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Abstract. The stochastic reaction diffusion systems may suffer
sudden shocks, in order to explain this phenomena, we use Mar-
kovian jumps to model stochastic reaction diffusion systems. In
this paper, we are interested in almost sure exponential stability of
stochastic reaction diffusion systems with Markovian jumps. Under
some reasonable conditions, we show that the trivial solution of sto-
chastic reaction diffusion systems with Markovian jumps is almost
surely exponentially stable. An example is given to illustrate the
theory.
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1. Introduction

Stochastic differential equations with jumps have been widely used
in many branches of science and its applications, in particular, in eco-
nomics, finance and engineering (see, for example, Cont [5], Gukhal [7],
Sobczyk [12] and references therein). The investigation of stabilization
for stochastic differential equations with jumps has received much more
attention in the past few years. Ji and Chizeck [8] studied the stabil-
ity of linear jump equations and Pakshin [11] studied robust stability
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and stabilization of linear jump systems. Yuan and Lygeros [14] inves-
tigated almost sure exponential stability for a class of switching diffu-
sion processes and Bao and Yuan [4] give the exponential stability of
switching-diffusion processes with jumps. And for stabilization of par-
tial differential equations one can see [2, 3]. The stability of stochastic
reaction diffusion systems has been discussed in many papers, one can
see [6, 9, 13, 15] and the systems with the form

(1.1) du(t, x) = (a(t)∆u(t, x)+f(t, x, u(t, x)))dt+g(t, x, u(t, x))dW (t)

was discussed in [9, 15]. The stochastic reaction diffusion systems may
suffer sudden shocks, however, systems described by (1.1) cannot ex-
plain this phenomena. In order to explain this phenomena, introducing
Markovian jump process into stochastic reaction diffusion systems is one
of the important methods.

Motivated by the papers mentioned above, in this paper, we will es-
tablish the exponential stability of stochastic reaction diffusion systems
with Markovian jumps. In reference to the existing results in the liter-
ature, our contributions are as follows:

• We use Markovian jumps to model stochastic reaction diffusion
systems when they suffer sudden shocks;

• Under some reasonable conditions, we show that due to the Markov-
ian jumps the overall system can become pathwise exponentially stable
although some subsystems are not stable.

• Some new techniques are developed to cope with the difficulty due
to the Markovian jumps.

This paper is organized as follows: Section 2 gives some preliminary
results, in particular, stochastic reaction diffusion systems with Mar-
kovian jump are set up. In section 3, we discussed the almost surely
exponentially stable of stochastic reaction diffusion systems under some
reasonable conditions. The example is provided in Section 4.

2. Preliminaries

We focus in this paper on stochastic reaction diffusion systems (1.1)
with Markovian jumps, that is,

du(t, x)

=
(
a(t)∆u(t, x) + f

(
t, x, u(t, x), r(t)

))
dt+ g

(
t, x, u(t, x), r(t)

)
dW (t)

(2.1)
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for (t, x) ∈ R+ ×G, with boundary condition

∂u(t, x)

∂M
= 0, (t, x) ∈ R+ × ∂G,

where u(t, x) ∈ Rn, ∆u =
∑n

i=1
∂2u
∂xi

, G = {x, |x| < l < +∞} ⊂ Rr, f ∈
[R+ ×G×Rn × S,Rn] and g ∈ [R+ ×G×Rn × S,Rn×m] are both Borel

measurable functions, | · | stands for vector norm, ∥A∥ :=
√

trace(A∗A)
is the Hilbert-Schmidt norm for a matrix A, M is the normal vector
to ∂G; W (t) an m-dimension Wiener process defined in complete prob-
ability space (Ω,F ,P) equipped with a filtration {Ft≥0} satisfying the
usual conditions. Let N be some positive integer, {r(t), t ∈ R+} a right
continuous irreducible Markov chain on the probability space (Ω,F ,P)
taking values in a finite state space S = {1, 2, . . . , N}, with generator
Γ = (γij)N×N given by

P(r(t+∆) = j|r(t) = i) =

{
γij∆+ o(∆), if i ̸= j,
1 + γii∆+ o(∆), if i = j,

where ∆ > 0 and γij > 0 is the transition rate from i to j, if i ̸= j;
while γii = −

∑
j ̸=i γij , i = 1, 2, · · · , N . We further assume that the

Wiener process W (t) and Markov chain r(t) are independent. Since we
have assumed that the Markov chain r(t) is irreducible, it has a unique
stationary probability distribution π := (π1, π2, · · · , πN ) ∈ R1×N which

πΓ = 0 s.t.

