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Abstract. In this paper first we define the morphism between geo-
metric spaces in two different types. We construct two categories
of U−GESP and L−GESP from geometric spaces then investi-
gate some properties of the two categories, for instance U−GESP
is topological. The relation between hypergroups and geometric
spaces is studied. By constructing the category SNS−Hv of Hv-
groups we answer the question that which construction of hyper-
structures on the category of sets has free object in the sense of
universal property. At the end we define the category of geometric
hypergroups and we study its relation with the category of hyper-
group.
Keywords: Geometric hypergroups, Hv-groups, geometric spaces,
topological categories.
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1. Introduction

According to [7], a geometric space is a pair (S,B) such that S is a
non-empty set, that its elements are called point and B is a non-empty
family of subsets of S, which its elements are called blocks. If C is a
subset of S then it is called B-part of S if for every B ∈ B,

B
∩

C ̸= ∅ ⇒ B ⊆ C.
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On the category of geometric spaces 640

For a subset X of S, we denote by Γ
B
(X) the intersection of all B-

parts of S containing X.

Proposition 1.1. (See [7]) Let (S,B) be a geometric space. For every
n ∈ N and for every pair (X,Y ) of subsets of S we have

(i) X⊆Γ
B
(X);

(ii) X⊆Y ⇒ Γ
B
(X)⊆Γ

B
(Y );

(iii) Γ
B
(Γ

B
(X)) = Γ

B
(X);

(iv) Γ
B
(X) =

∪
x∈X

Γ
B
(x), where Γ

B
(x) = Γ

B
({x}).

For all subsets X of S, we can associate an ascending chain of subsets
(Γn

B
(X))n∈N called cone of X, defined by the following conditions

Γ0
B
(X) = X;

and for every integer n ≥ 0,

Γn+1
B

(X) = Γn
B
(X) ∪

[∪
{B ∈ B | B ∩ Γn

B
(X) ̸= ∅}

]
.

Proposition 1.2. (See [7]) Let (S,B) be a geometric space. For every
n ∈ N and for every pair (X,Y ) of subsets of S we have

(i) X⊆Y ⇒ Γn
B
(X)⊆Γn

B
(Y );

(ii) Γn
B
(X) =

∪
x∈X

Γn
B
(x), where Γn

B
(x) = Γn

B
({x});

(iii) Γn
B
(Γm

B
(X)) = Γn+m

B
(X);

(iv) Γ
B
(X) =

∪
n∈N

Γn
B
(X);

(v) If the family B is a covering of S, i.e., S =
∪

B∈B
B, then

Γn+1
B

(X) =
∪

{B ∈ B | B ∩ Γn
B
(X) ̸= ∅}.

Proposition 1.3. (See [7]) For every pair (A,B) of blocks of a geo-
metric space (S,B) and for every n ∈ N, the following conditions are
equivalent:

(i) A ∩B ̸= ∅, x ∈ B ⇒ ∃C ∈ B : (A ∪ {x}) ⊆ C;
(ii) A ∩B ̸= ∅, x ∈ Γn

B
(B) ⇒ ∃C ∈ B : (A ∪ {x}) ⊆ C;

(iii) A ∩ Γn
B
(B) ̸= ∅, x ∈ Γn

B
(B) ⇒ ∃C ∈ B : (A ∪ {x}) ⊆ C.

A geometric space (S,B) is strongly transitive if the family B is a
covering of S moreover, one of the three equivalent conditions of previous
Proposition is satisfied.

Definition 1.4. The geometric space (S,B) is finer than (S,B′) when-
ever for each x ∈ S and each blocks B′ ∈ B′ containing x, there is a
block B ∈ B such that x ∈ B⊆B′.
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Definition 1.5. The geometric spaces (S,B) and (S′,B′) are called
equal, if

(i) S = S′;
(ii) (S,B) is finer than (S,B′) and (S,B′) is finer than (S,B).

Example 1.6. Let R be the set of real numbers and B and B′ are the
families of open and closed intervals in R, respectively. The two strongly
transitive geometric space (R,B) and (R,B′) are equal.

