Some Results on \(p \)-Best Approximation in Vector Spaces

H. Mazaheri* and S. M. Moshtaghioun

Communicated by Fereidoun Ghahramani

Abstract. The purpose of this paper is to introduce and to discuss the concept of \(p \)-approximation and \(p \)-orthogonality in vector spaces, and to obtain some results on \(p \)-orthogonality in vector spaces similar to some well known results on the orthogonality in normed spaces. We also discuss the concept of \(p \)-extension of linear functionals on a vector space, and give a characterization of linear functionals on a subspace having a unique \(p \)-extension Hahn-Banach to the whole vector space.

1. Introduction

Here, all normed spaces under consideration are real. A seminorm is a function \(p : X \rightarrow [0, \infty) \) such that \(p(x + y) \leq p(x) + p(y) \) and \(p(\alpha x) = |\alpha|p(x) \), for all \(x, y \in X \) and \(\alpha \in \mathbb{R} \). It is clear that for every seminorm \(p \), \(p(0) = 0 \). Also, the seminorm \(p \) is a norm, if \(p(x) = 0 \) implies \(x = 0 \).

Many authors have introduced the concept of orthogonality in different ways (see [1-4], [6]). In [1], Birkhoff modified the concept of orthogonality. By his definition, if \(X \) is a normed linear space and \(x, y \in X \), \(x \) is said to be orthogonal to \(y \) and is denoted by \(x \perp y \) if and only if

Keywords: \(p \)-orthogonality, seminorm, \(p \)-best approximation, \(p \)-extension.

Received: 2 January 2008. Accepted: 23 July 2008.
*Corresponding author

© 2008 Iranian Mathematical Society.
\[\|x\| \leq \|x + \alpha y\|, \text{ for all scalars } \alpha. \] Note that this orthogonality is not symmetric in general [2].

Let \(X \) be such a vector space, \(x, y \in X \) and \(p \) be a fixed seminorm. We say that \(x \) is \(p \)-orthogonal to \(y \) if \(x = 0 \) or else,

\[p(x) \neq 0, \quad p(x) = \inf \alpha p(x + \alpha y), \]

in which case we write \(x \perp^p y \). If \(M_1 \) and \(M_2 \) are subsets of \(X \), then we say that \(M_1 \) is \(p \)-orthogonal to \(M_2 \) if \(g_1 \perp^p g_2 \), for all \(g_1 \in M_1, \ g_2 \in M_2 \).

First we state the following lemma of Hahn- Banach which is needed in the proof of the main results.

Lemma 1.1. [5] Let \(M \) be a subspace of a vector space \(X \), \(p \) be a seminorm on \(X \), and let \(f \) be a linear functional on \(M \) such that

\[|f(x)| \leq p(x) \quad (x \in M). \]

Then, \(f \) extends to a linear functional \(\Lambda \) on \(X \) which satisfies:

\[|\Lambda(x)| \leq p(x) \quad (x \in X). \]

Suppose \(p \) is a seminorm on \(X \). For \(x \in X \), let

\[M^p_x = \{ \Lambda : X \rightarrow \mathbb{R} : \Lambda(x) = p(x), \ |\Lambda(z)| \leq p(z), \forall z \in X \}. \]

For \(x \in X \), if we let \(M = \langle x \rangle \) (\(\langle x \rangle \) is the subspace of \(X \) generated by \(x \)) and define \(f(\alpha x) = \alpha p(x) \), then by Lemma 1.1, the linear functional \(f \) extends to a linear functional \(\Lambda \in M^p_x \). Therefore, \(M^p_x \) is nonempty.

Here, we are concerned with the concepts of \(p \)-best approximation and \(p \)-orthogonality in a vector space. The concept of approximation in normed linear spaces was defined by I. Singer [6].

2. Orthogonality in vector spaces

In this section, we state and prove our main results for vector spaces. Also, we obtain results related to \(p \)-orthogonality on vector spaces.

