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Abstract. In this paper, we give the notions of crossed polymod-
ule and cat1-polygroup as a generalization of Loday’s definition.
Then, we define the pullback cat1-polygroup and we obtain some
results in this respect. Specially, we prove that by a pullback cat1-
polygroup we can obtain a cat1-group.
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1. Introduction

Crossed module was presented by Whitehead in [24]. So many appli-
cations of crossed module have been made by mathematicians. A very
important application of crossed module is cat1-group structure. Loday
showed that the category of crossed module is equivalent to the cate-
gory of cat1-group in [21]. This application gave the new direction to
crossed module. So many applications of cat1-groups have been found
by several mathematicians. After defining cat1-group structure math-
ematicians have tried to study these categories. Important calculation
examples of these categories were given by Brown and Wensley in [6] and
[7]. The other important application of crossed module is defining pull-
back crossed module. Pullback crossed module was defined by Brown
andWensley in [6] and [7]. They gave many examples and applications of
pullback crossed module in their work. Other cat1-groups application is
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Pullback cat1-group which was defined by Alp using the equivalence be-
tween the category of crossed module and the category of cat1-groups in
[2]. GAP [17] program calculations of these categories were presented by
Alp and Wensley in [3]. Crossed polymodule and its application deriva-
tion and actor crossed module were presented by Alp and Davvaz. In
this paper, we use the same idea to define cat1-polygroups and pullback
cat1-polygroups in Loday and Alp’s way. We study the connections be-
tween crossed polymodules and cat1-polygroups. We present some basic
definitions and results of polygroups and crossed polymodules in Sec-
tion 2. In Section 3, we give the definition of cat1-polygroup and some
properties of cat1-polygroups. In the last section, we define the concept
of pullback cat1-polygroup and we obtain some results in this respect.
Specially, we prove that by a pullback cat1-polygroup we can obtain a
cat1-group.

2. Polygroups and crossed polymodules

The polygroup theory is a natural generalization of the group theory.
In a group the composition of two elements is an element, while in a poly-
group the composition of two elements is a set. Polygroups have been ap-
plied in many areas, such as geometry, lattice theory, combinatorics and
color schemes. There exists a rich bibliography: publications appeared
within 2012 can be found in “Polygroup Theory and Related Systems”
by Davvaz [12]. This book contains the principal definitions endowed
with examples and the basic results of the theory. Applications of hyper-
groups appear in special subclasses like polygroups that they were stud-
ied by Comer [8], also see [12, 13, 14]. Specially, Comer and Davvaz de-
veloped the algebraic theory for polygroups. A polygroup is a completely
regular, reversible in itself multigroup. We recall the following definition
from [8]. A polygroup is a multi-valued system M =< P, ◦, e, ( )−1 >,
with e ∈ P , ( )−1 : P −→ P , ◦ : P × P −→ P∗(P ), where the follow-
ing axioms hold for all x, y, z in P : (1) (x ◦ y) ◦ z = x ◦ (y ◦ z), (2)
e ◦ x = x ◦ e = x, (3) x ∈ y ◦ z implies y ∈ x ◦ z−1 and z ∈ y−1 ◦ x.
In this definition, P∗(P ) is the set of all non-empty subsets of P , and if
x ∈ P and A,B are non-empty subsets of P , then A ◦B =