A hyperstructure (or hypergroupoid) is a non-empty set H with a
hyperoperation ◦ defined on H, that is a mapping of H × H into the
family of non-empty subsets of H [9]. If (x, y) ∈ H×H, its image under
◦ is denoted by x ◦ y. If A,B are non-empty subsets of H then A ◦B is
given by A ◦ B =

∪
{x ◦ y | x ∈ A, y ∈ B}. The notation x ◦ A is used

for {x} ◦ A and A ◦ x for A ◦ {x}. A hyperstructure (H, ◦) is called a
hypergroup in the sense of Marty, if for all (x, y, z) ∈ H3 the following
two conditions hold: (i) x ◦ (y ◦ z) = (x ◦ y) ◦ z, (ii) x ◦H = H ◦ x = H.
The second condition is called the reproduction axiom, it means that
for every (x, y) ∈ H2 there exists (u, v) ∈ H2 such that y ∈ x ◦ u and
y ∈ v ◦ x. If (H, ◦) satisfies only the first axiom, then it is called a semi-
hypergroup. Let (H, ◦) be a hypergroup an element e in H is called a
scalar identity whenever for every x ∈ H, x ◦ e = e ◦ x = {x}. Let

(H, ◦) and (H ′, ◦′) be two hyperstructures. A function f : H // H ′

is called a homomorphism, if f(a ◦ b) ⊆ f(a) ◦′ f(b), for every a and b in
H.

An exhaustive review updated to 1992 of hypergroup theory appears
in [3]; also see [5], [6] and [8]. A recent book [4] contains a wealth of
applications.

The pair (H, ◦) is called Hv-group, whenever

(i) for each (a, b, c) ∈ H3, a ◦ (b ◦ c) ∩ (a ◦ b) ◦ c ̸= ∅;
(ii) for each a ∈ H , a ◦H = H ◦ a = H.

In the following we give some categorical notions that we use in this
article.

Definition 1.7. (See [1]) Let A and C be categories and G : A // C

be a functor. A source S = (A
fi // Ai)I in A is called G-initial

provided that for each source T = (C
gi // Ai)I in A with the same

codomain as S and each C-morphism GC
h // GA with GT = GS◦h
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there exists a unique A-morphism C
h̄ // A with T = S ◦ h̄ and h =

Gh̄.

Definition 1.8. (See [1]) A functor A G // C is called topological pro-

vided that every G-structured source (C
fi // G(Ai))I has a unique

G-initial lift (A
f̄i // Ai)I .

Definition 1.9. (See [1]) A concrete category (A,U) is called topological
provided that U is topological.

2. The category of u-geometric spaces

In this section we introduce the category U−GESP and we prove
that its construction is topological.

Definition 2.1. The pair (S,B) is called u-geometric space whenever
B is a covering of S and for every non-empty family {Bi}i∈I of elements
of B we have

∩
i∈I

Bi ∈ B.

Example 2.2. (R,B) is u-geometric space, where B is close sets in R.

Definition 2.3. Suppose that (S,B) and (S′,B′) are two u-geometric

spaces. A function f : S // S′ is called a u-geometric homomor-

phism whenever for each B′ ∈ B′ and each x ∈ f−1(B′) there is a
B ∈ B such that x ∈ B and B⊆f−1(B′).

For simplicity u-geometric homomorphism is called u-morphism.

The collection of u-geometric spaces together with u-morphisms forms
a category which is denoted by U−GESP.

Proposition 2.4. The morphism (S,B)
f // (S′,B′) in U−GESP

is monomorphism if and only if its underlying map S
f // S′ is an

injective.

Proof. Let f be a u-monomorphism and the diagram

S′′
g //

h
// S

f // S′
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in Set (the category of sets) such that fg = fh be given. Define

B′′ :
def
= {B′′ | B′′ = g−1(B1) ∩ h−1(B2) for some B1, B2 ∈ B},

it is easy to see that (S′′,B′′) is a u-geometric space. Since B cover S,
g and h are u-morphisms. Also fg = fh and f is monomorphism so we
have g = h. □
Theorem 2.5. U−GESP construction is topological.