Theorem 2.1. Let \(X \) be a vector space, \(G \) be a subspace of \(X \), \(p \) be a seminorm on \(X \), \(x \in X \setminus G \) and \(p(x) \neq 0 \). Then, the following statements are equivalent:

a) \(x \perp^p G \).
b) There is a linear functional Λ on X such that $\Lambda \in M^p_x$ and $\Lambda |_G = 0$.

Proof. $a) \Rightarrow b)$. Suppose $x \perp^p G$. Consider $M = \langle x \rangle \bigoplus G$. We define a linear functional f on M by $f(\alpha x + y) = \alpha p(x)$, where $y \in G$ and $\alpha \in \mathbb{R}$. It is clear that $f(y) = 0$, for every $y \in G$, and $f(x) = p(x)$. Now, suppose $z = \alpha x + y \in M$. Then,

\[
|f(z)| = |f(\alpha x + y)| \\
= |\alpha| p(x) \\
\leq |\alpha| p(x + \frac{1}{\alpha} y) \\
= p(\alpha x + y) \\
= p(z).
\]

From Lemma 1.1, there exists a linear functional Λ on X such that $\Lambda(x) = p(x)$, $\Lambda |_G = 0$, $|\Lambda(z)| \leq p(z)$ for all $z \in X$.

$b) \Rightarrow a)$. Suppose that there exists a linear functional Λ on X such that $\Lambda \in M^p_x$ and $\Lambda |_G = 0$. For every $\alpha \in \mathbb{R}$ and $y \in G$, we have,

\[
p(x + \alpha y) \geq |\Lambda(x + \alpha y)| = |\Lambda(x)| = p(x).
\]

Therefore, $\inf_{\alpha} p(x + \alpha y) = p(x)$, and hence $x \perp^p y$. Thus, $x \perp^p G$. \(\square\)

Now, we shall obtain from Theorem 2.1 various corollaries on p-orthogonality.

Corollary 2.2. Let X be a vector space, p be a seminorm on X and $x, y \in X$. If $x \perp^p y$, then $\langle x \rangle \cap \langle y \rangle = \{0\}$.

Corollary 2.3. Let X be a vector space, A be a nonempty subset of X, p be a seminorm on X such that $p(y) \neq 0$, for all $y \in A$ and $x \in X \setminus < A >$. Then, the following two statements are equivalent:

a) $A \perp^p x$.

b) For every $y \in A$, there exists a linear functional Λ on X with $\Lambda \in M^p_y$ and $\Lambda(x) = 0$.

Definition 2.4. Let X be a vector space and p be a seminorm on X. The element $x \in X$ is called a p-normal element if there exists only one linear functional Λ_x on X such that $\Lambda_x \in M^p_x$; i.e., M^p_x is a singleton.
Corollary 2.5. Let X be a vector space, G be a linear subspace of X, p be a seminorm on X and $p(x) \neq 0$. If $x \in X$ is a p-normal element associated with p on X, then the following statements are equivalent:

a) $x \perp p^G$.

b) There exists a unique linear functional Λ on X such that $\Lambda \in M^p_x$ and $\Lambda|_G = 0$.

Let G be a subspace of the space X equipped with a seminorm p. Define,

$$\hat{G}_p = \{x \in X : x \perp p^G\},$$

and

$$\hat{G}_p = \{x \in X : G \perp p^x\}.$$

Corollary 2.6. Let X be a vector space, G be a subspace of X and p be a seminorm on X. Then,

a) $G \cap \hat{G}_p = \{0\}$

b) $G \cap \hat{G}_p = \{0\}$.

c) $\alpha x \in \hat{G}_p$, if $x \in \hat{G}_p$ and $\alpha \in \mathbb{R}$.

d) $\alpha x \in \hat{G}_p$, if $x \in \hat{G}_p$ and $\alpha \in \mathbb{R}$.

