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Abstract. For any integer k ≥ 1, a set S of vertices in a graph
G = (V,E) is a k-tuple total dominating set of G if any vertex of
G is adjacent to at least k vertices in S, and any vertex of V − S
is adjacent to at least k vertices in V − S. The minimum number
of vertices of such a set in G we call the k-tuple total restrained
domination number of G. The maximum number of classes of a
partition of V such that its all classes are k-tuple total restrained
dominating sets in G we call the k-tuple total restrained domatic
number of G.

In this paper, we give some sharp bounds for the k-tuple total
restrained domination number of a graph, and also calculate it for
some of the known graphs. Next, we mainly present basic proper-
ties of the k-tuple total restrained domatic number of a graph.
Keywords: k-tuple total domination number, k-tuple total do-
matic number, k-tuple total restrained domination number, k-tuple
total restrained domatic number.
MSC(2010): Primary: 05C69.

1. Introduction

1.1. Preliminary definitions. Let G = (V,E) be a graph with vertex
set V of order n(G) and edge set E of size m(G). The open neighborhood
and the closed neighborhood of a subset X ⊆ V (G) are NG(X) = {u ∈
V |uv ∈ E, for some v ∈ X} and NG[X] = NG(X) ∪X, respectively. If
X = {v}, we write NG(v) and NG[v] in stead of NG{v} and NG[{v}],
respectively. The degree of a vertex v is also degG(v) =| NG(v) |. The
minimum and maximum degree of G are denoted by δ = δ(G) and
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∆ = ∆(G), respectively. If every vertex of G has degree k, then G is
called k-regular. We write Kn, Pn and Cn for the complete graph, the
path and the cycle of order n, respectively, while Kn1,n2,...,np and G[S]
denote the complete p-partite graph and the induced subgraph of G by
the vertex set S. The complement of a graph G is denoted by G and is
a graph with the vertex set V (G) and for every two vertices v and w,
vw ∈ E(G) if and only if vw ̸∈ E(G). For notation and graph theory
terminology, which is not appeared here, we in general follow [5].

For each integer k ≥ 1, the k-join G ◦k H of a graph G to a graph
H of order at least k is the graph obtained from the disjoint union of G
and H by joining each vertex of G to at least k vertices of H [7]. Also,
G ◦∗k H denotes the k-join G ◦k H such that each vertex of G is joined
to exactly k vertices of H.

1.2. k-tuple total restrained domination/ domatic. The research
of domination in graphs has been an evergreen of the graph theory. Its
basic concept is the dominating set and the domination number. The
literature on this subject has been surveyed and detailed in the two
books by Haynes, Hedetniemi, and Slater [5, 6]. A numerical invariant
of a graph which is in a certain sense dual to it is the domatic number of
a graph. And many variants of the dominating set were introduced and
the corresponding numerical invariants were defined for them. The k-
tuple total domination number is one of them, which is first introduced
in 1991 by V. R. Kulli, in [10].

Let k ≥ 1 be an integer and let G be a graph with δ(G) ≥ k. A subset
S ⊆ V (G) is called a k-tuple total dominating set, briefly kTDS, of G if
for each x ∈ V (G), | N(x) ∩ S |≥ k. The minimum number of vertices
of a k-tuple total dominating set in a graph G is called the k-tuple total
domination number ofG and denoted by γ×k,t(G). We recall that 1-tuple
total dominating set and 1-tuple total domination number are known as
total dominating set and total domination number, respectively. For
more information see [1, 8, 9].

Here, we begin to study two new concepts: k-tuple total restrained
domination number, and k-tuple total restrained domatic number.

Definition 1.1. In a graph G with δ(G) ≥ k ≥ 1, a k-tuple total re-
strained dominating set S, briefly kTRDS, of G is a k-tuple total domi-
nating set of G such that each vertex of V (G)−S is adjacent to at least
k vertices of V (G)−S. The k-tuple total restrained domination number
γr×k,t(G) of G is the minimum cardinality of a kTRDS.
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The domatic number d(G) and the total domatic number dt(G) of
a graph were introduced in [3] and [2], respectively. Sheikholeslami
and Volkmann extended the last definition to the k-tuple total domatic
number.