Proof. Let U = (S
fi // U(Si,Bi))I be a U-structured source, where

U : U−GESP // Set ,

is a forgetful functor. Define

B :
def
= {B⊆S | B =

∩
i∈I

f−1
i (Bi), where Bi ∈ Bi}.

(S,B) is a u-geometric space. Moreover, we show that for each i ∈ I, fi
is a u-geometric homomorphism for this reason suppose j ∈ I, Bj ∈ Bj

and x ∈ S such that x ∈ f−1
j (Bj) are given. Since for each i ∈ I

Si is covered by Bi, there exists a Bi ∈ Bi such that fi(x) ∈ Bi, for
each i ∈ I such that i ̸= j. Therefore x ∈

∩
i∈I

f−1
i (Bi)⊆f−1

j (Bj) and∩
i∈I

f−1
i (Bi) ∈ B.

In the following we show that

S :=
(
(S,B)

fi // (Si,Bi)
)
i∈I

is an U-initial source. Suppose the source

T =
(
(S′,B′)

gi // (Si,Bi)
)
i∈I

and the map U(S′,B′)
h // U(S,B) such that U(S)h = U(T ) are

given. If B ∈ B and x ∈ h−1(B), then B =
∩
i∈I

f−1
i (Bi), where for each

i ∈ I, Bi ∈ Bi and hence x ∈
∩
i∈I

h−1(f−1
i (Bi)) =

∩
i∈I

g−1
i (Bi). Therefore

for each i ∈ I, there is a B′
i ∈ B′ such that x ∈ B′

i⊆g−1
i (Bi) hence

x ∈
∩
i∈I

B′
i⊆

∩
i∈I

g−1
i (Bi) = h−1(B). Since

∩
i∈I

B′
i ∈ B′, we conclude that

h is a u-geometric homomorphism such that U(h) = h. Because U is
forgetful S is an U-initial source and U(S) = U .
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Now let the U-initial source S ′ =
(
(T,D)

f ′
i // (Si,Bi)

)
i∈I such

that U(S ′) = U be given. So T = S and f ′
i = fi, for all i ∈ I. We prove

(T,D) = (S,B). Consider the identity map U(S,B)
1S // U(S,D) .

Since S is an U-initial source, there exists a unique u-morphism

h̄ : (S,B) // (S,D)

such that h̄ = U(h̄) = 1S . Suppose D ∈ D and x ∈ S such that
x ∈ h̄−1(D) are given. So there existsB ∈ B such that x ∈ B⊆h̄−1(D) =
D. Therefore (S,B) is finer than (S,D). Similarly (S,D) is finer than
(S,B). Thus (T,D) = (S,B). □

3. The category of l-geometric spaces

In this section we introduce the category L−GESP and we investigate
some of its categorical properties.

Definition 3.1. Suppose that (S,B) and (S′,B′) are two geometric

spaces. A function f : S // S′ is called l-geometric homomorphism

whenever for each B ∈ B there exists B′ ∈ B′ such that f(B)⊆B′.
For simplicity l-geometric homomorphism is called l-morphism.

Example 3.2. Every open map between two topological spaces is l-
morphism.

The collection of geometric spaces together with l-morphisms forms a
category which is denoted by L−GESP. We have the following propo-
sition.

Proposition 3.3. The morphism (S,B)
f // (S′,B′) in L−GESP

(i) is monomorphism if and only if its underlying map S
f // S′

is an injective;

(ii) is epimorphism if and only if its underlying map S
f // S′ is

a surjective.

Proof. (i) Suppose the monomorphism f and the diagram

S′′
g //

h
// S

f // S′ ,
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in Set such that fg = fh are given. Define

B′′ :
def
= {B′′ | B′′ = g−1(B) ∩ h−1(B) for some B ∈ B},

g and h are l-morphisms . Since fg = fh and f is monomorphism, we
have g = h.