Proof. The statements (c) and (d) are consequences of the definition of p-orthogonality. Suppose $x \in G \cap \hat{G}_p$ (resp. $x \in G \cap \hat{G}_p$). Then, $x \perp G$ w.r.t. p (resp. $G \perp x$ w.r.t. p) and $x \in G$. Therefore, $x \perp p^x$, and form Corollary 2.2, $x = 0$. \hfill \square

3. p-Best approximation and linear functional

Here, we shall introduce and discuss the concept of p-extension of linear functionals on a vector space, and show that a linear functional on a subspace has a unique p-extension to the whole vector space if and only if G^\perp has some properties.

Let X be a vector space and p be a seminorm on X. A point $g_0 \in G$ is said to be a p-best approximation for $x \in X$ if and only if $p(x - g_0) \neq 0$ and for all $g \in G$, $p(x - g) \leq p(x - g_0)$. The set of all p-best approximations of $x \in X$ in G is denoted by $P^p_G(x)$. In other words,

$$P^p_G(x) = \{g_0 \in G : p(x - g_0) \neq 0, p(x - g_0) \leq p(x - g) \forall g \in G\}.$$
If $P^p_G(x)$ is non-empty for every $x \in X$, then G is called a p-proximinal set. The set G is p-Chebyshev if $P^p_G(x)$ is a singleton for every $x \in X$.

Theorem 3.1. Let X be a vector space, G be a subspace of X, p be a seminorm on X, $g_0 \in G$, $x \in X \setminus G$ and $p(x - g_0) \neq 0$. Then, the following statements are equivalent:

a) $g_0 \in P^p_G(x)$
b) There exists a linear functional Λ on X such that $\Lambda \in M^p_{x - g_0}$ and $\Lambda|_G = 0$.

Proof. We know that $g_0 \in P^p_G(x)$ if and only if $x - g_0 \perp_p G$. Now, apply Theorem 2.1.

Theorem 3.2. Let X be a vector space, p be a seminorm on X and G be a p-proximinal subspace of X. If G_p is a convex set, then G is p-Chebyshev.

Proof. If $x \in X$ and $g_1, g_2 \in P^p_G(x)$, then $x - g_1, x - g_2 \in \hat{G}_p$. Since \hat{G}_p is convex, then it follows that $\frac{1}{2}(g_1 - g_2) \in \hat{G}_p$. Since $\frac{1}{2}(g_1 - g_2) \in G$, then Lemma 2.6 shows that $g_1 = g_2$.

Theorem 3.3. Let X be a vector space, G be a subspace of X, p be a seminorm on X, $g_0 \in G$, and $x \in X \setminus G$ $p(x - g_0) \neq 0$. Then,

$$g_0 \in P^p_G(x) \iff p((x - g_0)|_{G^\perp}) = p(x - g_0),$$

where,

$$p((x - g_0)|_{G^\perp}) = \sup\{|\Lambda(x - g_0)| : \Lambda \in G^\perp, |\Lambda(z)| \leq p(z), \forall z \in X\},$$

and the annihilator of G is the set,

$$G^\perp = \{f : X \text{ linear} \rightarrow R : f(x) = 0 \text{ for all } x \in G\}.$$

Proof. Let $g_0 \in P^p_G(x)$. It follows from $p(x - g_0) \neq 0$ and Theorem 3.1 that there exists a linear functional Λ on X such that for all $z \in X$, $|\Lambda(z)| \leq p(z)$, $\Lambda(x - g_0) = p(x - g_0)$ and $\Lambda|_G = 0$. Therefore, $p(x - g_0) = |\Lambda(x - g_0)| \leq p((x - g_0)|_{G^\perp})$. Now, suppose $\Lambda \in G^\perp$ and $|\Lambda(z)| \leq p(z)$ for all $z \in X$. Then, $|\Lambda(x - g_0)| \leq p(x - g_0)$, and thus $p((x - g_0)|_{G^\perp}) \leq p(x - g_0)$.

