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Abstract. In this paper, we study the class of rings in which every
P -flat ideal is flat and which will be called PFF -rings. In particu-
lar, Von Neumann regular rings, hereditary rings, semi-hereditary
ring, PID and arithmetical rings are examples of PFF -rings. In
the context domain, this notion coincide with Prüfer domain. We
provide necessary and sufficient conditions for R = A ∝ E to be a
PFF -ring where A is a domain and E is a K-vector space, where
K := qf(A) or A is a local ring such that ME := 0. We give
examples of non-fqp PFF -ring, of non-arithmetical PFF -ring, of
non-semihereditary PFF -ring, of PFF -ring with wgldim > 1 and
of non-PFF Prüfer-ring. Also, we investigate the stability of this
property under localization and homomorphic image, and its trans-
fer to finite direct products. Our results generate examples which
enrich the current literature with new and original families of rings
that satisfy this property.
Keywords: PFF -rings, P -flat module, trivial extension.
MSC(2010): Primary: 65F05; Secondary: 46L05, 11Y50.

1. Introduction

All rings considered in this paper are assumed to be commutative,
with identity elements and all modules are unitary.

We start by recalling a few definitions. An R-module M is called
P -flat if, for any (s, x) ∈ R ×M such that sx := 0, x ∈ (0 : s)M . If M
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is flat, then M is naturally P -flat. When R is a domain, M is P -flat if
and only if its torsion-free. When R is arithmetic ring, then any P -flat
module is flat (by [8, p. 236]). Also, every P -flat cyclic module is flat
(by [8, Proposition 1(2)]). P -flatness coincides with torsion-freeness in
the sense of [17]. P -flat modules are also called (1, 1)-flatness in [21].

Let R be a ring and let M be an R-module. As usual, we use fdR(M)
to denote the usual flat dimensions of M . If R is an integral domain,
we denote its quotient field by qf(R). In this paper, we are interested
to those rings in which every P -flat ideal is flat and which will be called
PFF -rings. In particular, semi-hereditary ring, PID and arithmetical
rings are examples of PFF -rings. In [2, Theorem 4.11, Corollary 4.12,
Corollary 5.5 and Theorem 5.7], the authors showed that P -flat ideals,
in a perfect ring which is self (ℵ0, 1)-injective and in a quasi-Frobenius
ring are projective (and so flat). So, perfect ring which is self (ℵ0, 1)-
injective and quasi-Frobenius rings are PFF -rings. In particular, locally
perfect (1, 1)-coherent and locally self (ℵ0, 1)-injective is PFF -ring.

Let A be a ring and E be an A-module. The trivial ring exten-
sion of A by E (also called the idealization of E over A) is the ring
R := A ∝ E whose underlying group is A×E with multiplication given
by (a, e)(a′, e′) := (aa′, ae′ + a′e). For the reader’s convenience, recall
that if I is an ideal of A and E′ is a submodule of E such that IE ⊆ E′,
then J := I ∝ E′ is an ideal of R. However, prime (resp., maximal)
ideals of R have the form p ∝ E, where p is a prime (resp., maximal)
ideal of A by [4, Theorem 3.2]. Suitable background on commutative
trivial ring extensions is [4, 9, 12, 15].

The purpose of this paper is to give some simple methods in order to
construct PFF -rings. For this, we investigate the stability of the PFF -
property under localization and homomorphic image, and its transfer to
various contexts of constructions such as trivial ring extensions and finite
direct products. Our results generate original examples which enrich the
current literature with new families of rings satisfying the PFF -pr

2. Main results

Let R be a commutative ring and M be an R-module. We will use
the following notations and basic notions:



679 Cheniour and Mahdou

Z(R) := {a ∈ R/ax := 0 for some 0 ̸= x ∈ R} denotes the set of zero
divisors of R.
Z(M) := {a ∈ R/ax := 0 for some 0 ̸= x ∈ M} denotes the set of zero
divisors of M .
Ann(M) := {a ∈ R/ax := 0 for all 0 ̸= x ∈ M} denotes the annihilator
of M .
T (R) denotes the total ring of quotients of R, that is, the localization
of R by the set of all its non zero divisors.
qf(R) denotes the quotient field of R.
The homological interpretation of the notion of P -flat modules is given
as follows :

Proposition 2.1. Let R be a ring. An R-module M is P -flat if and
only if TorR1 (M ;R/aR) = 0 for every a ∈ R.