(ii) Suppose the epimorphism f and the diagram S
f // S′

g //

h
// S

′′

in Set such that gf = hf are given. Define

B′′ :
def
= {B′′ | B′′ = g(B′) ∪ h(B′) for some B′ ∈ B′},

g and h are l-morphisms. Since gf = hf and f is an epimorphism we
have g = h. □

Definition 3.4. The source S =
(
(S,B)

fi // (Si,Bi)
)
i∈I in the cat-

egory L−GESP is called l-initial whenever for each family {Bi}i∈I of
blocks there exists B ∈ B such that

∩
i∈I

f−1
i (Bi)⊆B, where for each i ∈ I,

Bi ∈ Bi.

Remark 3.5. The class of l-initial Mono-Sources is closed under com-

position with isomorphisms, i.e., if
(
(S,B)

fi // (Si,Bi)
)
i∈I is an l-

initial Mono-Source in L−GESP and h : (S′,B′) // (S,B) is an

isomorphism in L−GESP, then
(
(S′,B′)

fih // (Si,Bi)
)
i∈I is an l-

initial Mono-Source.

Proposition 3.6. Let G : L−GESP // Set be the forgetful func-
tor. Then we have,

(i) G creates isomorphism;

(ii) If the G-structure morphism S′ h // G(S,B) = S is generat-

ing then the map h is an Set-epi;
(iii) G is a (Epi, l-initial Mono-Source)-functor;
(iv) G is an adjoint functor.

Proof. (i) Suppose that the bijection S′ h // G(S,B) = S is given.

Define

B′ :
def
= {h−1(B) | B ∈ B}.
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So (S′,B′) is a geometric space and (S′,B′)
h // (S,B) is an isomor-

phism in L−GESP such that G(h) = h.
(ii) The proof is similar to the proof of Proposition 3.3(ii).
(iii) The desired factorizations of G-structured sources of the form(

S
fi // G(Si,Bi)

)
i∈I

,

can be obtained in two steps. First let S
fi // Si = S

e // S′ mi // Si ,

be a (Epi , Mono-Sourse)-factorization in Set. Second, let

B′ :
def
= {

∩
i∈I

m−1
i (Bi) | for some Bi ∈ Bi},

so
(
(S′,B′)

mi // (Si,Bi)
)
i∈I is a l-initial Mono-Source and provides a

factorization with the desired properties.

(iv) The functor Set
F // L−GESP , is defined by F(S) = (S,B),

where B = {∅} for each set S which is left adjoint to the G. □

Remark 3.7. In the category L−GESP we have

(i) the coequalizer of the diagram (S′,B′)
f //

g
// (S

′′,B′′) , is the pair

(S,B) together with the map c such that S :
def
= S′′

∼ and B :
def
= {B′′

∼ |
B′′ ∈ B′′}, where ∼ is the smallest equivalence relation on S′′ such that

f(a) ∼ g(a), for all a ∈ S′ and B′′

∼ = { b′′

∼ | b′′ ∈ B′′} and c : S′′ // S
is defined by c(x) = x

∼ ;

(ii) the equalizer of the diagram (S′,B′)
f //

g
// (S

′′,B′′) is the pair

(S,B) together with the map e such that S :
def
= {x ∈ S′ | f(x) = g(x)},

B :
def
= {B′ ∩ S | B′ ∈ B′} and e is the inclusion map;
(iii) the coproduct of the family {(Sα,Bα)}α∈I is the pair (S,B) to-

gether with the family (Sα
ια // S)α∈I such that S :

def
=

⊎
α∈I

Sα and

B :
def
= {

⊎
β∈J

Bβ⊆S | J⊆I and ∀β ∈ J,Bβ ∈ Bβ},

where
⊎

is denoted the disjoint union of sets and ια’s are injection maps;
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(iv) the product of the family {(Sα,Bα)}α∈I is the pair (S,B) to-

gether with the family (Sα
prα // S)α∈I such that S :

def
=

∏
α∈I

Sα, B :
def
=

{pr−1
α (Bα) | Bα ∈ Bα, for all α ∈ I} and prα :

∏
α∈I

Sα −→ Sα are

projection maps.