∪
a∈A,b∈B

a ◦ b,

x◦B = {x}◦B and A◦x = A◦{x}. The following elementary facts about
polygroups follow easily from the axioms: e ∈ x ◦ x−1 ∩ x−1 ◦ x, e−1 = e
and (x−1)−1 = x. In the rest of this section we present the facts about
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polygroups that underlie the subsequent material. For further discus-
sion of polygroups, we refer the readers to Davvaz’s book [12]. Many
important examples of polygroups are collected in [12] such as Double
coset algebra, Prenowitz algebras, Conjugacy class polygroups, Char-
acter polygroups, Extension of polygroups, and Chromatic polygroups.
Clearly, every group is a polygroup. If K is a non-empty subset of P ,
then K is called a subpolygroup of P if e ∈ K and < K, ◦, e, ( )−1 >
is a polygroup. The subpolygroup N of P is said to be normal in P if
a−1 ◦N ◦ a ⊆ N , for every a ∈ P . There are several kinds of homomor-
phisms between polygroups [12]. In this paper, we apply only the notion
of strong homomorphism. Let < P, ◦, e, ( )−1 > and < P ′, ⋆, e, ( )−1 >
be two polygroups. A mapping ϕ from P into P ′ is said to be a strong
homomorphism if ϕ(e) = e and for all a, b ∈ P, ϕ(a ◦ b) = ϕ(a) ⋆ϕ(b), for
all a, b ∈ P. A strong homomorphism ϕ is said to be an isomorphism if ϕ
is one to one and onto. Two polygroups P and P ′ are said to be isomor-
phic if there is an isomorphism from P to P ′. The defining condition for
a strong homomorphism is also valid for sets, i.e., if A,B are non-empty
subsets of P , then it follows that f(A ◦ B) = f(A) ⋆ f(B). By using
the concept of generalized permutation, in [10], Davvaz defined permu-
tation polygroups and action of a polygroup on a set. For the definition
of crossed polymodule, we need the notion of polygroup action.

Definition 2.1. [10] Let P =< P, ◦, e, ( )−1 > be a polygroup and Ω
be a non-empty set. A map α : P ×Ω → P∗(Ω), where α(g, ω) := gω is
called a (left) polygroup action on Ω if the following axioms hold:

(1) eω = ω,
(2) h( gω) = h◦gω, where gA =

∪
a∈A

ga and Bω =
∪
b∈B

bω, for all

A ⊆ Ω and B ⊆ P ,
(3)

∪
ω∈Ω

gω = Ω,

(4) for all g ∈ P , a ∈ gb⇒ b ∈ g−1
a.

Example 2.2. Suppose that < P, ◦, e, ( )−1 > is a polygroup. Then, P
acts on itself by conjugation. Indeed, if we consider the map α : P×P →
P∗(P ) by α(g, x) = gx := g ◦ x ◦ g−1, then

(1) ex = x,
(2) h( gx) = h(g◦x◦g−1) = h◦g◦x◦g−1◦h−1 = (h◦g)◦x◦(h◦g)−1 =∪

b∈h◦g
(b ◦ x ◦ b−1) =

∪
b∈h◦g

bx = h◦gx,
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(3)
∪
x∈P

gx =
∪
x∈P

g ◦ x ◦ g−1 = P ,

(4) if a ∈ gb = g ◦ b ◦ g−1, then g ∈ a ◦ g ◦ b−1 and hence b−1 ∈
g−1 ◦ a−1 ◦ g. This implies that b ∈ g−1 ◦ a ◦ g.

Note that the above definition is a generalization of the group action.
Let G be a group and Ω be a non-empty set. A (left) group action is a
binary operator from G×Ω to Ω that satisfies the following two axioms:
ghω = g( hω) and eω = ω, for all g, h ∈ G and ω ∈ Ω. Now, we present
the notion of crossed polymodule and main results about fundamental
relation on polygroups and fundamental crossed polymodule..

Definition 2.3. A crossed polymodule X = (C,P, ∂, α) consists of poly-
groups < C, ⋆, e, ( )−1 > and < P, ◦, e, ( )−1 > together with a strong
homomorphism ∂ : C → P and a (left) action α : P × C → P∗(C) on
C, satisfying the conditions:

(1) ∂( pc) = p ◦ ∂(c) ◦ p−1, for all c ∈ C and p ∈ P ,

(2) ∂(c)c′ = c ⋆ c′ ⋆ c−1, for all c, c′ ∈ C.

When we wish to emphasize the codomain P , we call X a crossed
P -polymodule. The strong homomorphism ∂ : C → P is called the
boundary homomorphism.

Example 2.4. A conjugation crossed polymodule is an inclusion of a
normal subpolygroup N of P , with action given by conjugation. In
particular, for any polygroup P the identity map IdP : P → P is a
crossed polymodule with the action of P on itself by conjugation. Indeed,
there are two canonical ways in which a polygroup P may be regarded
as a crossed polymodule: via the identity map or via the inclusion of
the trivial subpolygroup.

Example 2.5. If C is a P -polymodule, then there is a well defined
action α of P on C. This together with the zero homomorphism yields
a crossed polymodule (C,P, 0, α).