Proof. Assume that M is a P -flat R-module. For a ∈ R, consider the
map 1 ⊗ λa : M ⊗ aR → M ⊗ R where λa : aR → R is the inclusion.
If m ⊗ a ∈ Ker(1 ⊗ λa), where m ∈ M , then m ⊗ a = 0 in M ⊗ R;
hence am = 0 in M (because M ⊗ R ∼= M via m × r → rm). By
hypothesis, m = Σjsjmj , where sj ∈ (0 : a) and mj ∈ M . Thus,
m⊗ a = Σjsjmj ⊗ a = Σjmj ⊗ sja = 0. Thus, Ker(1⊗ λa) = {0}, and
so TorR1 (M,R/aR) = 0.

Assume that TorR1 (M ;R/aR) = 0 for every a ∈ R. Thus, for every
a ∈ R, the map M ⊗ aR → M ; defined by m× a 7→ am is injective. For
any a ∈ R, we have the exact sequence of R-modules

0 −→ (0 : a) ↪→ι R −→f aR −→ 0

with f(1) = a. It is clear that 1 ⊗ m ∈ Ker(f ⊗ 1M ) = Im(ι ⊗ 1M ).
Hence, 1 ⊗ m = Σjsj ⊗ mj , where sj ∈ (0 : a) and mj ∈ M . Thus,
1 ⊗ m = 1 ⊗ (Σjsjmj). Therefore, m = Σjsjmj . Consequently, M is
P -flat module. □

In a domain context, the PFF -domain become a Prüfer domain:

Remark 2.2. Let R be a domain. Then R is a PFF -domain if and
only if it is a Prüfer domain.

Proof. R is a PFF -domain if and only if wdim(R) ≤ 1 if and only if R
is a Prüfer domain (by [10]). □
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Hence, any non Prüfer domain is a non PFF -ring.

Remark 2.3. Any principal ideal ring is a PFF -ring.

Proof. Assume that R is a principal ideal ring and let I be a P -flat ideal
of R. I is flat by [8, Proposition 1], as desired. □
Proposition 2.4. Every local ring (R,M) with M2 = 0 is a PFF -ring.

We need the following Lemma before proving Proposition 2.4.

Lemma 2.5. Let (A,M) be a local ring and I be a P -flat ideal of A.
Then IM = I or Ann(I) = 0.

Proof. Let I be a P -flat ideal of A. Assume that Ann(I) ̸= 0 and we
have to show that IM = I. Let x be a nonzero element of I. Then
there exists a nonzero element d of Ann(I) such that dx = 0. Hence,
there exist (yi)i=1,..,n a family of elements of I and (ci)i=1,..,n a family of
elements of (0 : d) such that x =

∑n
i=1 yici since I is P -flat. Therefore,

x ∈ IM and so I = IM , as desired. □
Proof of Proposition 2.4. We claim that there exists no proper P -
flat ideal of R. On the contrary let I be a nonzero proper P -flat ideal of
R. Then, Ann(I) = 0 by Lemma 2.5, a contradiction since Ann(I) = M ,
as desired. □

We know that an arithmetical ring is a PFF -ring. Now, we construct
an example of a non-arithmetical PFF -ring.

Example 2.6. Let K be a field and let tand u be indeterminates over
K. Set R = K[t, u]/(t, u)2. From [11, Example 4.4], R is local ring with
maxiaml ideal m with m2 = 0, and so every P -flat ideal of R is flat but
R is non-arithmetical ring.

The next result establish the transfer of the PFF -property to local-
ization.

Proposition 2.7. Let R be a commutative ring. Then R is a PFF -ring
provided Rp is a PFF -ring, for each prime (resp., maximal) ideal p of
R.

Before proving Proposition 2.7, we establish the following lemmas.

Lemma 2.8. Let R be a commutative ring and let M be an R-module.
Then the following conditions are equivalent:
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(1) M is P -flat.
(2) The canonical map: M ⊗R Ra → M ⊗R R is injective for any

a ∈ R.
(3) Tor(M,R/Ra) := 0 for all a(̸= 0) ∈ R.

