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Abstract. In this article, we use a finite difference technique
to solve variable - order fractional integro - differential equations
(VOFIDEs, for short). In these equations, the variable-order frac-
tional integration(VOFI) and variable-order fractional derivative
(VOFD) are described in the Riemann-Liouville’s and Caputo’s
sense,respectively. Numerical experiments, consisting of two ex-
amples, are studied. The obtained numerical results reveal that the
proposed finite difference technique is very effective and convenient
for solving VOFIDEs.
Keywords: Variable-order fractional calculus, fractional integro-
differential equation, finite difference method, numerical solution.
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1. Introduction

Mathematical modeling of real-world problems generally arises in
functional equations, for example, integral equations (IEs, for short),
integrodifferential equations (IDEs, for short), ordinary and partial dif-
ferential equations (ODEs and PDEs, for short), and the others. The
study of classical IDEs has a long history. Both theoretical and numer-
ical investigations of the subject have seen much development in recent
decades [1, 2]. Most of the mathematical formulations of physical phe-
nomena include IDEs, which arise in viscoelasticity [3], risk management
models [4], biological [5], and cosmological physics [6]. Many significant

Article electronically published on June 17, 2014.

Received: 15 January 2013, Accepted: 23 May 2013.
∗Corresponding author.

c⃝2014 Iranian Mathematical Society

699



A finite difference technique for solving VOFIDEs 700

works can be referred to [7–10] and references cited therein. In [7], an
IDE arising as a limit of individual cell-based models is proposed. Under
suitable assumptions, the existence, uniqueness, and non-negativity of
the solutions and mass conservation are proved. In [8], the numerical
solutions of a class of IDE with delay are studied, and the stability of
the numerical scheme is discussed. There are several methods that can
be used for solving IDEs. In [9], the high-order linear Volterra-Fredholm
IDEs is solved by using Taylor polynomials. In [10], a combined form of
the Laplace transform method and the Adomian decomposition method
is developed for analytic treatment of the nonlinear Volterra IDEs. The
combined method is capable of handling both equations of the first and
second kind.

As an excellent modeling tool, fractional calculus, in allowing oper-
ations of differentiation and integration of arbitrary order(real or com-
plex value, including fractional), has attracted much attention recently
[11–19]. The fractional operators are due mainly to that contain the in-
teger order integrals and derivatives as special cases. Moreover, they ex-
hibit the memory property which does not exist in integer order integrals
and derivatives. Using this memory property will generate more accu-
rate models in simulating some physical processes. Fractional integro-
differential equations have been the focus of many studies by virtue of
their dense aspects in diverse fields such as physics [13], biology [20],
engineering [11,21], and other applications [22].

However, the investigation, in recent years, of fractional calculus sug-
gests that many scientific and engineering models can be depicted more
accurately via variable-order fractional operators, since the above objec-
tives can exhibit memory property which changes with time and/or spa-
tial locations. The variable-order fractional operator was first suggested
by S. Samko and B. Ross [23]. In that study, the authors investigated
the properties of variable-order differentiation and integration operators
in the sense of Riemann-Liouville. From this point of view, the order of
operator is enabled to alternate either as a function of the independent
variable of differentiation or integration, or as a function of some other
variables. The notion of a variable-order fractional operator is a result of
recent advances of fractional calculus. But nevertheless, mainly because
of lack of physical interpretation, the research of this new fractional cal-
culus is still in the beginning stage and it is not much known. As in
the modeling systems with improving dynamics, the order of the inte-
gral or derivative is permitted to alternate over the domain of concern.
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This kind of systems contain the mechanics of a variable viscoelastic
oscillators [24, 25] and deformation of viscoelastic materials [26]. In
parallel to the case of matters in fractional calculus, many definitions of
variable-order fractional integral or derivative (VOFI, VOFD) have been
proposed [27–29]. In these works, the Caputo variable-order fractional
derivative is used [30–34].

Nowadays, some motivated works have been done on the numerical
solutions of variable-order fractional differential equations (VOFDEs)
[35]. However, many other variable-order fractional differential/integro-
differential equations are still not solved. In most cases, to obtain the
closed form solution of an equation with variable-order fractional deriv-
ative is impossible. The contribution of this paper is two-fold: First,
we propose a class of variable-order fractional integro-differential equa-
tions (VOFIDEs), which is more general than classical IDEs. Second,
the finite difference scheme is applied to solve this particular VOFIDEs.
Our work on numerical solutions of VOFIDEs will be of some impor-
tance since little work has been done for the application of variable-order
fractional calculus to study the VOFIDEs.

