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Abstract. In this note, we obtain some singular values inequali-
ties for positive semidefinite matrices by using block matrix tech-
nique. Our results are similar to some inequalities shown by Bhatia
and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and
[Linear Algebra Appl. 428 (2008) 2177-2191].
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1. Introduction

Let Mn be the space of n × n complex matrices. Let ∥·∥ denote any
unitarily invariant norm on Mn. We shall always denote the singular
values of A by s1 (A) ≥ · · · ≥ sn (A) ≥ 0, that is, the eigenvalues of

the positive semidefinite matrix |A| = (AA∗)1/2, arranged in decreas-
ing order and repeated according to multiplicity. Let A,B ∈ Mn be
Hermitian, the order relation A ≥ B means, as usual, that A − B is
positive semidefinite. We use the direct sum notation A ⊕ B for the

block-diagonal operator

[
A 0
0 B

]
defined on Mn ⊕Mn.

Bhatia and Kittaneh ([5], p.206) proved that if A,B ∈ Mn are positive
semidefinite, then

(1.1) 2sj

(
A1/2 (A+B)B1/2

)
≤ sj

(
(A+B)2

)
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for all j = 1, · · · , n. Bhatia and Kittaneh ([6], p.2186) generalized the
inequality (1.1) to the following form:

(1.2) 2sj

(
A1/2 (A+B)r B1/2

)
≤ sj

(
(A+B)r+1

)
, r ≥ 0

for all j = 1, · · · , n.
In Section 2, we first present an inequality for singular values, which is

similar to the inequalities (1.2). After that, we generalize the inequality
(1.1), which is a special case of the inequality (1.2). Section 3 contains
some remarks.

2. Main results

In this section, we first present an inequality, which is similar to the
inequality (1.2). To do this, we need the following lemmas.

Lemma 2.1. ([2], Theorem 1) Let f (t) be an operator monotone func-
tion and A,B ∈ Mn be positive semidefinite. Then(

A+B

2

)1/2

(f (A) + f (B))

(
A+B

2

)1/2

≤ Af (A) +Bf (B) .

Lemma 2.2. ([8], Theorem 1) Let A,B,X ∈ Mn such that

[
A X
X∗ B

]
≥

0. Then

sj (X) ≤ 1

2
sj

[
A X
X∗ B

]
for all j = 1, · · · , n.

Theorem 2.3. Let A,B ∈ Mn be positive semidefinite and suppose that

K =
(
A1/(q+1) +B1/(q+1)

)1/2
, 0 ≤ q ≤ 1.

Then, we have

sj

(
Aq/2(q+1)K (A+B)r KBq/2(q+1)

)
≤ sj

(
(A+B)1+r

)
, r ≥ 0

for all j = 1, · · · , n.

Proof. It is known that the function f (t) = tq, 0 ≤ q ≤ 1 is operator
monotone on (0, ∞). So, by Lemma 2.1, we have

1

2
(A+B)1/2 (Aq +Bq) (A+B)1/2 ≤ A1+q +B1+q.
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It is known that if X ≤ Y , then ZXZ∗ ≤ ZY Z∗. It follows that

1

2

(
A1+q +B1+q

)r/2
L (Aq +Bq)L

(
A1+q +B1+q

)r/2
≤

(
A1+q +B1+q

)1+r
,

where L = (A+B)1/2. Note that the matrices XY and Y X have the
same eigenvalues. Thus, by this last inequality, we obtain

(2.1)
1

2
λj

(
(Aq +Bq)L

(
A1+q +B1+q

)r
L
)
≤ λj

((
A1+q +B1+q

)1+r
)
.

Let

X = (A+B)1/2
(
A1+q +B1+q

)r/2
.

The inequality (2.1) is equivalent to

(2.2)
1

2
λj ((A

q +Bq)XX∗) ≤ λj

((
A1+q +B1+q

)1+r
)
.

Except for trivial zeros, the eigenvalues of (Aq +Bq)XX∗ are the same
as the following matrix[

Aq/2 Bq/2

0 0

] [
Aq/2 0

Bq/2 0

] [
XX∗ 0
0 0

]
,

and in turn, these are the same as the eigenvalues of[
Aq/2 0

Bq/2 0

] [
XX∗ 0
0 0

] [
Aq/2 Bq/2

0 0

]
=

[
Aq/2XX∗ 0

Bq/2XX∗ 0

] [
Aq/2 Bq/2

0 0

]
=

[
Aq/2XX∗Aq/2 Aq/2XX∗Bq/2

Bq/2XX∗Aq/2 Bq/2XX∗Bq/2

]
≥ 0.