Proof. 1) ⇒ 2) Assume that M is a P -flat R-module and let a be a
nonzero element of R. Our aim is to show that u : M⊗RRa → M⊗RR,
where u(m ⊗ a) = ma is injective. Let m ⊗ a ∈ Keru then, ma = 0.
Since M is a P -flat R-module, there exists (βi)i=1..n ∈ (0 : a)n and
(mi)i=1..n ∈ Mn such thatm =

∑n
i=1 βimi. Hence, m⊗a =

∑n
i=1 βimi⊗

a =
∑n

i=1mi ⊗ βia = 0, as desired.
2) ⇒ 1) Assume that the canonical map: M ⊗R Ra → M ⊗R R is
injective for any a ∈ R. We have to show that if ma = 0 where m ∈ M
and a ∈ R, then m ∈ (0 : a)M . Since u(m⊗a) = ma = 0, it follows from
2) that m ⊗ a = 0. Consider the map f : R → Ra such that f(1) = a.
Then the exact sequence 0 → kerf → R → Ra → 0 yields the exact
sequence kerf ⊗M → R⊗M → Ra⊗M → 0, where (f ⊗1M )(1⊗m) =
a⊗m = 0. Hence (1⊗m) ∈ ker(f⊗1M ) = Im(i⊗1M ), and so there exists
(yi,mi)1≤i≤n ∈ (kerf×M) such that 1⊗m = (i⊗1M )(

∑
1≤i≤n(yi⊗mi) =∑

1≤i≤n(i(yi)⊗mi) = 1⊗
∑

1≤i≤n i(yi)mi. Therefore,
∑

1≤i≤n i(yi)mi =

m and i(yi)a = i(yia) = i(f(yi)) = i(0) = 0 and thus M is P -flat.
2 ⇔ 3 The proof is straightforward and may be left to the reader. □

Lemma 2.9. Let R be a commutative ring and let M be an R-module.
The following statements are equivalent.

(1) M is P -flat.
(2) Mp is P -flat for every prime ideal p of R.
(3) Mm is P -flat for every maximal ideal m of R.

Proof. 1 ⇒ 2 by [17, Lemma 3.1].
2 ⇒ 3 is straightforward.
3 ⇒ 1. Assume that Mm is P -flat for every maximal ideal of R. Using
Lemma 2.8 we need to prove that the morphism f : M ⊗Ra → M ⊗R
is injective for every nonzero element a of R. For each maximal ideal m
of R, the morphism fm : Mm⊗Ram → Mm⊗Rm is injective (since Mm

is P -flat) and so f is injective by [19, Proposition 4.90]. □

Proof of Proposition 2.7. Let I be a P -flat ideal of R, then Ip is P -
flat for every prime (resp maximal) ideal p of R by Lemma 2.9 and so
it is flat since Rp is PFF -ring. Hence, I is flat and so R is a PFF -ring,
as desired. □
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Now, we study the transfer of a PFF -property between a ring A
and A ∝ E, the trivial ring extension of A by E, where E be an A-
module. The main result (Theorem 2.10) enriches the literature with
original examples of PFF -ring. Recall that if E is an A-module, then
Z(E) := {a ∈ A such that ae = 0 for some e(̸= 0) ∈ E}.

Theorem 2.10. Let A be a ring, E be an A-module, and let R := A ∝ E
be a trivial ring extension of A by E. Then:

(1) Assume that A is a domain and E is a K-vector space, where
K := qf(A). Then R is a PFF -ring if and only if A is a PFF -
ring.

(2) Assume that (A,M) be a local ring such that ME := 0. Then R
is a PFF -ring if and only if A is a PFF -ring.

The proof of the theorem relies on the following lemmas which are of
independent interest.

Lemma 2.11. Let (A,M) be a local ring, E be an A-module such that
ME := 0, R := A ∝ E be a trivial ring extension of A by E, and let I
be a nonzero ideal of A. Then J := I ∝ 0 is a P -flat ideal of R if and
only if I is a P -flat ideal of A.

Proof. Assume that J is a P -flat ideal of R. Let x be a nonzero element
of I and let a be an element of A such that xa = 0. Then (x, 0) ∈ J ,
(a, 0) ∈ R and (x, 0)(a, 0) = (0, 0). Since J is a P-flat R-module, then
there exists (yi, 0)i=1,..,n a family of elements of J and (ci, fi)i=1,..,n a
family of elements of (0 : (a, 0)) such that (x, 0) =

∑n
i=1(yi, 0)(ci, fi).