Definition 1.2. [11] The k-tuple total domatic partition, briefly kTDP,
of G is a partition D of the vertex set of G such that all classes of D are
k-tuple total dominating sets in G. The maximum number of classes of
a k-tuple total domatic partition of G is called the k-tuple total domatic
number d×k,t(G) of G.

We define the star k-tuple total domatic number d∗×k,t(G) of G as the
maximum number of classes of a kTDP of G such that at least one of
the k-tuple total dominating sets in it has cardinality γ×k,t(G).

In an analogous way, we define k-tuple total restrained domatic num-
ber and star k-tuple total restrained domatic number.

Definition 1.3. The k-tuple total restrained domatic partition, briefly
kTRDP, of G is a partition D of the vertex set of G such that all classes
of D are k-tuple total restrained dominating sets in G. The maximum
number of classes of a k-tuple total restrained domatic partition of G is
the k-tuple total restrained domatic number dr×k,t(G) of G. Similarly, the

star k-tuple total restrained domatic number dr∗×k,t(G) of G is the maxi-
mum number of classes of a kTRDP of G such that at least one of the
k-tuple total restrained dominating sets in it has cardinality γr×k,t(G).

Since every kTRDS is also a kTDS, we have γ×k,t(G) ≤ γr×k,t(G), and

so dr×k,t(G) ≤ d×k,t(G). Also γrt (G) = γr×1,t(G) and drt (G) = dr×1,t(G).

1.3. Our goal. In this paper, we give some sharp bounds for the k-tuple
total restrained domination number of a graph, and also calculate it for
some of the known graphs. Next, we mainly present basic properties
of the k-tuple total restrained domatic number of a graph. We begin
our discussion with the following trivial observation. The proof follows
readily from the definitions and is omitted.

Observation 1.4. Let G be a graph of order n in which δ(G) ≥ k. Then
i. every vertex of degree at most 2k − 1 of G and at least k of its

neighbors belong to every kTRDS,
ii. dr×k,t(G) = 1 if δ(G) ≤ 2k − 1,

iii. γr×k,t(G) < n− k − 1 if γr×k,t(G) < n,

iv. ∆(G) ≥ 2k if γr×k,t(G) < n. Hence n ≥ 2k + 2.
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Through this paper, we assume that k is a positive integer, and

V (Cn) = V (Cn) = V (Pn) = V (Pn) = {i | 1 ≤ i ≤ n},
E(Cn) = E(Pn) ∪ {1n} = {ij | 1 ≤ i ≤ n− 1 and j = i+ 1} ∪ {1n}.

2. k-tuple total restrained domination in some graphs

Here, we calculate the k-tuple total restrained domination number of
the complete graph, the cycle, the bipartite graph and the complement
of a path or a cycle.

Proposition 2.1. Let k < n be positive integers. Then

γr×k,t(Kn) =

{
n if n ≤ 2k + 1,
k + 1 otherwise.

Proof. Observation 1.4 (iv) implies γr×k,t(Kn) = n if n ≤ 2k + 1. Since

also every (k+1)-subset of vertices is a kTRDS of Kn when n > 2k+1,
we obtain γr×k,t(Kn) = k + 1 if n > 2k + 1. □
Proposition 2.2. Let n ≥ 4. Then

γrt (Cn) =

 2 ⌈n/4⌉ − 1 if n ≡ 1 (mod 4),
2 ⌈n/4⌉+ 1 if n ≡ 3 (mod 4),
2 ⌈n/4⌉ otherwise.

Proof. Observation 1.4 (iv) implies γr×2,t(Cn) = n. Also in many refer-

ences, for example [5], it can be seen that

γt(Cn) =

{
2 ⌈n/4⌉ − 1 if if n ≡ 1 (mod 4),
2 ⌈n/4⌉ otherwise.

