δn ∈ ℓ2.

□

4. Inverse problem

Let Φ (x, k) =

(
Φ1 (x, k)
Φ2 (x, k)

)
be solution of (2.2) under the conditions

U (Φ) = Φ1 (0, k) = 1 and V (Φ) = Φ1 (π, k) = 0 and under the jump
conditions (2.4). We set M (k) := Φ2 (0, k) .The functions Φ (x, k) and
M (k) are respectively called the Weyl solution and the Weyl function
for the boundary value problem L.

Denote

(4.1) M (k) =
δ (k)

∆ (k)

where δ (k) = ψ2 (0, k) . Clearly,

(4.2) Φ (x, k) =M (k)φ (x, k) + C (x, k)

Weyl solution and the Weyl function are meromorphic functions of a
parameter k with poles on the spectrum of the problem L.

It follows from (4.1) and (4.2) that

(4.3) Φ (x, k) =
ψ (x, k)

∆ (k)
and Φ2 (0, k) =

ψ2 (0, k)

∆ (k)
=M (k)
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where

(4.4) ψ (x, k) = ψ2 (0, k)φ (x, k) + ∆ (k)C (x, k)

Note that, by virtue of equalities ⟨C (x, k) , φ (x, k)⟩ ≡ 1, (4.2) and (4.3)
we have,

(4.5) ⟨Φ(x, k) , φ (x, k)⟩ ≡ 1, ⟨ψ (x, k) , φ (x, k)⟩ ≡ ∆(k)

for x < d and x > d.

Theorem 4.1. The following representation holds;

(4.6) M (k) =
1

α0 (k − k0)
+

∞∑
n=1

{
1

αn (k − kn)
+

1

α0
nk

0
n

}
Proof. Let’s write a representation solution ψ (x, k) as φ (x, k) :

for x > d
ψ1 (x, k) = − sin k (π − x) +

∫ π+x
0 Ñ11 (x, t) sin ktdt

ψ2 (x, k) = k cos k (π − x)− b (x) sin k (π − x) +
∫ π+x
0 Ñ21 (x, t) sin ktdt

+
∫ π+x
0 kÑ22 (x, t) cos ktdt

for x < d
ψ1 (x, k) = (−α+ + β) sin k (π − x) + (α− − β) sin k (x+ π − 2d)

+
∫ π+x
0 Ñ11 (x, t) sin ktdt

ψ2 (x, k) = k (α+ − β) cos k (π − x) + k (α− + β) cos k (x+ π − 2d)
+b (x) [(−α+ + β) sin k (π − x) + (α− − β) sin k (x+ π − 2d)]

+
∫ π+x
0 Ñ21 (x, t) sin ktdt+

∫ π+x
0 kÑ22 (x, t) cos ktdt

where Ñij (x, t) = Nij (x, t)−Nij (x,−t) , i, j = 1, 2. In the case C = 0
and q (x) ≡ 0 the solution are ψ01 (x, k) and ψ02 (x, k) , so we have{

ψ1 (x, k) = Ψ01 (x, k) + f1
ψ2 (x, k) = Ψ02 (x, k) + f2

where
f1 =

∫ π+x
0 Ñ11 (x, t) sin ktdt

f2 = b (x) [(−α+ + β) sin k (π − x) + (α− − β) sin k (x+ π − 2d)]

+
∫ π+x
0 Ñ21 (x, t) sin ktdt+

∫ π+x
0 kÑ22 (x, t) cos ktdt

On the other hand we can write

M (k)−M0 (k) =
ψ2 (0, k)

ψ1 (0, k)
− ψ02 (0, k)

ψ01 (0, k)
=

f2
∆(k)

− f1
∆(k)

M0 (k) .
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In view of lim
|k|→∞

e−|Imkπ| |fi (k)| = 0 , k ∈ Gδ and ∆ (k) > Cδe
|Imk|π,

(4.7) lim sup
|k|→∞ k∈Gδ

|M (k)−M0 (k)| = 0.

from (3.5) that the Weyl function M (k) is meromorphic with poles
kn. Using (3.5), (4.2) and Lemma 3.4, we calculate that

Res
k=kn

M (k) =
ψ2 (0, kn)

.
∆(kn)

=
1

.
∆(kn)φ2 (π, kn)

= − 1

αn

Res
k=k0n

M0 (k) =
ψ02

(
0, k0n

)
.
∆(k0n)

=
1

.
∆0 (k0n)φ02 (π, k0n)

= − 1

α0
n

.