Example 2.6. The direct product of X1×X2 of two crossed polymodules
has source C1×C2, range P1×P2 and boundary homomorphism ∂1×∂2
with P1 × P2 acting obviously on C1 × C2.

Note that the above definition is a generalization of the notion of
crossed module. We recall that a crossed module X = (M,G, ∂, τ) con-
sists of groups M and G together with a homomorphism ∂ : M → G
and a (left) action τ : G ×M → M on M , satisfying the conditions:
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∂( gm) = g∂(m)g−1, for all m ∈M , g ∈ G, and ∂(m)m′ = mm′m−1, for
all m,m′ ∈M .

Theorem 2.7. Every crossed module is a crossed polymodule.

Proof. Since every group is a polygroup, the proof is straightforward. □
Definition 2.8. Let X = (C,P, ∂, α) be a crossed polymodule and
ι : Q→ P be a morphism of polygroups. Then ι•X = (ι•C,Q, ∂•, α•) is
the pullback of X by ι, where ι•C = {(q, c) ∈ Q×C | ι(q) = ∂(c)} and
∂•(q, c) = q. The polygroup action of Q on ι•C is given by

q(q1, c) = {(x, y) | (x, y) ∈ (q ◦ q1 ◦ q−1, ιqc)}.

ι•C

∂•

��

h // C

∂

��
Q ι

// P

Theorem 2.9. ι•X = (ι•C,Q, ∂•, α•) is a crossed polymodule.

Proof. The verification of crossed polymodule axioms is similar to the
crossed module axioms in [6]. □

Let < P, ◦, e, ( )−1 > be a polygroup. We define the relation β∗P as the
smallest equivalence relation on P such that the quotient P/β∗

P , the set
of all equivalence classes, is a group. In this case β∗P is called the fun-
damental equivalence relation on P and P/β∗

P is called the fundamental
group. The product ⊙ in P/β∗P is defined as follows: β∗P (x) ⊙ β∗P (y) =
β∗P (z), for all z ∈ β∗P (x) ◦ β∗(y). This relation is introduced by Koskas
[18] and studied mainly by Corsini [9], Leoreanu-Fotea et al. [19, 20] and
Freni [15, 16] concerning hypergroups, Vougiouklis [23] for Hv-groups,
Davvaz for polygroups [11, 22], and many others. We consider the rela-
tion βP as follows:

x βP y ⇔ there exist z1, . . . zn such that {x, y} ⊆
n∏

i=1
zi.

Freni in [15] proved that for hypergroups β = β∗. Since polygroups
are certain subclass of hypergroups, we have β∗P = βP . The kernel of the
canonical map φP : P −→ P/β∗P is called the core of P and is denoted
by ωP . Here we denote by ωP the unit of P/β∗P . It is easy to prove
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the following statements: ωP = β∗P (e) and β∗P (x)
−1 = β∗P (x

−1), for all
x ∈ P .

Lemma 2.10. [9] ωP is a subpolygroup of P .

Lemma 2.11. [1] Let ωP , ωQ and ωP×Q be the cores of P , Q and P×Q,
respectively. Then, ωP×Q = ωP × ωQ.

Throughout the paper, for the polygroupos < P, ◦, e, ( )−1 >, <
C, ⋆, e, ( )−1 > and < Q, ·, e, ( )−1 >, we denote the binary operations
of the fundamental groups P/β∗P , C/β

∗
C and Q/β∗Q by ⊙, ⊗ and ⊘,

respectively.

Proposition 2.12. [4] Let < C, ⋆, e, ( )−1 > and < P, ◦, e, ( )−1 > be
two polygroups and let ∂ : C → P be a strong homomorphism. Then, ∂
induces a group homomorphism D : C/β∗C → P/β∗

P by setting

D(β∗C(c)) = β∗P (∂(c)), for all c ∈ C.

We say the action of P on C is productive, if for all c ∈ C and p ∈ P
there exist c1, . . . , cn in C such that pc = c1 ⋆ . . . ⋆ cn.

Example 2.13. The action defined in Example 2.2 is productive.