Conversely, suppose \(p((x - g_0) |_{G^\perp}) = p(x - g_0) \). Since \(p((x - g) |_{G^\perp}) \leq p(x - g) \), then similarly we have,

\[
p(x - g_0) = p((x - g_0) |_{G^\perp}) = p((x - g) |_{G^\perp}) \leq p(x - g).
\]

That is, \(g_0 \in P^p_G(x) \). \(\square \)

Let \(X \) be a vector space and \(p \) be a seminorm on \(X \). The dual space of \(X \) with respect to \(p \) is denoted by:

\[
X^*_p = \{ \Lambda : X \rightarrow \mathbb{R} : p'(\Lambda) < \infty \}
\]

where,

\[
p'(\Lambda) = \sup\{ |\Lambda(x)| : p(x) \leq 1, \ x \in X \}.
\]

It is clear that \(p' \) is a seminorm on \(X^*_p \). Similarly, we can define \(p'' \) on \(X^*_p \) and \(p''' \) on \(X^{**}_p \) (see [5]).

It is clear that if \(X \) is a vector, \(p \) is a seminorm on \(X \), \(\Lambda \in X^*_p \), \(x \in X \) and \(p(x) \neq 0 \), then,

\[
p(x) = \sup\{ |\Lambda(x)| : p'(\Lambda) \leq 1, \ \Lambda \in X^*_p \}.
\]

Lemma 3.4. Let \(X \) be a vector space, and \(p \) be a seminorm on \(X \). For each \(x \in X \), define the linear functional \(\hat{x} \) on \(X^*_p \) by \(\hat{x}(\varphi) = \varphi(x) \), for \(\varphi \in X^*_p \). Then, for all \(x \in X \),

\[
p''(\hat{x}) = p(x).
\]

Proof. We have,

\[
p''(\hat{x}) = \sup\{ |\hat{x}(\varphi)| : p'(\varphi) \leq 1, \ \varphi \in X^*_p \}
\]

\[
= \sup\{ |\varphi(x)| : p'(\varphi) \leq 1, \ \varphi \in X^*_p \}
\]

\[
= p(x).
\]

\(\square \)

Definition 3.5. Let \(X \) be a vector space, \(p \) be a seminorm on \(X \), \(\Lambda \in X^*_p \) and \(G \) be a subspace of \(X \). \(\Lambda \) is called a \(p \)-extension of the linear functional \(f : G \rightarrow \mathbb{R} \), if \(\Lambda|_G = f \) and \(p'(\Lambda) = p'(f) \). \(p'(\Lambda) \) and \(p'(f) \) are computed relative to the domains of \(\Lambda \) and \(f \), explicitly as:

\[
p'(\Lambda) = \sup\{ |\Lambda(x)| : p(x) \leq 1, \ x \in X \}
\]
Some results on p-best approximation in vector spaces

and

$$p'(f) = \sup\{|f(x)| : p(x) \leq 1, \ x \in G\}.$$

Theorem 3.6. Let X be a vector space, G be a subspace of X, p be a seminorm on X and $f \in X_p^* \setminus G^\perp$. Then, there is an one-to-one correspondence between the set $P_{G^\perp}^p(f)$ and the set of all $g \in X_p^*$ such that \hat{g} is a p-extension of $\hat{f}|_{G^\perp}$, given by $g \mapsto f - g$.