Consider the contour integral

In (k) =
1

2πi

∫
Γn

M (µ)−M0 (µ)

k − µ
dµ , k ∈ intΓn

By virtue of lim sup |M (k)−M0 (k)| = 0 , lim
n→∞

In (k) = 0. On the other

hand, the residue theorem and (4.8) yield

In (k) = −M (k) +M0 (k) +
∑

kn∈intΓn

1

αn (k − kn)
−

∑
k0n∈intΓn

1

α0
n (k

0
n − k)

and theorem is proved. □
Let us formulate a theorem on the uniqueness of a solution of the

inverse problem with the use of the Weyl function. For this purpose,

parallel with L, we consider the boundary-value problem L̃ of the same
form but with different coefficients q̃ (x). It is assumed in what follows
that if a certain symbol α denotes an object related to the problem L,

then α̃ denotes the corresponding object related to the problem L̃.

Theorem 4.2. If M (k) = M̃ (k) then L = L̃ Thus the specification of
the Weyl function uniquely determines the operator.

Proof. Since

ψ(υ) (x, k) = O
(
|k|υ−1 exp (|Imk| (π − x))

)
(4.8) |∆(k)| ≥ Cδ |k| exp (|Imk|π) , k ∈ G̃δ, υ = 0, 1

then it follows from (4.9) and (4.5) that

(4.9)
∣∣∣Φ(υ) (x, k)

∣∣∣ ≤ Cδ |k|υ−1 exp (− |Imk|π) , k ∈ Gδ.
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Let us define the matrix P (x, k) = [Pjk (x, k)]j,k=1,2 by the formula

(4.10) P (x, k)

(
φ̃1 Φ̃1

φ̃2 Φ̃2

)
=

(
φ1 Φ1

φ2 Φ2

)
.

Using (4.11) and (4.5) we calculate

(4.11)


P11 (x, k) = φ1 (x, k) Φ̃2 (x, k)− Φ1 (x, k) φ̃2 (x, k)

P12 (x, k) = Φ1 (x, k) φ̃1 (x, k)− φ1 (x, k) Φ̃1 (x, k)

P21 (x, k) = φ2 (x, k) Φ̃2 (x, k)− Φ2 (x, k) φ̃2 (x, k)

P22 (x, k) = Φ2 (x, k) φ̃1 (x, k)− φ2 (x, k) Φ̃1 (x, k)

and

(4.12)


φ1 (x, k) = P11 (x, k) φ̃1 (x, k) + P12 (x, k) φ̃2 (x, k)
φ2 (x, k) = P21 (x, k) φ̃1 (x, k) + P22 (x, k) φ̃2 (x, k)

Φ1 (x, k) = P11 (x, k) Φ̃1 (x, k) + P12 (x, k) Φ̃2 (x, k)

Φ2 (x, k) = P21 (x, k) Φ̃1 (x, k) + P22 (x, k) Φ̃2 (x, k)

.

It follows from (4.11), (4.1) and (4.4)

P11 (x, k) = 1 +
1

∆ (k)
[Ψ1 (x, k) (φ̃2 (x, k)− φ2 (x, k))

−φ1 (x, k)
(
Ψ̃2 (x, k)−Ψ2 (x, k)

)]
,

P12 (x, k) =
1

∆ (k)

[
φ1 (x, k) Ψ̃1 (x, k)−Ψ1 (x, k) φ̃1 (x, k)

]
,

P21 (x, k) =
1

∆ (k)

[
Ψ2 (x, k) φ̃2 (x, k)− φ1 (x, k) Ψ̃2 (x, k)

]
,

P22 (x, k) = 1 +
1

∆ (k)

[
φ2 (x, k)

(
Ψ̃1 (x, k)− Ψ̃2 (x, k)

)
−Ψ2 (x, k) (φ̃1 (x, k)− φ̃2 (x, k))] .