Let < C, ⋆, e, ( )−1 > and < P, ◦, e, ( )−1 > be two polygroups and let
α : P × C → P∗(C) be a productive action on C. We define the map
ψ : P/β∗P × P/β∗C → P∗(P/β∗C) as follows:

ψ(β∗P (p), β
∗
C(c)) = {β∗C(x) | x ∈

∪
y ∈ β∗

C(c)
z ∈ β∗

P (p)

zy}.

By definition of β∗C , since the action of P on C is productive, we conclude
that ψ(β∗P (p), β

∗
C(c) is singleton, i.e., we have

ψ : P/β∗
P × P/β∗C → P/β∗C ,

ψ(β∗P (p), β
∗
C(c)) = β∗C(x), for all x ∈

∪
y ∈ β∗

C(c)
z ∈ β∗

P (p)

zy.

We denote ψ(β∗P (p), β
∗
C(c)) =

[β∗
P (p)] [β∗C(c)].

Proposition 2.14. [4] Let < C, ⋆, e, ( )−1 > and < P, ◦, e, ( )−1 > be
two polygroups and let α : P ×C → P∗(C) be a productive action on C.
Then, ψ is an action of the group P/β∗P on the group P/β∗C .
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Theorem 2.15. [4] Let X = (C,P, ∂, α) be a crosed polymodule such
that the action of P on C is productive. Then, Xβ∗ = (C/β∗C , P/β

∗
P ,D, ψ)

is a crossed module.

3. Cat1-polygroups

Cat1-groups are the first in a series of models for homotopy n-types in-
troduced by Loday. According to [21], Loday’s definition of a cat1-group
consists of groups G and S, an embedding k : S → G and epimorphisms
t, h : G → S satisfying (1) tk = hk = IdS , (2) [kert, kerh] = {1G}.
Now, we give a generalization of Loday’s definition. First, we need
the following definition of the kernel homomorphism of polygroups. Let
< P, ◦, e, ( )−1 > and < C, ⋆, e, ( )−1 > be two polygroups and ϕ : P → C
be a strong homomorphism. The core-kernel of ϕ is defined by

ker∗ϕ = {x ∈ P | ϕ(x) ∈ ωC}.

Definition 3.1. A cat1-polygroup C = (k; t, h : P → C) consists of
polygroups P and C, two strong epimorphisms t, h : P → C and an
embedding k : C → P satisfying

CAT-P-1 : tk = hk = IdC ,
CAT-P-2 : [x, y] ⊆ wP , ∀x ∈ ker∗t, ∀y ∈ ker∗h,

where [x, y] = {z | z ∈ x ◦ y ◦ x−1 ◦ y−1}.

The maps t, h are called the source and target.

Lemma 3.2. Condition CAT-P-2 is equivalent to, for all x, y ∈ P ,

[β∗P (x), β
∗
P (y)] = wP = 1P/β∗

P

.

Proof. [x, y] ⊆ wP iff x◦y◦x−1◦y−1 ⊆ wP iff β∗P (x◦y◦x−1◦y−1) = wP iff
β∗P (x)⊗β∗P (y)⊗β∗P (x−1)⊗β∗P (y−1) = wP iff β∗P (x)⊗β∗P (y)⊗β∗P (x)−1⊗
β∗P (y)

−1 = wP . □

Theorem 3.3. A cat1-group is a cat1-polygroup.

Proof. If P and C are groups, then ωP = {e}, ker∗t = kert and ker∗h =
kerh. □

Theorem 3.4. If X = (C,P, ∂, α) is a crossed polymodule, then (k; t, h :
P/β∗

P
⋉ C/β∗

C
−→ P/β∗

P
) is a cat1-group.
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Proof. According to Theorem 2.15, we know (C/β∗
C
, P/β∗

P
,D, ψ) is a

crossed module. Now, we can consider

P/β∗
P
⋉ C/β∗

C
//

h

t
// P/β∗

PBC@A
k

OO

where
h(β∗P (p), β

∗
C(c)) = D(β∗C(c))⊙ β∗P (p),

t(β∗P (p), β
∗
C(c)) = β∗P (p),

k(β∗P (p)) = (β∗P (p), wC).