Proof. If $g \in P_{G^\perp}^p(f)$, then it is clear that $\hat{f}|_{G^\perp} = \hat{f} - g|_{G^\perp}$, and from Theorem 3.2 and Corollary 3.4 we have,

$$p''((f - g)|_{G^\perp}) = p'(f - g) = p''((\hat{f} - g)|_{G^\perp}) = p''(\hat{f}|_{G^\perp}).$$

Therefore, $\hat{f} - g$ is a p-extension of $\hat{f}|_{G^\perp}$. We show that this map is onto. Suppose \hat{h} is a p-extension of $\hat{f}|_{G^\perp}$. Let $g = f - h$. We show that $g \in P_{G^\perp}^p(f)$. For this, since $\hat{f} - g$ is a p-extension of $\hat{f}|_{G^\perp}$, then $\hat{f}|_{G^\perp} = \hat{f} - g|_{G^\perp}$ and $p''(\hat{f}|_{G^\perp}) = p''(\hat{f} - g)$. Now, we have,

$$p'((f - g)|_{G^\perp}) = p''((\hat{f} - g)|_{G^\perp}) = p''(\hat{f}|_{G^\perp}) = p''(f - g) = p'(f - g).$$

Therefore, by Theorem 3.2, $g \in P_{G^\perp}^p(f)$. □

Theorem 3.7. Let X be a vector space, G be a subspace of X, p be a seminorm on X, $f \in G_p^*$ and let $\tilde{f} \in X_p^*$ be a p-extension of f. Then, there is a one-to-one correspondence between the set of all p-extensions of f to X and the set $P_{G^\perp}^p(\tilde{f})$, given by $g \mapsto \tilde{f} - g$.

Proof. Suppose $g \in X_p^*$ is a p-extension of f. Then, $g|_G = f$ and $p'(f) = p'(g)$. For all $\varphi \in G^\perp$,

$$\hat{g}(\varphi) = \varphi(g) = \varphi(\tilde{f}) = \tilde{f}(\varphi),$$

$$\hat{g}(\varphi) = \varphi(g) = \varphi(\tilde{f}) = \tilde{f}(\varphi),$$

and

$$p'(f) = \sup\{|f(x)| : p(x) \leq 1, \ x \in G\}.$$

Theorem 3.6. Let X be a vector space, G be a subspace of X, p be a seminorm on X and $f \in X_p^* \setminus G^\perp$. Then, there is an one-to-one correspondence between the set $P_{G^\perp}^p(f)$ and the set of all $g \in X_p^*$ such that \hat{g} is a p-extension of $\hat{f}|_{G^\perp}$, given by $g \mapsto f - g$.

Proof. If $g \in P_{G^\perp}^p(f)$, then it is clear that $\hat{f}|_{G^\perp} = \hat{f} - g|_{G^\perp}$, and from Theorem 3.2 and Corollary 3.4 we have,

$$p''((f - g)|_{G^\perp}) = p'(f - g) = p''((\hat{f} - g)|_{G^\perp}) = p''(\hat{f}|_{G^\perp}).$$

Therefore, $\hat{f} - g$ is a p-extension of $\hat{f}|_{G^\perp}$. We show that this map is onto. Suppose \hat{h} is a p-extension of $\hat{f}|_{G^\perp}$. Let $g = f - h$. We show that $g \in P_{G^\perp}^p(f)$. For this, since $\hat{f} - g$ is a p-extension of $\hat{f}|_{G^\perp}$, then $\hat{f}|_{G^\perp} = \hat{f} - g|_{G^\perp}$ and $p''(\hat{f}|_{G^\perp}) = p''(\hat{f} - g)$. Now, we have,

$$p'((f - g)|_{G^\perp}) = p''((\hat{f} - g)|_{G^\perp}) = p''(\hat{f}|_{G^\perp}) = p''(f - g) = p'(f - g).$$

Therefore, by Theorem 3.2, $g \in P_{G^\perp}^p(f)$. □

Theorem 3.7. Let X be a vector space, G be a subspace of X, p be a seminorm on X, $f \in G_p^*$ and let $\tilde{f} \in X_p^*$ be a p-extension of f. Then, there is a one-to-one correspondence between the set of all p-extensions of f to X and the set $P_{G^\perp}^p(\tilde{f})$, given by $g \mapsto \tilde{f} - g$.