According to (4.12) and (4.1), for each fixed x, the functions Pjk (x, k)

are meromorphic in k with poles in the points kn and k̃n. Denote G0
δ =

Gδ∩ G̃δ. By virtue of φ(υ) (x, k) = O (|k|υ exp (|Imk|x)) , (4.8) and (4.9)
this yields

|P11 (x, k)− 1| ≤ Cδ

|k|
, |P12 (x, k)| ≤

Cδ

|k|
, k ∈ G0

δ , |k| ≥ k∗,(4.13)

|P22 (x, k)− 1| ≤ Cδ

|k|
, |P21 (x, k)| ≤

Cδ

|k|
, k ∈ G0

δ , |k| ≥ k∗(4.14)
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According to (4.1) (4.2) and (4.9) we have

P11 (x, k) = φ1 (x, k) C̃2 (x, k)− C1 (x, k) φ̃2 (x, k)

+
(
M̃ (k)−M (k)

)
φ1 (x, k) φ̃2 (x, k) ,

P12 (x, k) = φ̃1 (x, k) C̃2 (x, k)− C̃1 (x, k)φ1 (x, k)

+
(
M (k)− M̃ (k)

)
φ1 (x, k) φ̃1 (x, k) ,

P21 (x, k) = φ2 (x, k) C̃2 (x, k)− C2 (x, k) φ̃2 (x, k)

+
(
M̃ (k)−M (k)

)
φ2 (x, k) φ̃2 (x, k) ,

P22 (x, k) = φ̃1 (x, k)C2 (x, k)− C̃1 (x, k)φ2 (x, k)

+
(
M (k)− M̃ (k)

)
φ2 (x, k) φ̃1 (x, k) .

Thus if M (k) = M̃ (k) then the functions Pjk (x, k) are entire in k for
each fixed x. Together with (4.13) and (4.14), (4.15) this yields,

P11 (x, k) ≡ 1, P12 (x, k) ≡ 0, P21 (x, k) ≡ 0, P22 (x, k) ≡ 1

Substituting into (4.12) we get

φ1 (x, k) ≡ φ̃1 (x, k) , φ2 (x, k) ≡ φ̃2 (x, k) ,

Φ1 (x, k) ≡ Φ̃1 (x, k) ,Φ2 (x, k) ≡ Φ̃2 (x, k)

for all x and k. Consequently L = L̃. □

Theorem 4.3. If kn = k̃n, αn = α̃n, n ≥ 0 then L = L̃. Thus, the
specification of the spectral data {kn, αn}n≥0 uniquely determines the
operator.

Proof.

M (k) =
1

α0 (k − k0)
+

∞∑
n= ∞

{
1

αn (k − kn)
+

1

α0
nk

0
n

}
(4.15)

M̃ (k) =
1

α̃0

(
k̃ − k̃0

) +

∞∑
n= ∞

 1

α̃n

(
k̃ − k̃n

) +
1

α̃0
nk̃

0
n


Under the hypothesis of the theorem and in view of (4.15), we get that

M (k) = M̃ (k) and consequently by Theorem 4.2, L = L̃ . □

Theorem 4.4. : If kn = k̃n, µn = µ̃n ,n ≥ 0, then L = L̃ .
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Proof. By the properties of functions ∆ (k) and ∆̃ (k), it is clear that

lim
k→∞

∆(k)