The paper is organized as follows. In Section 2, we present some
important preliminaries of variable-order integrals and derivatives. In
Section 3, we develop a finite difference method to solve VOFIDEs.
The stability of the numerical scheme is discussed. In Section 4, the
proposed method is applied to two examples. Finally, a conclusion is
given in Section 5.

2. Variable-order fractional calculus

In this section, we introduce the mathematical background of variable-
order fractional Calculus (VOFC, for short). Formally, the VOFC is
similar to the classical fractional calculus. For the comprehensive un-
derstanding of fractional calculus, we refer the readers to [12, 14, 15].
Replacing the fractional order with a bounded function, the fractional
derivatives and integrals are generalized to the variable-order fractional
integral and derivatives ( VOFIs and VOFDs, for short) as follows:

Definition 2.1. The left-sided Riemann-Liouville (R-L) VOFI of order
q(t) > 0 of a function f(t) is defined as [23]

(2.1)
(
I
q(t)
[a,t,RL]f

)
(t) =

1

Γ(q(t))

∫ t

a

f(s)

(t− s)1−q(s)
ds,

provided the integral exists.
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Definition 2.2. The left-sided R-L VOFD of order q(t) > 0 of a func-
tion f(t) is defined as [23]

(2.2)
(
D

q(t)
[a,t,RL]f

)
(t) =

1

Γ(m− q(t))

(
d

dt

)m ∫ t

a
(t− s)m−q(s)−1f(s)ds,

provided the right-side of equation is finite, where 0 ≤ m− 1 < q(t) < m
and m is a positive integer.

Definition 2.3. The left-sided Caputo VOFD of order q(t) > 0 of a
function f(t) is defined as [23]

(2.3)
(
D

q(t)
[a,t,C]f

)
(t) =

1

Γ(m− q(t))

∫ t

a
(t− s)m−q(s)−1f (m)(s)ds,

provided the right hand side of equation is finite, where 0 ≤ m− 1 <
q(t) < m and m is a positive integer.

There is no need to list more VOFIs and VOFDs here, since in this pa-
per only the R-L VOFI and Caputo VOFD will be employed for defining
the VOFIDE. However undoubtedly, we note that many existing frac-
tional integrals and derivatives can have their corresponding VOFIs and
VOFDs, by replacing the constant orders with variable orders. Now we
would like to make the following remarks:

• Eq. (2.1) is well-defined, since for any tj > a, Eq. (2.1) reduces
to the classical Riemann-Liouville integral at t = tj . Moreover,

if t = a,
(
I
q(a)
[a,a,RL]f

)
(a) = 0.

• The VOFIs and VOFDs is more general than integer and frac-
tional order integrals and derivatives. Taking specific order func-
tions, VOFIs and VOFDs will reduce to the corresponding in-
teger and fractional operators, respectively. For example, let
q(t) = 1, Eq. (2.1) becomes the integral of f(s). Let q(t) = 1/2,
Eq. (2.1) reduces to the half-order Riemann-Liouville integral of
f(t).

• Using particular discontinuous order functions, the classical ordi-
nary and partial differential equations (ODEs and PDEs) will be

unified. For instance, consider differential equation Dq(t)y(t) =
f(t, y), when q(t) = 1, t ∈ [0, 1) and q(t) = 2, t ∈ [1, 2], and we
specify some conditions as y(0) = y0, y(1) = y1 and y′(1) = ȳ1,
we obtained a first-order ODE defined on [0, 1) and a second-
order ODE defined on [1, 2], and they are both unified by the
same VOFDE.
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• This generalized calculus, VOFC, is significantly important to
study physical problems with varying memory property, which is
changing with time and/or spatial location [29,31]. The variable-
order fractional operators can depict those properties clearly.

To simplify the derivations, we drop symbol ”C” in the subscript of

D
q(t)
[a,t,C] in equation (2.3) in what follows. In next section, we discuss the

model of VOFIDEs and its numerical scheme.