Then

h|P/β∗
P

= t|P/β∗
P

= IdP

and [kerh, kert] = 1P/β∗
P
⋉C/β∗

C

. Therefore we obtain a cat1-group. □

Lemma 3.5. For a cat1-polygroup C = (k; t, h : P → C),

P/β∗
P

∼= ker t∗ ⋉ C/β∗
C
,

where t∗ : P/β∗
P

→ C/β∗
C
, t∗(β∗P (p)) = β∗C(t(p)) and k∗ : C/β∗

C
→

P/β∗
P
, k∗(β∗C(c)) = β∗P (k(c))

Proof. We define f : P/β∗
P
→ kert∗ ⋉ C/β∗

C
by

f(β∗P (p)) = (k∗t∗(β∗P (p))⊗ β∗P (p), t
∗(β∗P (p)))

and g : kert∗ ⋉ C/β∗
C
→ P/β∗

P
by

g(β∗P (p), β
∗
C(c)) = k∗(β∗P (p))⊗ β∗C(c)).

It is not difficult to see that f, g are homomorphisms and f is the inverse
of g. □

Note that in the previous lemma, since kert∗�P/β∗
P
and k∗(C/β∗

C
) ≤

P/β∗
P

there is an action of k∗(C/β∗
C
) on kert∗ by conjugation. Hence,

the semi-direct product ker t∗ ⋉ C/β∗
C
is defined.

Theorem 3.6. If C = (k; t, h : P → C) a cat1-polygroup, then by putting
S = kert∗ and D = h∗| kert∗

, we obtain a crossed module.
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Proof. The action of C/β∗
C
on S is conjugation in P/β∗

P
. Now, if β∗P (x) ∈

kert∗ and β∗P (y) ∈ kerh∗, then

β∗P (x) = (wC , β
∗
P (a)), β

∗
P (y) = (D(β∗P (b)), β

∗
P (b

−1)),

for all β∗P (a), β
∗
P (b) ∈ S. Thus,

β∗P (x)⊙ β∗P (y) = (wC , β
∗
P (a))⊙ (D(β∗P (b)), β

∗
P (b

−1))

= (D(β∗P (b)),
D(β∗

P (b))β∗P (a)⊙ β∗P (b
−1))

β∗P (y)⊙ β∗P (x) = (D(β∗P (b)), β
∗
P (b

−1))⊙ (wC , β
∗
P (a))

= (D(β∗P (b)),
wCβ∗P (b

−1)⊙ β∗P (a))

= (D(β∗P (b)), β
∗
P (b

−1)⊙ β∗P (a))

Thus, the equality β∗P (x) ⊙ β∗P (y) = β∗P (y) ⊙ β∗P (x) is equivalent to
D(β∗

P (b))β∗P (a) = β∗P (b
−1)⊙ β∗P (a)⊙ β∗P (b). □

Corollary 3.7. The following diagram shows all the results obtained
and thus gives their relations.

Cat1 − groups
Inc //

%%KK
KKK

KKK
KKK

KKK
KKK

KKK
K Cat1 − polygroups

φβ∗

xxqqq
qqq

qqq
qqq

qqq
qqq

qqq
qq

Crossed modules

∼=

e eKKKKKKKKKKKKKKKKKKKKK

Inc

��
Crossed polymodules

φβ∗

OO

4. Pullback cat1-polygroups

In this section, we define the pullback cat1-polygroup and we obtain
some results in this respect. Specially, we prove that by a pullback
cat1-polygroup we can obtain a cat1-group.
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Definition 4.1. A pullback cat1-polygroup is defined as follows.

ι••P

t••

��

π

  A
AA

AA
AA

AA
AA

AA
AA

AA
A

h••
// Q
EDGF k••

��

ι

��?
??

??
??

??
??

??
??

?

Q

ι

  B
BB

BB
BB

BB
BB

BB
BB

BB

@A
GF

k••

//

P
h //

t

��

C
EDGF k

��

C
@A
GF

k

//

Let C = (k; t, h : P → C) be a cat1-polygroup and let ι : Q → C be a
strong homomorphism. Define ι••C = (k••; t••, h•• : ι••P → Q) to be
the pullback of P , where

ι••P = {(q1, p, q2) ∈ Q× P ×Q | ι(q1) = t(p), ι(q2) = h(p)},

t••(q1, p, q2) = q1, h
••(q1, p, q2) = q2 and k••(q) = (q, kι(q), q). Mul-

tiplication in ι••P is componentwise. The pair (π, ι) is a morphism of
cat1-polygroups, where π : ι••P → P, (q1, p, q2) 7→ p.