N∑
j=1

πj = 1, πj > 0, ∀j ∈ S.

Throughout the paper we assume:
(H): g(t, x, u(t, x), i) satisfies integral linear growth condition and

f(t, x, u(t, x), i), g(t, x, u(t, x), i) satisfy Lipschitz condition, i.e., there
exists a positive constant L such that for arbitrary u1, u2 ∈ Rn, i ∈ S,

∥
∫
G
g(t, x, u, i)dx∥ ≤ L(1 + |u|G),

|
∫
G
[f(t, x, u1, i)− f(t, x, u2, i)]dx| ≤ L|u1 − u2|G,

∥
∫
G
[g(t, x, u1, i)− g(t, x, u2, i)]dx∥ ≤ L|u1 − u2|G,

where |u(·, x)|G := |
∫
G u(·, x)dx|.
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Then by the results of [9], the existence of the solution for system
(2.1) can be proved and note that u(t, x) = u(t, x; t0, u0).

Definition 2.1. [9] The trivial solution of system (2.1) is said to be
almost surely exponentially stable if

lim sup
t→∞

t−1ln|u(t, x)|G < 0.

3. Almost sure exponential stability

Similar to ([9], Lemma 1.), we have the following lemma.

Lemma 3.1. For any u0 ̸= 0,

P{
∫
G
u(t, x)dx ̸= 0, t ≥ 0} = 1.

The main result of the paper is the following theorem.

Theorem 3.2. Let u =
∫
G u(t, x)dx, Sh = {ξ||ξ(·)| < h}. Assume

that there exists V (t, u(t), r(t)) ∈ C1,2(R+ × Sh × S,R), c1, c3(i) >
0, c2(i), ρ(i) ∈ R, such that for (t, u(t), i) ∈ R+ × Sh × S

(i) c1|u(t)|pG ≤ V (t, u(t), i);

(ii) LV (t, u, i) ≤ c2(i)V (t, u(t), i);

(iii) |∂V (t,u(t),i)
∂u

∫
G g(s, u(s), i)dx|2 ≥ c3(i)V

2(t, u(t), i);

(iv)
N∑
j=1

γij(lnV (t, u(t), j)− V (t,u(t),j)
V (t,u(t),i) ) ≤ ρ(i);

(v) For some ϵ ∈ (0, 12 ],

η := lim sup
t→∞

1

t
Π(t) < ∞,

where

Π(t) :=

∫ t

0

∫
Θ
ln(

V (s, u(s), i0 + h(r(s), l))

V (s, u(s), r(s))
)2

− (
V (s, u(s), i0 + h(r(s), l))

V (s, u(s), r(s))
)ϵm(dl)ds,
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and

Θ = [0,

N∑
j=1,j ̸=i

γij ].

Then the trivial solution of the system satisfies

lim sup
t→∞

1

t
ln |u(t, x)|G ≤ 1

p

N∑
j=1

π(j)(c2(j) +
1

2
c3(j) + ρ(j)).

In particular, the trivial solution of system (2.1) is almost surely expo-
nentially stable if

N∑
j=1

π(j)(c2(j) +
1

2
c3(j) + ρ(j)) < 0.

Proof. The argument is motivated by that of ([4], Theorem3.1). Note
that

d

∫
G
u(t, x)dx =

∫
G
(a(t)∆u(t, x) + f(t, x, u(t, x), r(t))dxdt

+

∫
G
g(t, x, u(t, x), r(t))dxdW (t),

(3.1)

combining Green formula and boundary condition, we have

∫
G
∆u(t, x)dx =

∫
G

∂u

∂M
= 0,

then (3.1) can be rewritten as

d

∫
G
u(t, x)dx =

∫
G
f(t, x, u(t, x), r(t))dxdt

+

∫
G
g(t, x, u(t, x), r(t))dxdW (t).
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Define an operator

LV (t, u(t), i) =
∂V (t, u(t), i)

∂t
+

∂V (t, u(t), i)

∂u

∫
G
f(t, x, u(t, x), r(t))dx

+
1

2
trace

[ ∫
G
gT (t, x, u(t, x), r(t))dx

× ∂2V (t, u, i)

∂u∂u

∫
G
g(t, x, u(t, x), r(t))dx

]
+

N∑
j=1

γijV (t, u(t), j).