So, by Lemma 2.2 and the inequality (2.2) , we have

sj

(
Aq/2XX∗Bq/2

)
≤ λj

((
A1+q +B1+q

)1+r
)
.

That is,

sj

(
Aq/2(q+1)K (A+B)r KBq/2(q+1)

)
≤ sj

(
(A+B)1+r

)
on replacing A by A1/(q+1) and B by B1/(q+1). This completes the
proof. □

Next, we generalize the inequality (1.1).
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Theorem 2.4. Let A,B ∈ Mn be positive semidefinite and suppose that

K =
(
A1/(q+1) +B1/(q+1)

)1/2
, 0 ≤ q ≤ 1.

Then, we have

sj

(
A1/2K

(
Aq/(1+q) +Bq/(1+q)

)
KB1/2

)
≤ sj

(
(A+B)2

)
for all j = 1, · · · , n.

Proof. By the inequality (2.1) with r = 1, we have

1

2
λj

(
(Aq +Bq) (A+B)1/2

(
A1+q +B1+q

)
(A+B)1/2

)
≤ λj

((
A1+q +B1+q

)2)
.

Let
X = (A+B)1/2A(1+q)/2, Y = (A+B)1/2B(1+q)/2.

Then

(2.3)
1

2
λj ((A

q +Bq) (XX∗ + Y Y ∗)) ≤ λj

((
A1+q +B1+q

)2)
.

Except for trivial zeros, the eigenvalues of (Aq +Bq) (XX∗ + Y Y ∗) are
the same as those of

M =

[
Aq +Bq 0

0 0

] [
X Y
0 0

] [
X∗ 0
Y ∗ 0

]
.

Meanwhile, we know that the eigenvalues of M are the same as those of[
X∗ 0
Y ∗ 0

] [
Aq +Bq 0

0 0

] [
X Y
0 0

]
=

[
X∗ (Aq +Bq) 0
Y ∗ (Aq +Bq) 0

] [
X Y
0 0

]
=

[
X∗ (Aq +Bq)X X∗ (Aq +Bq)Y
Y ∗ (Aq +Bq)X Y ∗ (Aq +Bq)Y

]
≥ 0.

So, by Lemma 2.2, we have

(2.4) sj (X
∗ (Aq +Bq)Y ) ≤ 1

2
λj ((A

q +Bq) (XX∗ + Y Y ∗)) .

It follows from (2.3) and (2.4) that

sj

(
A(1+q)/2 (A+B)1/2 (Aq +Bq) (A+B)1/2B(1+q)/2

)
≤ λj

((
A1+q +B1+q

)2)
,
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which is equivalent to

sj

(
A1/2K

(
Aq/(1+q) +Bq/(1+q)

)
KB1/2

)
≤ sj

(
(A+B)2

)
for all j = 1, · · · , n. This completes the proof. □

3. Remarks

Remark 3.1. Putting q = 0 in Theorem 2.3, we obtain the inequality
(1.1). Putting q = 1 in Theorem 2.4, we have

sj

(
A1/2

(
A1/2 +B1/2

)2
B1/2

)
≤ sj

(
(A+B)2

)
, j = 1, · · · , n.

For more information on singular value inequalities for positive semidef-
inite matrices the reader is referred to [3, 4, 10].
Remark 3.2. Let A,X,B ∈ Mn such that A and B are positive semi-
definite. The inequality (1.1) is equivalent to

(3.1) 2sj

(
A3/2B1/2 +A1/2B3/2

)
≤ sj

(
(A+B)2

)
, j = 1, · · · , n.

Recently, Drury ([7], Theorem 1) proved that

(3.2) 4sj (AB) ≤ sj

(
(A+B)2

)
, j = 1, · · · , n,

which is a question posed by Bhatia and Kittaneh ([5], p.204). Hav-
ing the inequalities (3.1) and (3.2), it is natural to raise the following
question: For 1

2 ≤ v ≤ 3
2 , is it true that

(3.3) 2sj
(
AvB2−v +A2−vBv

)
≤ sj

(
(A+B)2

)
, j = 1, · · · , n?