Corollary 3.8. The category L−GESP is complete and cocomplete.

4. Relation between the categories of Hv-group and geometric
spaces

In this section we prove that for every set X there exists a free object
on X, in the category SNS−Hv. Although in [10] we have shown
that the categories of semi-hypergroups and hypergroups have no free
objects.

Definition 4.1. (i) The geometric space (S,B) is called 2-geometric
space whenever

∀(s, t) ∈ S2 ∃B ∈ B such that {s, t}⊆B;

(ii) The l-morphism f : (S,B) → (S′,B′) of 2-geometric spaces is
called l2-morphism whenever

∀(s, t) ∈ S2 such that s ̸= t, f(
∩

{s,t}⊆B∈B

B)⊆
∩

{f(s),f(t)}⊆B′∈B′

B′.

Remark 4.2. Every 2-geometric space is complete.

The collection of 2-geometric spaces together with l2-morphisms forms
a category which is denoted by L2−GESP.

Suppose that U2 : L2−GESP // Set is a forgetful functor. We

have the following proposition.

Proposition 4.3. U2 is an adjoint functor.

Proof. Consider the map F2 : Set // L2−GESP such that for each

set X is defined by F2(X) :
def
= (X,B2

X), where B2
X :

def
= {{a, b} | (a, b) ∈

X2}. Therefore F2(X) is a 2-geometric space. Let f : X // Y be a

map, so (X,B2
X)

f // (Y,B2
Y ) is a l-morphism. Suppose (s, t) ∈ X2

such that s ̸= t and f(x) ∈ f(
∩

{s,t}⊆B∈B2
X

B) are given. From {s, t}⊆B ∈
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B2
X we have B = {s, t} hence f(x) ∈ {f(s), f(t)}. Therefore F2(f) is

a l2-morphism and so F2 is a functor. It is easy to see that F2 is left
adjoint to the U2 . □
Definition 4.4. The Hv-group (H, ◦) is called

(i) strong if for each (a, b) ∈ H2, {a, b}⊆a ◦ b;
(ii) near strong if a ◦ b⊆

∩
{a,b}⊆a′◦b′

a′ ◦ b′.

The collection such that whose elements are both strong and near
strong Hv-groups together with homomorphisms forms a category which
is denoted by SNS−Hv.

Example 4.5. Let H = {e, a, b} and the hyperopereation ◦ be as follows:

◦ e a b

e e,a e,a e,a,b

a e,a a a,b

b e,a,b a,b b

It is easy to see that (H, ◦) are both strong and near strong Hv-group.

Example 4.6. Let H = {e, a, b} and the hyperopereation ◦′
be as fol-

lows:

◦′
e a b

e e,a e,a e,a,b

a e,a e,a a,b

b e,a,b a,b a,b

In this case (H, ◦′
) is a strong Hv-group which is not a hypergroup.

Proposition 4.7. In SNS−Hv the morphism (H, ◦)
f // (H ′, ◦′) is

monomorphism if and only if f : H // H ′ is an injective map.
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Proof. Suppose the monomorphism f and the diagram

H ′′
g //

h
// H

f // H ′ ,

in Set such that fg = fh are given. For each (a, b) ∈ H ′′2, a ◦′′

b :
def
= g−1(g(a) ◦ g(b)) ∩ h−1(h(a) ◦ h(b)). Thus (H ′′, ◦′′) is an object

in SNS−Hv and g and h are morphisms in SNS−Hv. Since fg = fh
and f is an monomorphism, g = h. □

Let (H, ◦) be a Hv-group. Define the geometric space

(H,P 2
◦ (H))

whose points are elements of H and whose blocks are the hyperproducts
as the form a ◦ b of elements of H. If B ∈ P 2

◦ (H), then there exists a
2-tuple (h1, h2) ∈ H2 such that B = h1 ◦ h2.

Proposition 4.8. The mapping SNS−Hv

F2 // L2−GESP , which is

defined by F2

(
(H, ◦)

)
= (H,P 2

◦ (H)) is a functor.