Therefore, x =
∑n

i=1 yici, where yi ∈ I and aci = 0 for all 1 ≤ i ≤ n).
Hence, I is a P -flat A-module.
Conversely, assume that I is a P -flat ideal of A and let (x, 0) be a
nonzero element of J := I ∝ 0 and (d, e) be an element of A ∝ E such
that (x, 0)(d, e) = (0, 0). Then, xd = 0. Since I is a P -flat ideal of
A, then there exists (yi)i=1,..,n a family of elements of I and (ci)i=1,..,n

a family of elements of (0 : d) such that x =
∑n

i=1 yici. Therefore,
(x, 0) = (

∑n
i=1 yici, 0) =

∑n
i=1(yi, 0)(ci, 0), where (yi, 0) ∈ J(:= I ∝ 0)

and (d, e)(ci, 0) = (0, 0) for all 1 ≤ i ≤ n). Hence, J := I ∝ 0 is a P -flat
ideal of R. □
Lemma 2.12. Let A be a domain, E be an A-module, F be a nonzero
sub-module of E, and let R := A ∝ E be a trivial ring extension of A by
E. Then 0 ∝ F is not a P -flat R-module.
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Proof. Let F be a nonzero sub-module of E. Two cases are possible:
Case 1: Z(F ) = 0. Let (0, f) ̸= (0, 0) and (0, e) ̸= (0, 0) be two elements
of 0 ∝ F such that (0, f)(0, e) = (0, 0). Hence, (0, f) /∈ (0 : (0, e))(0 ∝
F ) = 0 since (0 : (0, e)) = 0 ∝ E (since Z(F ) = 0). Therefore, 0 ∝ F is
not a P -flat R-module.
Case 2: Z(F ) ̸= 0. Let d(̸= 0) ∈ Z(F ) and f (̸= 0) ∈ F such that
df = 0. Hence, (d, 0)(0, f) = (0, 0) and (0 : (d, 0) ⊆ 0 ∝ E (since A is
a domain), and so (0, f) /∈ (0 : (d, 0))(0 ∝ F ) = 0. Therefore, 0 ∝ F is
not a P -flat R-module. □
Lemma 2.13. Let A be a domain, E be a K-vector space where K :=
qf(A), R := A ∝ E be a trivial ring extension of A by E, and let I be a
nonzero ideal of A. Then J := I ∝ E is a P -flat ideal of R.

Proof. Let (x, f) be a nonzero element of J := I ∝ E and (d, e) be an
element of A ∝ E such that (x, f)(d, e) = (0, 0). Then, xd = 0 and
xe + df = 0. Since A is a domain, then two cases are possible: x = 0
and df = 0, or x ̸= 0, d = 0 and xe = 0.
Case 1: x = 0 and df = 0. Then x = 0 and d = 0, since (x, f) ̸= (0, 0).
Hence (0, f) = (0, b−1f)(b, 0) for some nonzero element b of I and so
(0, f) ∈ (0 : (0, e))(I ∝ E) (since (0 : (0, e)) = 0 ∝ E), as desired.
Case 2: x ̸= 0, d = 0 and xe = 0. Then e = 0, and so (x, f) ∈ (0 :
(0, 0))(I ∝ E), as desired.
Hence, J := I ∝ 0 is a P -flat ideal of R. □

Proof. Theorem 2.10. 1) Assume that A is a PFF -domain (that is
a Prüfer domain). Let J be a nonzero P -flat ideal of R, we need to
prove that J is a flat ideal of R. By [4, Corollary 3.4], J := I ∝ E or
J := 0 ∝ E′ for some ideal I of A or some submodule E′ of E. We omit
the case 0 ∝ E′ by Lemma 2.12, then J := I ∝ E. But J := I ∝ E is
flat ideal of R by [1, Theorem 8 ] since I is flat ideal of A (since A is
a Prüfer domain) and E is flat A-module. So, we conclude that R is a
PFF -ring, as desired.
Conversely, assume that R is a PFF -ring and let I be a nonzero ideal
of A. We need to prove that I is a flat ideal of A. But J := I ∝ E is a
P -flat ideal of R by Lemma 2.13. Hence, J := I ∝ E is a flat ideal of R
(since R is a PFF -ring) and so I is a flat ideal of A by [1, Theorem 8 ].
Therefore, R is a PFF -ring, as desired.