∆̃ (k)
= 1. Under the hypothesis kn = k̃n and ∆ (k) and ∆̃ (k)

functions are entire we get that ∆ (k) = ∆̃ (k) . From Lemma 3.4, we

have ψ̃
(
x, k̃n

)
= γ̃nφ

(
x, k̃n

)
= γ̃nφ̃ (x, kn) and Ψ̃

(
x, k̃n

)
= Ψ̃ (x, kn) =

γnφ̃ (x, kn). It follows γn = γ̃n and so αn = α̃n. Consequently by

Theorem 4.3, L = L̃ . □

5. Properties of eigenfunctions

In this section, properties of eigenfunctions of problem L is considered.
We have representation of eigen functions as follows: for x < d

φ (x, kn) = sin knx+

∫ x

0
K̃11 (x, t) sin kntdt,

for x > d

φ (x, kn) =(
α+ + β

)
sin knx+

(
α− − β

)
sin kn (2d− x) + intx0K̃11 (x, t) sin kntdt.

Theorem 5.1. (i) The system of eigenfunctions {φ (x, kn)}n≥0 of the

boundary value problem L is complete in L2 (0, π) .

(ii) Let f (x) , x ∈ [0, d)∪ (d, π] be an absolutely continuous function
and satisfy the jump conditions:{

f (d+ 0) = αf (d− 0)
f ′ (d+ 0) = α−1f ′ (d− 0) + 2kβf (d− 0)

Then

(5.1) f (x) =

∞∑
n=0

anφ (x, kn) , an =
1

αn

∫ π

0
φ (t, kn) f (t) dt

and the series converges uniformly on [0, d) ∪ (d, π].

Proof. (i) From Theorem 1, 3, 8 of [13] the system of eigenfunctions
{φ (x, kn)}n≥0 of problem L is a Riesz Bazis in L2 (0, π) . Thus (i) is
proved.

(ii) Denote

G (x, t, k) = − 1

∆ (k)

{
φ (x, k)ψ (t, k) , x ≤ t
φ (t, k)ψ (x, k) , x ≥ t
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and consider the function

Y (x, k) =

∫ π

0
G (x, t, k) f (t) dt

= − 1

∆ (k)
ψ (x, k)

∫ x

0
φ (t, k) f (t) dt

− 1

∆ (k)
φ (x, k)

{∫ d

x
ψ (t, k) f (t) dt+

∫ π

d
ψ (t, k) f (t) dt

}
.

The function G (x, t, k) is called Green’s function for L. G (x, t, k) is
the kernel of the inverse operator for the Sturm-Liouville operator, i.e.
Y (x, k) is the solution of the boundary value problem

ℓY − λY = f (x) , λ = k2(5.2)

U (Y ) = 0, V (Y ) = 0

and satisfies the jump condition:

(5.3)

{
Y (d+ 0) = αY (d− 0)

Y ′ (d+ 0) = α−1Y ′ (d− 0) + 2kβY (d− 0)

this easily verified by differentation.
Let now f, x ∈ [0, d) ∪ (d, π] be an arbitrary absolutely continuous

function. Since φ (x, k) and ψ (x, k) are solutions of (1.1), we transform
Y (x, k) as follows:

Y (x, k) =− 1

k2∆(k)

{
ψ (x, k)

∫ x

0

[
−φ′′ (t, k) +

(
u′ (t) + q (t)

)
φ (t, k)

]
f (t) dt

(5.4)

+φ (x, k)

∫ d

x

[
−ψ′′ (t, k) +

(
u′ (t) + q (t)

)
ψ (t, k)

]
f (t) dt

+φ (x, k)

∫ π

d

[
−ψ′′ (t, k) +

(
u′ (t) + q (t)

)
ψ (t, k)

]
f (t) dt

}
Integrating of the terms containing second derivates by parts, yields in
view of (3.2),

(5.5) Y (x, k) =
f (x)

k2
− 1

k2
{Z1 (x, k) + Z2 (x, k)}

where

Z1 (x, k) =
1

∆ (k)

{
ψ (x, k)

∫ x

0
φ′ (t, k) g (t) dt+ φ (x, k)