Proof. Suppose $g \in X_p^*$ is a p-extension of f. Then, $g|_G = f$ and $p'(f) = p'(g)$. For all $\varphi \in G^\perp$,

$$\hat{g}(\varphi) = \varphi(g) = \varphi(\tilde{f}) = \tilde{f}(\varphi),$$

$$\hat{g}(\varphi) = \varphi(g) = \varphi(\tilde{f}) = \tilde{f}(\varphi),$$

and

$$p'(f) = \sup\{|f(x)| : p(x) \leq 1, \ x \in G\}. $$
since \(g|_G = \tilde{f}|_G \). Also \(\tilde{f}|_G = f \), and thus \(\tilde{f}|_{G^\perp} = \hat{f} \) and

\[
p''(\tilde{g}) = p'(g) = p'(f) = p''(\hat{f}) = p''(\tilde{f}|_{G^\perp}).
\]

So by Theorem 3.6, \(\tilde{f} - g \in P_{G^\perp}^p(\hat{f}) \).

Now, suppose that \(g \in P_{G^\perp}^p(\tilde{f}) \). Then, \(\hat{\tilde{f}} - g \) is a \(p \)-extension of \(\tilde{f}|_{G^\perp} \).

We know,

\[
(\tilde{f} - g)(x) = f(x),
\]

for all \(x \in G \), and

\[
p'(\tilde{f} - g) = p''(\tilde{f} - g) = p''(\tilde{f}|_{G^\perp}) = p''(\hat{f}) = p'(f).
\]

That is, \(\tilde{f} - g \) is a \(p \)-extension of \(f \). \(\square \)

Corollary 3.8. Let \(X \) be a vector space, \(G \) be a subspace of \(X \), and \(p \) be a seminorm on \(X \). Then, the following statements are equivalent:

a) Every non-zero \(f \in G^* \) has a unique \(p \)-extension of \(X \).

b) For each \(f \in G^* \setminus G^\perp \), there is a unique \(g \in X^* \) such that \(\hat{g} \) is a \(p \)-extension of \(\tilde{f}|_{G^\perp} \).

c) \(G^\perp \) is a \(p' \)-Chebyshev subspace of \(X^* \).

Example 3.9. Let \(f \) be a linear functional on a real vector space \(X \). Then, \(p(x) = |f(x)| \) gives a seminorm on \(X \). If \(f \) is nonzero and \(\dim(X) > 1 \), then \(p \) is seminorm that is not a norm. Now, let \(G_1 = \ker f \) and \(G_2 = X \setminus \ker f \). Then, \(G_1 \) is a subspace of \(X \). For \(y \in G_1 \), we have \(f(y) = 0 \), and therefore for all \(x \in X \setminus G_1, x \perp^p G_1 \). Also, since for every \(y \in G_2, f(y) \neq 0 \), then,

\[
\inf_\alpha p(x + \alpha y) \leq |f(x) + (-\frac{f(x)}{f(y)})f(y)| = 0.
\]

Therefore, for all \(x \in X \setminus G_2, x \perp^p G_2 \).

Example 3.10. The elements of \(X = L^2 \) are the real Lebesgue measurable functions \(f \) on \([0,1]\). We can define a seminorm \(p \) on \(X \) by:

\[
p(f) = \{ \int_0^1 |f(t)|^2 dt \}^{\frac{1}{2}}, \; f \in X.
\]

It is clear that \(p \) is a seminorm on \(X \) and is not a norm. Now, we can apply Theorem 3.7 and Theorem 3.6 to this example.
Acknowledgments
The authors thank the research council of Yazd University for their financial support.

References

H. Mazaheri and S. M. Moshtaghioun
Department of Mathematics, University of Yazd, P.O. Box 89195-741, Yazd, Iran
Email: hmaizaheri@yazduni.ac.ir
Email: moshtagh@yazduni.ac.ir