Theorem 4.2. By a pullback cat1-polygroup, we have a cat1-polygroup.

Proof. We verify the cat1-polygroup axioms. For the first axiom, we
have

t••k••(q) = t••(q, kι(q), q) = q,

h••k••(q) = h••(q, kι(q), q) = q.

Thus, t••k•• = h••k•• = IdQ and CAT-P-1 is satisfied.
In order to prove the second condition, suppose that x = (q′1, p1, q1) ∈

ker∗ t••, y = (q2, p2, q
′
2) ∈ ker∗ h••. Then, t••(q′1, p1, q1) = q′1 ∈ ωQ and

h••(q2, p2, q
′
2) = q′2 ∈ ωQ. By Lemma 2.10, ωQ is a subpolygroup of Q.

We show that it is also normal. Suppose that b ∈ Q and a ∈ ωQ are
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arbitrary. For each z ∈ b · a · b−1, we have

β∗Q(z) = β∗Q(b)⊘ β∗Q(a)⊘ β∗Q(b
−1)

= β∗Q(b)⊘ ωQ ⊘ β∗Q(b
−1)

= β∗Q(y)⊘ β∗Q(b
−1)

= β∗Q(b · b−1)

= β∗Q(e) = ωQ.

So, z ∈ ωQ. Therefore, we conclude that

q′1 · q2 · q′
−1

1 · q−1
2 ⊆ ωQ and q1 · q′2 · q−1

1 · q′−1

2 ⊆ ωQ.

On the other hand, by the definition of ι••, we obtain

ι(q′1) = t(p1) ∈ ι(ωQ) and ι(q
′
2) = h(p2) ∈ ι(ωQ).

Now, we show that ι(ωQ) ⊆ ωC . Since e ∈ ωQ, ι(e) ∈ ωC . Now,
suppose that there exists a ∈ ωQ such that ι(a) ∈ ωC . Since a, e ∈ ωQ,
β∗C(ι(a)) ̸= ωC . On the other hand, ι(e) = e ∈ ωC and so β∗C(ι(e)) = ωC .
Thus, β∗C(ι(e)) ̸= β∗C(ι(a)). This implies that ι∗(β∗Q(e)) ̸= ι∗(β∗Q(a)),

which is a contradiction. Hence, t(p1) ∈ ωC and h(p2) ∈ ωC . Thus,

p1 ∈ ker∗t and p2 ∈ ker∗h.

Now, we have

[x, y] = x⊡ y ⊡ x−1 ⊡ y−1

= {(q, p, q′) | q ∈ q′1 · q2 · q′
−1

1 · q−1
2 , p ∈ [p1, p2], q

′ ∈ q1 · q′2 · q
−1
1 · q′−1

2 }
⊆ ωQ × ωQ × ωQ.

Therefore, CAT-P-2 is also satisfied. □
Theorem 4.3. If ι•X is the pullback of the crossed polymodule X
over ι : Q → P and if A,B are the cat1-groups obtained from X , ι•X
respectively, then B ∼= ι∗∗A.
Proof.

ι•C //

∂•

��

C

∂

��
Q ι

// P

ι•C/β∗ι•C
//

D•

��

C/β∗
C

D

��
Q/β∗Q ι∗

// P/β∗P
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Starting with the pullback crossed polymodule ι•X = (ι•, Q, ∂•, α•),
where ∂• : ι•C → Q), the source polygroup of B is defined as the semi-
direct product Q/β∗Q ⋉ ι•C/β∗ι•C .

Q/β∗Q ⋉ ι•C/β∗ι•C

��

h•t•

��

// P/β∗P ⋉ C/β∗
C

��

ht

��
Q/β∗Q ι∗

// P/β∗P

The target, source and embedding of B are respectively given by

t•(β∗Q(q
′), β∗ι•C(q, c)) = β∗Q(q

′),

h•(β∗Q(q
′), β∗ι•C(q, c)) = D•(β∗ι•C(q, c))⊘ β∗Q(q

′)

= β∗Q(q)⊘ β∗Q(q
′)

= β∗Q(q · q′),

k•(β∗Q(q)) = (β∗Q(q), ωι•C).