∫ d

x
ψ′ (t, k) g (t) dt

+φ (x, k)
∫ π

d
ψ′ (t, k) g (t) dt

}
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+
1

∆(k)
[f ′ (0)ψ (x, k) + ψ (π, k) f ′ (π)φ (x, k)] ,

g (t) := f ′ (t) ,

Z2 (x, k) =
1

∆ (k)
φ (x, k)ψ′ (π, k) f (π)

+
1

∆ (k)
ψ (x, k)

∫ x

0
(u′ (t) + q (t))φ (t, k) f (t) dt

+
1

∆(k)
φ (x, k)

∫ d

x
(u′ (t) + q (t))ψ (t, k) f (t) dt

+
1

∆(k)
φ (x, k)

∫ π

d
(u′ (t) + q (t))ψ (t, k) f (t) dt.

Using (4.8), we get for a fixed δ > 0 and sufficiently large k∗ > 0 :

(5.6) max
0≤x≤π

|Z2 (x, k)| ≤
C

|k|
, k ∈ Gδ, |k| ≥ k∗.

Let us show that

(5.7) lim
|k|→∞
k∈Gδ

max
0≤x≤π

|Z1 (x, k)| = 0.

First we assume that g (x) is absolutely continuous on [0, d) ∪ (d, π] . In
this case another integration by parts yields of Z1 (x, k) we infer

max
0≤x≤π

|Z1 (x, k)| ≤
C

|k|
, k ∈ Gδ, |k| ≥ k∗.

Let now g (t) ∈ L [0, π] . Fix ε > 0 and an absolutely continuous function
gε (t) such that ∫ π

0
|g (t)− gε (t)| dt <

ε

2C+

where

C+ = max
0≤x≤π

sup
k∈Gδ

1

|∆(k)|

{
|ψ (x, k)|

∫ x

0

∣∣φ′ (t, k)
∣∣ dt+ |φ (x, k)|(∫ d

x

∣∣ψ′ (t, k)
∣∣ dt+ ∫ π

d

∣∣ψ′ (t, k)
∣∣ dt)} .

Then, for k ∈ Gδ, |k| ≥ k∗, we have

max
0≤x≤π

|Z1 (x, k)| ≤ max
0≤x≤π

|Z1 (x, k; gε)|+ max
0≤x≤π

|Z1 (x, k; g − gε)| ≤
ε

2
+
C (ε)

|k|
.

Hence, there exists k0 such that max
0≤x≤π

|Z1 (x, k)| ≤ ε for |k| > k0. Since

ε > 0 is arbitrary, we arrive at (5.9).
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Consider the contour integral

IN (x) =
1

2πi

∫
ΓN

Y (x, k) dk,

where

Γn =
{
k : |k| =

∣∣k0n∣∣+ σ

2
, n = 0, ± 1, ± 2, ...

}
.

It follows from (5.7)-(5.9) that

(5.8) IN (x) = f (x) + εN (x) , lim
N→∞

max
0≤x≤π

|εN (x)| = 0.

On the other hand, we can calculate IN (x) , with the help of the residue
theorem. Taking (3.4) into account and using Lemma 3.6 we calculate

Res
k=kn

Y (x, k) = − 1
.
∆(kn)

ψ (x, kn)

∫ x

0
φ (t, kn) f (t) dt

− 1
.
∆(kn)

φ (x, kn)

{∫ d

x
ψ (t, kn) f (t) dt+

∫ π

d
ψ (t, kn) f (t) dt

}

= − γn
.
∆(kn)

φ (x, kn)

∫ π

0
φ (t, kn) f (t) dt,

by (3.7),

(5.9) Res
k=kn

Y (x, k) =
1

αn
φ (x, kn)

∫ π

0
φ (t, kn) f (t) dt.

And by (5.6),

IN (x) =
N∑

n=0

anφ (x, kn) , an =
1

αn

∫ π

0
φ (t, kn) f (t) dt.

Comparing this with (5.11) we arrive at (5.1), where the series con-
verges uniformly on [0, d) ∪ (d, π] , i.e. (ii) is proved. □
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