3. Model description and Numerical scheme

In this section, we first define a class of VOFIDEs, and then deduce
the numerical scheme of VOFIDEs. Finally, we discuss the stability of
the numerical scheme.

3.1. Model description. The integro-differential equations (IDEs) play
an important role in modeling some physical processes. The integer-
order IDE is defined as

(3.1)

(
dm

dtm
f

)
(t) + (0I

n
t f) (t) = h(t),

with initial conditions f (k)(0) = fk
0 , k = 0, 1, · · · ,max{m,n} − 1, where

m, n are positive integers. dm

dtm f is the m-th order derivative of f with
respect to t, and 0I

n
t f is the n-th fold integral of f from 0 to t. Generally,

f is assumed to be continuously differentiable m times.
Using the R-L VOFI and Caputo VOFD given in Eqs. (2.1) and (2.3),

we can generalize a class of VOFIDEs as

(3.2)
(
D

q1(t)
[0,t] f

)
(t) +

(
I
q2(t)
[0,t] f

)
(t) = h(t),

where q1, q2, f and h are sufficiently good such that Eq. (3.2) is well-
defined. q1 and q2 can be different. For simplicity, we specify that
0 < q1(t), q2(t) < 1. In this case, we only need one initial condition
to specify the solution of Eq. (3.2). However, our discussion can be
generalized to other cases of q1 and q2.

3.2. Numerical scheme. In this part, we develop a finite difference
scheme to solve Eq. (3.2). We consider Eq. (3.2) on a domain with a
uniform mesh as 0 = t0 < t1 < · · · < tN = 1, and h = tj+1 − tj is the
step size. For simplicity, f(tj), h(tj) and q(tj) are denoted as fj , hj and
qj , respectively.
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When 0 < q1(t) < 1, the Caputo VOFD is defined as

(3.3)
(
D

q1(t)
[0,t] f

)
(t) =

1

Γ(1− q1(t))

∫ t

0
(t− s)−q1(s)f ′(s)ds,

and can be approximated on the uniform mesh as(
D

q1(t)
[0,t] f

)
(tj+1)(3.4)

=
1

Γ(1− q1(tj+1))

∫ tj+1

0
(tj+1 − s)−q1(s)f ′(s)ds

≈ 1

Γ(1− q1,j+1)

j∑
k=0

f(tk+1)− f(tk)

h

∫ tk+1

tk

(tj+1 − s)
−q1

(
tk+tk+1

2

)
ds

=
1

Γ(1− q1,j+1)

j∑
k=0

fk+1 − fk

h×
[
1− q1

(
tk+tk+1

2

)]
×
[
(tj+1 − tk)

1−q1
(

tk+tk+1
2

)
− (tj+1 − tk+1)

1−q1
(

tk+tk+1
2

)]
.

Similarly, the R-L VOFI in Eq. (3.2) can be approximated as

(
I
q2(t)
[0,t] f

)
(tj+1)(3.5)

=
1

Γ(q2(tj+1))

∫ tj+1

0
(tj+1 − s)q2(s)−1f(s)ds

=
1

Γ(q2,j+1)

j∑
k=0

∫ tk+1

tk

(tj+1 − s)q2(s)−1f(s)ds

≈ 1

Γ(q2,j+1)

j∑
k=0

f(tk) + f(tk+1)

2

∫ tk+1

tk

(tj+1 − s)
q2
(

tk+tk+1
2

)
−1

ds

=
1

2Γ(q2,j+1)

j∑
k=0

fk + fk+1

q2

(
tk+tk+1

2

)
×
[
(tj+1 − tk)

q2
(

tk+tk+1
2

)
− (tj+1 − tk+1)

q2
(

tk+tk+1
2

)]
.
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Hence, substituting Eqs. (3.4) and (3.5) into Eq. (3.2) yields the
discretization equation of Eq. (3.2):

(3.6)

j∑
k=0

Bj
k(fk+1 − fk) +

j∑
k=0

Aj
k(fk + fk+1) = hj+1,

for j = 0, 1, · · · , N − 1, where

Bj
k =

h−1

Γ(1− q1,j+1)
[
1− q1

(
tk+tk+1

2

)]
×
[
(tj+1 − tk)

1−q1
(

tk+tk+1
2

)
− (tj+1 − tk+1)

1−q1
(

tk+tk+1
2

)]
,

Aj
k =

1

2q2

(
tk+tk+1

2

)
Γ(q2,j+1)

×
[
(tj+1 − tk)

q2
(

tk+tk+1
2

)
− (tj+1 − tk+1)

q2
(

tk+tk+1
2

)]
,

for k = 0, 1, · · · , j.