Proof. Since (H, ◦) is strong, (H,P 2
◦ (H)) is an object in L2−GESP.

Consider f : (H, ◦) // (H ′, ◦′) is a morphism in SNS−Hv and h′1◦′

h′2 is an arbitrary block in P 2
◦′(H

′) such that {f(a), f(b)}⊆h′1◦′h′2. There-
fore f(a) ◦′ f(b)⊆h′1 ◦′ h′2. Since∩

{a,b}⊆h1◦h2

f(h1) ◦′ f(h2)⊆f(a) ◦′ f(b),

we have
f(

∩
{a,b}⊆h1◦h2

h1 ◦ h2)⊆
∩

{f(a),f(b)}⊆h′1◦
′h′2

h′1 ◦′ h′2.

So f : (H,P 2
◦ (H)) // (H ′, P 2

◦′(H
′)) is a morphism in L2−GESP and

hence F2 is a functor. □

Theorem 4.9. The mapping G2 : L2−GESP // SNS−Hv which

is defined by
G2

(
S,B

)
= (S, ⋆

B
),

where for all (s, t) ∈ S2, s ⋆
B
t :

def
=

∩
{s,t}⊆B∈B

B is a right adjoint to the

F2.
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Proof. It is easy to see that (S, ⋆
B
) is a strongHv-group. Now let (a, b) ∈

S2 be given such that {s, t}⊆a ⋆
B
b. Let B ∈ B be an arbitrary block

such that {a, b}⊆B, so a ⋆
B
b⊆B. Thus {s, t}⊆B and hence s ⋆

B
t⊆B.

Therefore s ⋆
B
t⊆

∩
{a,b}⊆B∈B

B = a ⋆
B
b and consequently (S, ⋆

B
) is an

object in SNS−Hv. Let f : (S,B) // (S′,B′) be a morphism in

L2−GESP. We have

f(a ⋆
B
b) = f(

∩
{a,b}⊆B∈B

B)

⊆
∩

{f(a),f(b)}⊆B′∈B′

B′

= f(a) ⋆
B′ f(b).

Therefore G2 is a functor.
Now we prove that F2 is left adjoint to G2 . For this reason we show

that there is a natural isomorphism as follows:

θ : L2−GESP
(
F2(H, ◦), (S,B)

)
// SNS−Hv

(
(H, ◦),G2(S,B)

)
.

Let the l2-morphism f : (H,P 2
◦ (H)) // (S,B) be given. We have

f(a ◦ b)⊆f(
∩

{a,b}⊆h1◦h2

h1 ◦ h2)

⊆
∩

{f(a),f(b)}⊆B∈B

B

= f(a) ⋆
B
f(b).

Therefore f : (H, ◦) // (S, ⋆
B
) is a morphism in SNS−Hv.

Conversely let f : (H, ◦) // (S, ⋆
B
) be a morphism in SNS−Hv.

Let s ∈ f(
∩

{h1,h2}⊆P∈P2◦ (H)

P ) and B ∈ B such that {f(h1), f(h2)} ∈ B be

given. Since {h1, h2}⊆h1◦h2 ∈ P 2
◦ (H), s ∈ f(h1◦h2). Therefore we have

s ∈ f(h1) ⋆B
f(h2) =

∩
{f(h1),f(h2)}⊆B∈B

B. Thus (H,P 2
◦ (H))

f // (S,B)

is a morphism in L2−GESP and hence θ(f) :
def
= f is a natural isomor-

phism. □
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Remark 4.10. By Proposition 4.3 and Theorem 4.9 we have the fol-
lowing adjoint pairs

Set
F2

// L2−GESP
U2oo

G2 //
SNS−Hv

F2

oo .

Define U :
def
= U2◦F2 and F :

def
= G2◦F2. Therefore we have the following

adjoint pair

SNS−Hv

U //
Set

F
oo .

Corollary 4.11. For every set X, there exists a free object on X in
SNS−Hv.