We have the following Itô formula

lnV (t, u(t), r(t)) = lnV (0, u0, i0) +

∫ t

0
L lnV (s, u(s), r(s))ds

+M1(t) +M2(t)

= lnV (0, u0, i0) +

∫ t

0

LV (s, u(s), r(s))

V (s, u(s), r(s))
ds

− 1

2

∫ t

0

|∂V (s,u(s),r(s))
∂u

∫
G g(s, x, u(s, x), r(s))dx|2

|V (s, u(s), r(s))|2
ds

+

∫ t

0

N∑
j=1

γij [lnV (s, u(s), j)− V (s, u(s), j)

V (s, u(s), r(s))
]ds

+M1(t) +M2(t),

where

M1(t) :=

∫ t

0

∂V (s,u(s),r(s))
∂u

∫
G g(s, x, u(s, x), r(s))dx

V (s, u(s), r(s))
dW (s),

M2(t) :=

∫ t

0

∫
Θ
ln

V (s, u(s), i0 + h(r(s), l))

V (s, u(s), r(s))
µ(ds,dl)

and µ(ds,dl) is a Poisson random measure with intensity ds×m(dl), in
which m is the Lebesgue measure on R. For more details on the function
h and the martingale measure see, e.g.,[10].
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Note that M1(0) = M2(0) = 0, by the exponential martingale in-
equality, for any n ∈ N, δ ∈ (0, ϵ

2 ], we have

P{ sup
0≤t≤n

[M1(t)−
δ

2

∫ t

0
|
∂V (s,u(s),r(s))

∂u

∫
G g(s, x, u(s, x), r(s))dx

V (s, u(s), r(s))
|2ds]

>
2 lnn

δ
} ≤ 1

n2

and denote Λ(t, l) = V (s,u(s),i0+h(r(s),l))
V (s,u(s),r(s)) , then by the exponential martin-

gale inequality with jump ([1], Theorem 5.2.9),

P{ sup
0≤t≤n

[M2(t)−
1

δ

∫ t

0

∫
Θ
[Λδ(s, l)− 1− δ lnΛ(s, l)]m(dl)ds]

> 2δ−1 lnn} ≤ 1

n2
.

Applying the Borel-Cantelli Lemma, there exists an Ω0 ⊆ Ω with P(Ω−
Ω0) = 1, such that for any ω ∈ Ω0, there exists an integer n0 = n0(ω) >
0, if n ≥ n0,

M1(t) ≤
δ

2

∫ t

0
|
∂V (s,u(s),r(s))

∂u

∫
G g(s, x, u(s, x), r(s))dx

V (s, u(s), r(s))
|2ds+ 2 lnn

δ
,

M2(t) ≤
1

δ

∫ t

0

∫
Θ
[Λδ(s, l)− 1− δ lnΛ(s, l)]m(dl)ds+

2 lnn

δ
.

Hence, for 0 ≤ t ≤ n, ω ∈ Ω0 and n ≥ n0,

lnV (t, u(t), r(t)) ≤ lnV (0, u0, i0) +
4 lnn

δ
+

∫ t

0

LV (s, u(s), r(s))

V (s, u(s), r(s))
ds

− 1

2

∫ t

0

|∂V (s,u(s),r(s))
∂u

∫
G g(s, x, u(s, x), r(s))dx|2

|V (s, u(s), r(s))|2
ds

+

∫ t

0

N∑
j=1

γij [lnV (s, u(s), j)− V (s, u(s), j)

V (s, u(s), r(s))
]ds

+
δ

2

∫ t

0
|
∂V (s,u(s),r(s))

∂u

∫
G g(s, x, u(s, x), r(s))dx

V (s, u(s), r(s))
|2ds

+
1

δ

∫ t

0

∫
θ
[Λδ(s, l)− 1− δ lnΛ(s, l)]m(dl)ds.
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Using Taylor expansion, for δ ∈ (0, ϵ
2 ], we have

Λδ(s, l) = 1 + δ lnΛ(s, l) +
δ2

2
(lnΛ(s, l))2Λξ(s, l),

where ξ lies between 0 and δ. Noting that, for 0 ≤ ξ ≤ ϵ
2 , Λξ ≤ 1, if

0 < Λ < 1, Λξ ≤ Λ
ξ
2 , if Λ ≥ 1 and the inequality

lnx ≤ 4

ϵ
(x

ϵ
4 − 1) for x ≥ 1,

is satisfied we have

1

δ

∫ t

0

∫
θ
[Λδ(s, l)− 1− δ lnΛ(s, l)]m(dl)ds

=
δ

2

∫ t

0

∫
θ
(lnΛ(s, l))2Λξ(s, l))m(dl)ds

=
δ

2

∫ t

0

∫
0<Λ<1

(lnΛ(s, l))2Λξ(s, l))m(dl)ds

+
δ

2

∫ t

0

∫
Λ≥1

(lnΛ(s, l))2Λξ(s, l))m(dl)ds

≤ δ

2

∫ t

0

∫
θ
[(lnΛ(s, l))2 +

16

ϵ2
Λϵ(s, l)]m(dl)ds.