Remark 3.1. In Eqs. (3.4) and (3.5), we approximate functions f ′(s)
linearly. The values of f(s), q1(s) and q2(s) in the middle point of subin-
terval are assumed to be the corresponding values in the whole subinter-
val. However, the approximate method is not unique. The approximation
presented above will lead us to obtain satisfying numerical solutions of
VOFIDEs.

Then we have the linear equation

(3.7) K · F = H,

where

F = [f0, f1, · · · , fN ]T ,

H = [h0, h1, · · · , hN ]T ,

K =


1 0 0 0 0 · · ·
A0

0 − B0
0 A0

0 + B0
0 0 0 0 · · ·

A1
0 − B1

0 A1
0 + B1

0 + A1
1 − B1

1 A1
1 + B1

1 0 0 · · ·
A2

0 − B2
0 A2

0 + B2
0 + A2

1 − B2
1 A2

1 + B2
1 + A2

2 − B2
2 A2

2 + B2
2 0 · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

 .

Now, we successfully transform Eq. (3.2) into a linear algebraic equa-
tion. Since the coefficient matrix is lower triangular and all the diagonal
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elements are nonzero, the coefficient matrix K is invertible. Hence, Eq.
(3.7) is solvable, which implies that the numerical solutions of Eq. (3.2)
are obtained.

Theorem 3.2. Suppose that the coefficients Aj
k and Bj

k in Eq. (3.6)
satisfy

(3.8) Bj
j−1 +Aj

j−1 ≤ 2Bj
j ,

for j = 1, 2, · · · , N − 1 and k = 0, 1, 2, · · · , j, then finite difference
scheme (3.6) is stable and convergent.

Proof. It is obvious that Aj
k and Bj

k are both positive. Therefore we
have

(3.9) 2Aj
j +Bj

j−1 +Aj
j−1 ≥ 0.

Now, we rewrite Eq. (3.6) in an iterative form as

(3.10)

fj+1 =
1

Aj
j +Bj

j

[
hj+1 +Bj

jfj −Aj
jfj −

j−1∑
k=0

Bj
k (fk+1 − fk)

−
j−1∑
k=0

Bj
k (fk+1 − fk)

]
.

Assume error ϵj+1 = fj+1 − f̄j+1, where f̄j+1 denotes the exact value
of f at t = tj+1. According to Eq. (3.10), the error satisfies

(3.11) |ϵj+1| ≤
Bj

j −Aj
j −Bj

j−1 −Aj
j−1

Aj
j +Bj

j

|ϵj | .

Using Eq. (3.9), we have

(3.12)
Bj

j −Aj
j −Bj

j−1 −Aj
j−1

Aj
j +Bj

j

≤ 1.

According to Eq. (3.8), we have

(3.13)
Bj

j −Aj
j −Bj

j−1 −Aj
j−1

Aj
j +Bj

j

≥ −1.

Hence, ∣∣∣∣∣B
j
j −Aj

j −Bj
j−1 −Aj

j−1

Aj
j +Bj

j

∣∣∣∣∣ ≤ 1,
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which implies that the error in discrete equation (3.6) is bounded and
ϵj+1 → 0 as j → +∞. Since Eq. (3.6) is linear, by Lax-Richtmyer
theorem (see [36]), the numerical scheme is convergent. □

Remark 3.3. In this Section, we only consider the VOFIDEs with left-
sided fractional integral and derivative. However, the numerical scheme
discussed above can be generalized to VOFIDEs with right-sided frac-
tional integral and derivative, or both of them. When the VOFIDE is
defined with right-sided fractional operators, the initial conditions should
specified on the right side boundary point of domain.

4. Numerical examples

To demonstrate the effectiveness of the above numerical scheme, we
discuss two numerical examples as below. In these numerical exper-
iments, VOFIDEs are solved with different step sizes, the numerical
solutions are graphed and the approximation order of numerical scheme
is estimated and tabled.