5. Relation between the category of hypergroups and the
category of geometric hypergroups

The category of hypergroupsHypGrp is a category whose objects are
hypergroups and whose morphisms are homomorphisms. EHypGrp is
a full subcategory of HypGrp, where whose objects are hypergroups
with scalar identity.

Let (H, ◦) be a hypergroup. Construct a geometric space (H,P◦(H))
whose points are elements of H and whose blocks are hyperproducts of
elements ofH. IfB ∈ P◦(H), then there exists a n-tuple (h1, h2, ..., hn) ∈
Hn such that B = h1 ◦ h2 ◦ ... ◦ hn.

Definition 5.1. (i) (H, ◦,B) is called geometric hypergroup whenever
(H, ◦) is a hypergroup, (H,B) is a geometric space and for each elements

(x1, ..., xn) ∈ Hn, there exists B ∈ B such that
n∏

i=1
xi⊆B;

(ii) Let the geometric hypergroups (H, ◦,B) and (H ′, ◦′,B′) be given.

We say (H, ◦,B)
f // (H ′, ◦′,B′) is a l-geometrical homomorphism

or for simplicity we say l-geometrical, whenever (H, ◦)
f // (H ′, ◦′)

is a homomorphism of hypergroups and (H,B)
f // (H ′,B′) is a l-

morphism.

The collection of geometric hypergroups together with l-geometrical
morphisms forms a category which is denoted by L−GeHypGrp.
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Proposition 5.2. The mapping U : L−GeHypGrp // HypGrp

such that for each l-geometrical f : (H, ◦,B) // (H ′, ◦′,B′) ,

U(f) :def= f : (H, ◦) // (H ′, ◦′)

is a homomorphism of hypergroups defines a functor.

Proposition 5.3. The mapping F : HypGrp // L−GeHypGrp ,

where for each hypergroup (H, ◦), F
(
(H, ◦)

)
:
def
= (H, ◦, P◦(H)) is a geo-

metric hypergroup defines a functor which is a left adjoint to U.

Proof. Let (H, ◦)
f // (H ′, ◦′) be an arbitrary homomorphism of hy-

pergroups and B ∈ P◦(H) be given. So B =
n∏

i=1
xi and hence

f(B)⊆
n∏

i=1

f(xi) ∈ P◦′(H
′).

Thus f : (H, ◦,B) // (H ′, ◦′,B′) is a morphism in L−GeHypGrp.

Therefore F is a functor and it is left adjoint to the U. □
Definition 5.4. (i) The geometric hypergroup (H, ◦,B) is called I-
geometric hypergroup or for simplicity is called IG-hypergroup, when-
ever (H, ◦) is a hypergroup with scaler identity and for each non-empty
family {Bi}i∈I of elements of B, we have

∩
i∈I

Bi ∈ B;

(ii) The l-geometrical (H, ◦,B)
f // (H ′, ◦′,B′) of IG-hypergroups

is called LI-geometrical homomorphism or for simplicity is called LI-

geometrical, whenever B ∈ B′ and
n∏

i=1
f(xi)⊆B′, then there exists B ∈ B

such that
n∏

i=1
xi⊆B and f(B)⊆B′.

The collection of IG-hypergroups together with LI-geometrical mor-
phisms forms a category. We denoted it by LI−GeHypGrp. We have
the following theorem.

Theorem 5.5. The mapping G : LI−GeHypGrp // EHypGrp ,

where for each LI-geometrical f : (H, ◦,B) // (H ′, ◦′,B′) ,

G(f) :
def
= f : (H, ◦) // (H ′, ◦′)
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is homomorphism of hypergroups defines a functor which is topological.

Proof. Let U = ((H, ◦)
fi // G(Hi, ◦i,Bi))i∈I be aG-structured source.

Define B :
def
= {B⊆H | B =

∩
i∈I

f−1
i (Bi), where Bi ∈ Bi for all i ∈ I}.

Let {Bγ}γ∈Γ be a non-empty family of elements of B, so Bγ =
∩
i∈I

Biγ ,

where Biγ ∈ Bi, for all i ∈ I. Thus
∩
γ∈Γ

Bγ ∈ B. Let
m∏

n=1
xn⊆H be given.