2) Assume that A is a PFF -ring and let J be a P -flat ideal of R. By
Lemma 2.5, we may assume that J(M ∝ E) := J . Then J := J(M ∝
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E) ⊆ (M ∝ E)(M ∝ E) = M2 ∝ 0 and so J := I ∝ 0 for some ideal
I of A. Hence, I is a P -flat ideal of A (by Lemma 2.11 since J is a
P-flat ideal of R) and so I is a flat ideal of A (since A is a PFF -ring).
Therefore, J is a flat ideal of R by Lemma 2.11, as desired.
Conversely, assume that R is a PFF -ring and let I be a P -flat ideal of
A. Then J := I ∝ 0 is a P -flat ideal of R by Lemma 2.11 and so J is a
flat ideal of R (since R is a PFF -ring). Therefore I is a flat ideal of A,
as desired. And this completes the proof of Theorem 2.10. □

Corollary 2.14. Let (A,M) be a local ring with M2 = 0 and let E be
a nonzero A/M -vector space. Then A ∝ E is a PFF -ring.

Next, we give an example of non-fqp PFF -ring, an example of non-
arithmetical PFF -ring, and an example of non-semihereditary PFF -
ring.

A domain is Prüfer if all its non-zero finitely generated ideals are in-
vertible. There are well-known extensions of this notion to arbitrary
rings (with zero divisors). Namely, for a ring R:
1) R is semihereditary, i.e., every finitely generated ideal of R is projec-
tive;
2) R is arithmetical, i.e., every finitely generated ideal of R is locally
principal;
3) R is an fqp-ring, i.e., every finitely generated ideal of R is quasi-
projective (see [3]).

All these forms coincide in the context of domains to a Prüfer domain.
See for instance [3, 5, 6, 10, 11].

As an application of Theorem 2.10, one can construct new examples of
non-fqp PFF -rings, non-arithmetical PFF -rings, and non-semihereditary
PFF -rings as shown below.

Example 2.15. Let (A,m) be a local PFF -ring with m2 ̸= 0, E be
a nonzero (A/m)-vector space, and let R := A ∝ E be the trivial ring
extension of A by E. Then:
1) R is a PFF -ring by Theorem 2.10(2).
2) R is non-fqp-ring by [3, Theorem 4.4].
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Example 2.16. Let Z be the ring of integers, Q := qf(Z), R be the field
of real numbers and let S := Z ∝ R. Then:
1) S is a PFF -ring by Theorem 2.10(1).
2) S is non-semihereditary since S non-coherent by [15, Theorem 3.1].

Example 2.17. Let A be a PFF -domain (that is a Prüfer domain)
which is not a field, K := qf(A), and let R := A ∝ K be the trivial ring
extension of A by K. Then:
1) R is a PFF -ring by Theorem 2.10(1).
2) R is non-arithmetical by [6, Theorem 3.1].

Our next result establish the transfer of PFF property to a particular
homomorphic image.

Proposition 2.18. Let R be a ring and let I be an ideal of R.
1) Assume that Im ∈ {Rm, 0} and Rm is a PFF -ring for every maximal
ideal m of R containing I. Then, R/I is a PFF -ring.
2) Assume that I be a pure ideal of R. Then, R/I is a PFF -ring if so
is R.

Before proving Proposition 2.18, we establish the following Lemma.

Lemma 2.19. Let 0 → A → B → C → 0 be an exact sequence of
R-modules. If C and A are P -flat, then so is B.

Proof. Let a be a nonzero element of R. For each a ∈ R, we have the
exact sequence:

0 = TorR1 (A,R/aR) −→ TorR1 (B,R/aR) −→ TorR1 (C,R/aR) = 0

Hence, TorR1 (B,R/aR) = 0 and so B is P -flat. □
Lemma 2.20. Let f : R → S be a ring homomorphism making S a
P -flat R-module. If an S-module E is P -flat as an S-module, then E is
P -flat as an R-module.

Proof. Assume that E is P -flat as an S-module and we must to show
that E is P -flat as an R-module. Let x be a nonzero element of E and
r be an element of R such that xr = 0. Since xr = xf(r) and E is
S P -flat, then, there exists (xi)i=1,..,n a family of elements of E and
(si)i=1,..,n a family of elements of (0 : f(r)) such that x =

∑n
i=1 xisi.

On the other hand sir = sif(r) = 0 for every i ∈ {1, .., n}. Since S
is R P -flat, then, there exists (sij)j=1,..,p a family of elements of S and
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(rj)j=1,..,p a family of elements of (0 : r) such that si =
∑p

j=1 sijrj
for every i ∈ {1, .., n}. Hence x =

∑n
i=1 xisi =

∑n
i=1 xi

∑p
j=1 sijrj =∑p

j=1

∑n
i=1 xisijrj =

∑p
j=1 yjrj , where yj =

∑n
i=1 xisij ∈ E. Therefore,

E is P -flat as R-module. □

Proof of Proposition 2.18. 1) Using Proposition 2.7, we need to prove
that (R/I)M is a PFF -ring whenever M is a maximal ideal of R/I. Let
M be a maximal ideal of R, then there exist a maximal ideal m of R
containing I, such that M = m/I. From the hypothesis conditions Im ∈
{Rm, 0} and by [16, Theorem 3.17 ], we obtain (R/I)M ∼= Rm/Im ∼= Rm