Together with (ii)-(iv), implies

lnV (t, u(t), r(t)) ≤ lnV (0, u0, i0) +
4 lnn

δ
+

∫ t

0
[c2(r(s)) +

δ − 1

2
c3(r(s))

+ ρ(r(s))]ds+
δ

2

∫ t

0

∫
θ
[(lnΛ(s, l))2 +

16

ϵ2
Λϵ(s, l)]m(dl)ds,

which together with (i), for n− 1 ≤ t ≤ n, ω ∈ Ω0, and n ≥ n0 + 1

1

t
ln |u(t, x)|G ≤ − ln c1

pt
+

1

pt
[lnV (0, u0, i0) +

4 lnn

δ

+

∫ t

0
(c2(r(s)) +

δ − 1

2
c3(r(s)) + ρ(r(s))ds+

8

ϵ2
Π(t)].

By using the ergodic property of Markovian chains, since δ is arbitrary,
by the use of (v), we have

lim sup
t→∞

1

t
ln |u(t, x)|G ≤ 1

p

N∑
j=1

π(j)(c2(j) +
1

2
c3(j) + ρ(j)),
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we therefore complete the proof. □

Remark 3.3. From Theorem 3.2, we can see due to the Markovian
jumps the overall system can become pathwise exponentially stable al-
though some subsystems are not stable.

4. Example

Let W (t) be a Wiener process. Let r(t) be a right-continuous markov
chain taking values in S = {1, 2} with generator Γ = (γij)2×2, γ11 =
γ21 = 1, γ12 = γ22 = −1. The unique stationary probability distribution
of the Markov chain r(t) is

π = (π1, π2) = (
k

1 + k
,

1

1 + k
), k > 0.

Assume that there exist constants ki ∈ R, li > 0, i = 1, 2, such that

2

∫
G
uT (t, x)dxf(t, x, u(t, x), i)+ ∥g(t, x, u(t, x), i)∥2 ≤ ki|

∫
G
u(t, x)dx|2,∫

G
uT (t, x)dxg(t, x, u(t, x), i) ≥ li|

∫
G
u(t, x)dx|2.

Consider the following stochastic reaction diffusion system:

du(t, x) = (a(t)∆u(t, x) + f(t, x, u(t, x), r(t)))dt

+ g(t, x, u(t, x), r(t))dW (t),
(4.1)

for (t, x) ∈ R+ ×G with boundary condition

∂u(t, x)

∂M
= 0, (t, x) ∈ R+ × ∂G.

Let

V (t, u, 1) = |
∫
G
u(t, x)dx|2,

V (t, u, 2) = 2|
∫
G
u(t, x)dx|2.

By the definition of V, we can choose

c1 =
1

2
, p = 2, c3(1) = 4l21|G|, c3(2) = 16l22|G|,

ρ1 = ln 2, ρ2 = − ln 2− 3

2
.
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Then

LV (t, u(t), 1) = 2uT
∫
G
f(t, x, u(t, x), 1)dx+ ∥

∫
G
g(t, x, u(t, x), 1)dx∥2

− |u(t)|2 + 2|u(t)|2

≤ (k1|G|+ 1)V (t, u(t), 1)

:= c2(1)V (t, u(t), 1).

and

LV (t, u(t), 2) ≤ (k2|G| − 1)V (t, u(t), 2) := c2(2)V (t, u(t), 2).

It is obvious that ∃ c4, c5 > 0, c4 ≤ V (t,u(t),i)
V (t,u(t),j) ≤ c5, i, j ∈ S, then condi-

tion (v) holds. By Theorem 3.2, we have

lim sup
t→∞

1

t
ln |u(t, x)|G ≤ 1

2(1 + k)
(kζ1 + ζ2),

where

ζ1 = k1|G|+ 2l21|G|+ 1 + ln 2,

and

ζ2 = k2|G|+ 8l22|G| − ln 2− 7

2
.

The stochastic reaction diffusion system (4.1) is almost surely exponen-
tially stable whenever

kζ1 + ζ2 < 0.
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