Example 4.1. As the first example, we consider the following VOFIDE:

(4.1)
(
D

q1(t)
[0,t] f

)
(t) +

(
I
q2(t)
[0,t] f

)
(t) = h(t), f(0) = 0,

where q1(t) = 1
6 sin(10πt) +

2
3 and q2(t) = exp(t) − t2 are the order

functions of derivative and integral, respectively. The source term h(t) =
sin(4t) + exp(t2)− 1.

We solve VOFIDE (4.1) on [0, 1] with step size ∆t = 1/8, 1/16, 1/32,
1/64, 1/128, and 1/256. The numerical solutions are displayed in Fig-
ure 1. We observe that when the step size reduces, the solution curve
becomes stable, which shows that the numerical scheme is stable.

Now, we evaluate the approximation order of numerical scheme in
solving Example 4.1. We reduce the step size ∆t in halving, then take
numerical solution with ∆t = 1/512 as the best approximation since
the closed form solution of VOFIDE (4.1) does not exist. The study
results are shown in Table 1. We observe that the numerical method
has accuracy higher than first order.

In Table 1, it is necessary to point out that the position denoted by
star ”*”, where the approximation order evaluated is negative. This is
mainly because of the order functions are not monotonic. Therefore,
the computation in Example 4.1 shows that the approximation order of
numerical scheme in solving VOFIDEs depends on the order functions.
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Figure 1. Numerical solution of Example 4.1.

Table 1. Error of Example 4.1 and approximate order
of numerical scheme

step size ∆t absolute error approximation order
h = 1/8 0.46644159 —
h = 1/16 0.48198038 ”*”
h = 1/32 0.17608094 1.4527
h = 1/64 0.06877250 1.3563
h = 1/128 0.02621251 1.3916
h = 1/256 0.00809785 1.6946

Example 4.2. As the second example, we consider the following VOFIDE:

(4.2)
(
D

q1(t)
[0,t] f

)
(t) +

(
I
q2(t)
[0,t] f

)
(t) = h(t), f(0) = 1,

where q1(t) = t2 − t+ 0.8 and q2(t) = exp(sin(5πt)) are the order func-
tions of derivative and integral, respectively. The source term h(t) =
cos(t2).

We solve VOFIDE (4.2) on [0, 1] with step size ∆t = 1/8, 1/16, 1/32,
1/64, 1/128, and 1/256. The numerical solutions are displayed in Fig-
ure 2. We observe that when the step size reduces, the solution curve
becomes stable, which shows that the numerical scheme is stable.

Similarly, we evaluate the approximation order of numerical scheme
in solving Example 4.2. Again, we reduce the step size ∆t in halving,
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Figure 2. Numerical solution of Example 4.2.

then take numerical solution with ∆t = 1/512 as the best approximation
since the closed form solution of VOFIDE (4.2) does not exist. The study
results are shown in Table 2. We observe that the numerical method has
accuracy higher than first order.

Table 2. Error of Example 4.2 and approximate order
of numerical scheme

step size ∆t absolute error approximation order
h = 1/8 0.16495450 —
h = 1/16 0.10839211 0.6058
h = 1/32 0.04989323 1.1193
h = 1/64 0.02202167 1.1799
h = 1/128 0.00905359 1.2824
h = 1/256 0.00292889 1.6281

From Tables 1 and 2, we observe that when the step size reduces,
the error reduces as well, which demonstrates the effectiveness of our
numerical scheme. For simplicity, we just show part of the numerical
experiments in those tables. We find that the evaluated approximation
order seems always to vary and does not converges to some constant.
This is mainly because of the the order functions in VOFIDEs are not
constant, and both the numerical experiments show that the approxi-
mation order depends on the order functions. Generally, based on the
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numerical evaluation, our numerical scheme is higher than first order to
solve those VOFIDEs.

5. Conclusions

In this paper, we introduced a finite difference technique for solving
the variable-order fractional integro-differential equations (VOFIDEs).
This work illustrates the validity and potential of proposed method for
VOFIDEs. In numerical experiments, we observe that the numerical
scheme is higher than first order, and approximation order evaluated
is always varying around some constant. This is mainly caused by the
order functions employed in VOFIDEs are not monotonic. Generally, the
better numerical solutions can be obtained quickly by reducing the step
size. The main ideas of this technique can be further used to solve other
problems in fractional calculus, as well as other VOFIEs and VOFDEs.
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