An inequality weaker than (3.3) is

(3.4)
∥∥AvB2−v +A2−vBv

∥∥ ≤ 1

2

∥∥∥(A+B)2
∥∥∥ .

This is true. In fact, it is known ([3], p.265) that the function

g (r) =
∥∥ArB1−r +A1−rBr

∥∥
is convex on [0, 1]. Replacing A by A2, B by B2, and 2r by v, we know
that the function

f (v) =
∥∥AvB2−v +A2−vBv

∥∥
is convex on [0, 2]. It follows that this function is also convex on

[
1
2 ,

3
2

]
.

So, by the convexity of the function f (v), we obtain the inequality (3.4).
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Zhan ([9], Theorem 6) has proved that if 1
2 ≤ v ≤ 3

2 and −2 < t ≤ 2,
then ∥∥AvXB2−v +A2−vXBv

∥∥ ≤ 2

t+ 2

∥∥A2X + tAXB +XB2
∥∥

The special case X = I, t = 2∥∥AvB2−v +A2−vBv
∥∥ ≤ 1

2

∥∥A2 + 2AB +B2
∥∥

is an inequality weaker than (3.4).
Remark 3.3. Let A,B ∈ Mn be positive semidefinite and suppose that
0 ≤ v ≤ 2. An inequality weaker than (3.3) is

(3.5) sj
(
AvB2−v +A2−vBv

)
≤ sj

(
A2 +B2

)
, j = 1, · · · , n.

This is a conjecture by Zhan ([10], Conjecture 3.4), settled in the af-
firmative by Audenaert ([2], Theorem 2). Bhatia and Kittaneh ( [6],
p.2182) stated that the following inequalities

(3.6) sj
(
AvB2−v +B2−vAv

)
≤ sj

(
A2 +B2

)
, j = 1, · · · , n,

(3.7) sj
(
AvB2−v +BvA2−v

)
≤ sj

(
A2 +B2

)
, j = 1, · · · , n

are not always true. The inequalities (3.6) and (3.7) are similar to the
inequality (3.5). The inequality (3.6) is not always true even for scalars
a and b unless v = 1. By Theorem 2.7 of [1], we have

sj
(
AvB2−v +B2−vAv

)
≤ 1

2sj

((
Av +B2−v

)2 ⊕ (
Av −B2−v

)2)
≤ sj

((
A2v +B4−2v

)
⊕

(
A2v +B4−2v

))
for all j = 1, · · · , n. This inequality is similar to the inequality (3.6) and
has been obtained by Bhatia and Kittaneh ([6], Proposition 6.2). For
v = 1, the inequality (3.7) is

sj (AB +BA) ≤ sj
(
A2 +B2

)
, j = 1, · · · , n.

This is not possible by the example

A =

[
10 0
0 0

]
, B =

[
1 1
1 1

]
.

In fact, we have

s2 (AB +BA) = 4.1421 ≥ 1.9600 = s2
(
A2 +B2

)
.

Meanwhile, we also know that the inequality (3.7) does not hold for
v = 0.5 and v = 1.5 with the same matrices above. On the other
hand, if AB = BA, then by the the inequality (3.5), we know that the
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inequality (3.7) holds for all 0 ≤ v ≤ 2.
Remark 3.4. Let A,B be positive semidefinite and 0 ≤ v ≤ 2. Here, we
give an inequality for singular values, which is similar to the inequality
(3.7). It is known that

(3.8)

[
A2v AvB2−v

B2−vAv B4−2v

]
=

[
Av 0

B2−v 0

] [
Av B2−v

0 0

]
≥ 0

and

(3.9)

[
B2v BvA2−v

A2−vBv A4−2v

]
=

[
Bv 0
A2−v 0

] [
Bv A2−v

0 0

]
≥ 0.

It follows from (3.8) and (3.9) that[
A2v +B2v AvB2−v +BvA2−v

B2−vAv +A2−vBv A4−2v +B4−2v

]
≥ 0.

So, by Theorem 2.1 of [1], we have

sj
(
AvB2−v +BvA2−v

)
≤ sj

((
A2v +B2v

)
⊕

(
A4−2v +B4−2v

))
for all j = 1, · · · , n.
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