or 0. Hence (R/I)M is an PFF -ring. So, we have the desired result.
2) Assume that R is a PFF -ring and let J/I be a P -flat ideal of R/I.
Then, by Lemma 2.18 J/I is a P -flat R-module and by Lemma 2.19, J
is a P -flat ideal of R (using the exact sequence: 0 → I → J → J/I → 0,
where I and J/I are P -flat R-modules). Since R is a PFF -ring, then
J is flat. Hence, J/I is a flat ideal of R and so, R/I is a PFF -ring, as
desired. □

Example 2.21. Let R be a von Neumann regular ring and let I be an
ideal of R. Then R/I is a PFF -ring .

Proof. Since R is a von Neumann regular ring, Rm should be a field for
every maximal ideal of R. So, I is a pure ideal of R. □

Our last result is to transfer the PFF property to finite direct prod-
ucts.

Proposition 2.22. Let (Ri)i=1,..,n be a family of rings. Then,
∏n

i=1Ri

is a PFF -ring if and only if so is Ri for each i = 1, .., n.

Proof. The proof is done by induction on n and it suffices to check it for
n = 2.
Assume that R1×R2 is a FPP -ring. Let I1 be a P -flat ideal of R1. It is
easy to check that I1× 0 is a P -flat ideal of R1×R2, and hence flat. By
[7, Lemma 3.7], I1 is a flat ideal of R1 and R1 is a PFF -ring. Similarly,
we prove that R2 is a PFF -ring.

Conversely, assume that Ri is a PFF -ring for each i = 1, 2. Let I
be a P -flat ideal of R1 × R2. Then, I = I1 × I2 where I1 and I2 are
respectively ideals of R1 and R2. We easily check that I1 is a P -flat
ideal of R1 and I2 is a P -flat ideal of R2. Hence, I1 is a flat ideal of R1
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and I2 is a flat ideal of R2 and by [7, Lemma 3.7], we conclude that I is
a flat ideal of R1 ×R2, as desired. □
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[11] S. Glaz and R. Schwarz, Prüfer conditions in commutative rings, Arab. J. Sci.
Eng. 36 (2011), no. 6, 967–983.

[12] J. A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, Inc.,
New York, 1988.

[13] W. Heinzer, J. Huckaba and I. Papick, m-canonical ideals in integral domains,
Comm. Algebra 26 (1998), no. 9, 3021–3043.

[14] G. J. Janusz, Algebraic Number Fields, Amer. Math. Soc., Providence, 1996.
[15] S. Kabbaj and N. Mahdou, Trivial extensions defined by coherent-like conditions,

Comm. Algebra 32 (2004), no. 10, 3937–3953.
[16] M. D. Larsen and P. J. Mccarthy, Multiplicative Theory of Ideals, Academic

Press, New York-London, 1971.



When every P -flat ideal is flat 688

[17] L. Mao and N. Ding, Notes on divisible and torsionfree modules, Comm. Algebra
36 (2008), no. 12, 4643–4658.

[18] H. R. Maimani and S. Yassemi, Zero-divisor graphs of amalgamated duplication
of a ring along an ideal, J. Pure Appl. Algebra 212 (2008), no. 1, 168–174.

[19] J. J. Rotman, An introduction to homological algebra, Academic Press, Inc.,
New York-London, 1979.

[20] J. D. Sally and W. V. Vasconcelos, Flat ideal I, Comm. Algebra 3 (1975) 531–543.
[21] X. Zhang, J. Chen and J. Zhang, On (m,n)-injective modules and (m,n)-

coherent rings, Algebra Colloq. 12 (2005), no. 1, 149–160,

Email: mahdou@hotmail.com

(Fatima Cheniour) Department of Mathematics, University S. M. Ben Ab-
dellah, P.O. Box 2202, Fes, Moroco

E-mail address: cheniourfatima@yahoo.fr

(Najib Mahdou) Department of Mathematics, University S. M. Ben Ab-
dellah, P.O. Box 2202, Fes, Moroco

E-mail address: mahdou@hotmail.com


	1. Introduction
	2. Main results
	References