We then define an isomorphism of cat1-groups (λ, Id) : B → ι••A,

Q/β∗Q ⋉ ι•C/β∗ι•C

��

h•t•

��

λ // ι••(P/β∗P ⋉ C/β∗C)

��

h••t••

��
Q/β∗Q Id

//
@A
GF

k•

OO

Q/β∗Q

BC
ED

k••

//

where

λ
(
β∗Q(q

′), β∗ι•C(q, c)
)
=

(
β∗Q(q

′), (β∗P (ι(q
′)), β∗

C(c)), β
∗
Q(q · q′)

)
First note that λ(β∗Q(q

′), β∗ι•C) ∈ ι••(P/β∗P ⋉ C/β∗C) because

t(β∗P (ιq
′), β∗C(c)) = β∗P (ι(q

′)) = ι∗(β∗Q(q
′))
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and

h(β∗P (ιq
′), β∗C(c)) = D(β∗C(c))⊙ ι∗(β∗Q(q

′))

= ι∗(β∗Q(q))⊙ ι∗(β∗Q(q
′))

= ι∗(β∗Q(q)⊘ β∗Q(q
′)))

= ι∗(β∗Q(q · q′)).

We verify that λ is a homomorphism as follows:

λ
(
(β∗Q(q

′
1), β

∗
ι•C(q1, c1))(β

∗
Q(q

′
2), β

∗
ι•C(q2, c2))

)
=

(
(β∗Q(q

′
1 · q′2),

(
ι∗(β∗Q(q

′
1 · q′2)),[

ι∗(β∗
Q(q′1))] [β∗C(c1)]

)
, β∗Q(q

′
1 · q · ·q′2 · q2)

)
and

λ
(
β∗Q(q

′
1), β

∗
ι•C(q1, c1)

)
λ
(
β∗Q(q

′
2), β

∗
ι•C(q2, c2)

)
=

(
β∗Q(q

′
1), (β

∗
P (ι(q

′
1)), β

∗
C(c1)), β

∗
Q(q1 · q′1)

)(
β∗Q(q

′
2), (β

∗
P (ι(q

′
2)), β

∗
C(c2)),

β∗Q(q2 · q′2)
)

=
(
β∗Q(q1)⊘ β∗Q(q2), (β

∗
P (ι(q

′
1)), β

∗
C(c1)) · (β∗P (ι(q′2)), β∗C(c2))), β∗Q(q1 · q′1)

⊘β∗Q(q2 · q′2)
)

=
(
β∗Q(q1 · q2), (ι∗(β∗Q(q′1)), β∗C(c1)) · (ι∗(β∗Q(q′2)), β∗C(c2))),

β∗Q(q1 · q′1 · q2 · q′2)
)

=
(
β∗Q(q1 · q2),

(
ι∗(β∗Q(q

′
1))⊙ ι∗(β∗Q(q

′
2)),

[ι∗(β∗
Q(q′1))][β∗C(c1)]⊗ β∗C(c2)

)
,

β∗Q(q1 · q′1 · q2 · q′2)
)

The inverse of λ is given by

λ−1
(
β∗Q(q1),

(
β∗P (p), β

∗
C(c)

)
, β∗Q(q2)

)
=

(
β∗Q(q1), β

∗
Q(q

−1
1 · q2), β∗C(c)

)
.
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Then,

t••λ
(
β∗Q(q

′), β∗ι•C(q, c)
)

= t••
(
β∗Q(q

′), (β∗P (ι(q
′)), β∗

C(c)), β
∗
Q(q · q′)

)
= β∗Q(q

′)

= t•
(
β∗Q(q

′), β∗ι•C(q, c)
)
,

h••λ
(
β∗Q(q

′), β∗ι•C(q, c)
)

= h••
(
β∗Q(q

′), (β∗P (ι(q
′)), β∗C(c)), β

∗
Q(q · q′)

)
= β∗Q(q · q′)

= h•
(
β∗Q(q

′), β∗
ι•C(q, c)

)
,

λk•(β∗Q(q)) = λ
(
β∗Q(q, (ωQ, ωC)

)
=

(
β∗Q(q), (ι

∗(β∗Q(q)), ωC), β
∗
Q(q)

)
= k••(β∗Q(q)).

Therefore, the diagram commutes. □
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