Since (Hi, ◦i,Bi) is I-geometric hypergroups, for all i ∈ I, there exists

Bi ∈ Bi such that
m∏

n=1
f(xn)⊆Bi. Therefore

m∏
n=1

xn⊆
∩
i∈I

f−1
i (Bi) ∈ B

and hence (H, ◦,B) is an I-geometric hypergroups.
Now we show that

S =
(
(H, ◦,B)

fi // (Hi, ◦i,Bi)
)
i∈I

is a G-initial source. To do this let i ∈ I be fixed and
m∏

n=1
fi(xn)⊆Bi,

where Bi ∈ Bi. For all j ∈ I such that j ̸= i there exists Bj ∈ Bj such

that
m∏

n=1
fj(xn)⊆Bj . Define

Dj =

{
Bi, if j = i;

Bj , if j ̸= i.

Therefore
m∏

n=1
xn⊆

∩
j∈I

f−1
j (Dj) ∈ B and fi(

∩
j∈I

f−1
j (Dj))⊆fif

−1
i (Bi)⊆Bi.

Thus fi is a LI-geometrical. Let

T =
(
(H ′, ◦′,B′)

gi // (Hi, ◦i,Bi)
)
i∈I ,

be a G-structured source and h : (H ′, ◦′) // (H, ◦) be a homomor-

phism of hypergroups such that G(S)h = G(T ). Let B′ ∈ B′. Thus
for each i ∈ I there exists Bi ∈ Bi such that gi(B

′)⊆Bi and hence
B′⊆

∩
i∈I

g−1
i (Bi) = h−1(

∩
i∈I

f−1
i (Bi)). So h(B′)⊆

∩
i∈I

f−1
i (Bi) ∈ B. Now

let
m∏

n=1
h(xn)⊆B , where B ∈ B. Therefore B =

∩
i∈I

f−1
i (Bi) and hence

m∏
n=1

gi(xn)⊆Bi, for all i ∈ I. Thus for all i ∈ I, there exists B′
i ∈ B′
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such that
m∏

n=1
xn⊆B′

i and g(B′
i)⊆Bi. Therefore

m∏
n=1

xn⊆
∩
i∈I

B′
i ∈ B′ and

h(
∩
i∈I

B′
i)⊆

∩
i∈I

f−1
i (Bi) = B and hence

h : (H ′, ◦′,B′) // (H, ◦,B)

is a LI-geometrical. So S is a G-initial source and G(S) = U .

Now let S ′ =
(
(G, ⋆,D)

f̄i // (Hi, ◦i,Bi)
)
i∈I be another G-initial

source such that G(S ′) = U . Thus for all i ∈ I, f̄i = fi and (G, ⋆) =
(H, ◦). We need to show that (G, ⋆,D) = (H, ◦,B). For this reason
consider the identity homomorphism

id : G(H, ◦,B) // G(H, ◦,D) .

Since S ′ is a G-initial source, there exists a unique LI-geometrical s :
(H, ◦,B) −→ (H, ◦,D) such that G(s) = id and hence s = id. Suppose
D ∈ D and x ∈ h such that x ∈ D are given. Let e be the scalar identity
of H. So x ◦ e⊆D. Since s(x) ◦ s(e) = x ◦ e⊆D, there exists B ∈ B
such that x ◦ e⊆B and s(B)⊆D. Therefore x ∈ B⊆D and hence (H,B)
is finer than (H,D). Similarly we can show that (H,D) is finer than
(H,B). Therefore (G, ⋆,D) = (H, ◦,B) and the proof is complete. □

6. Conclusions

In this paper we have extended some notions of categories to hyper-
group theory. We construct two categories of U−GESP and L−GESP
from geometric spaces then investigate some properties of the two cat-
egories. The category of geometric hypergroups was introduced and
studied its relation with the category of hypergroup. It seems interest-
ing to define the notion geometric hyperrings and extend some notion
of categories to hyperrings.
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