Since the sets S0 = {2+4i, 3+4i | 0 ≤ i ≤ ⌊n/4⌋−1}, S1 = S0∪{n−1}
and S2 = S0∪{1, n−2} are total restrained dominating sets of cardinality
γt(Cn) for n ≡ 0, 1, 2 (mod 4), respectively, we have nothing to prove
when n ̸≡ 3 (mod 4). Now let n ≡ 3 (mod 4). Then it can be easily
verify that γrt (Cn) ≥ γt(Cn) + 1. Since S3 = S0 ∪ {1, n− 3, n} is a total
restrained dominating set of Cn of cardinality γt(Cn) + 1, we obtain
γrt (Cn) = 2 ⌈n/4⌉+ 1. □
Proposition 2.3. Let n ≥ k + 3 ≥ 4. Then

γr×k,t(Cn) =

 n if n ≤ 2k + 2,
k + 2 if 2k + 3 ≤ n ≤ 3k + 2,
k + 1 if n ≥ 3k + 3.
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Proof. We first prove that γr×k,t(Cn) = k + 1 if and only if n ≥ 3k + 3.

Let S be a kTRDS of Cn of cardinality k+1. Then for any two arbitrary
vertices i and j in S, | i − j |≥ 3. Hence n ≥ 3k + 3. On the other
hand, if n ≥ 3k+ 3, then {3i+ 1 | 0 ≤ i ≤ k} is a kTRDS of Cn, and so
γr×k,t(Cn) = k + 1.

Observation 1.4 (iv) implies that γr×k,t(Cn) = n if and only if k+3 ≤
n ≤ 2k + 1. Now let n = 2k + 2. Then δ(G) = ∆(G) = n− 3 = 2k − 1.
Let S be a kTRDS of Cn, and let i ∈ V − S. Since | N(i) ∩ S |≥ k and
| N(i) ∩ (V − S) |≥ k, we have deg(i) ≥ 2k, a contradiction. Therefore
S = V (Cn) and so γr×k,t(Cn) = n. For the remained case, obviously S =

{2i+1 | 0 ≤ i ≤ k+1} is a kTRDS of Cn and so γr×k,t(Cn) = k+2. □

Proposition 2.4. Let n ≥ k + 3 ≥ 4. Then

γrt (Pn) =

{
4 if n = 4,
2 if n ≥ 5,

and if k ≥ 2, then

γr×k,t(Pn) =

 n if n ≤ 2k + 2,
k + 2 if 2k + 3 ≤ n ≤ 3k,
k + 1 if n ≥ 3k + 1.

Proof. One can easily verify that γrt (Pn) is 2 if and only if n ≥ 5, and is n
otherwise. Now let k ≥ 2. It can be easily verify that γr×k,t(Pn) = k + 1

if and only if there exists a kTRDS S of Pn such that for every two
disjoint vertices i and j in S, the difference between i and j is at least
3, to modulo n, or {i, j} = {1, n}. This implies n ≥ 3k + 1. Since
S = {3i+ 1 | 0 ≤ i ≤ k − 1} ∪ {n} is a kTRDS of Pn for n ≥ 3k + 1, we
obtain γr×k,t(Pn) = k+1. Now let n = k+ i ≤ 3k and let S be a kTRDS

of Pn. For any vertex x ∈ V − S, we have

deg(x) ≥ n− 1− | S |≥ n− k − 3 = i− 3.

Since also deg(x) ≥ k, we obtain i ≥ k + 3. Hence γr×k,t(Pn) = n if

n ≤ 2k + 2. Now let 2k + 3 ≤ n ≤ 3k. Since Cn is a spanning subgraph
of Pn, we have γr×k,t(Pn) ≤ γr×k,t(Cn). Now γr×k,t(Cn) = k + 2 (by

Proposition 2.3) and γr×k,t(Pn) > k + 1 imply γr×k,t(Pn) = k + 2. □
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3. Complete multipartite graphs

Here, we present some lower and upper bounds for the k-tuple total
restrained domination number of a complete multipartite graph.

Proposition 3.1. Let G be a bipartite graph with δ(G) ≥ k ≥ 1. Then
2k ≤ γr×k,t(G) ≤ n. Moreover, if X and Y are the bipartite sets of V (G),

then γr×k,t(G) = 2k if and only if there exist two k-subsets S ⊆ X and
T ⊆ Y such that

1. for each vertex x ∈ X, T ⊆ N(x), and
2. for each vertex y ∈ Y , S ⊆ N(y), and
3. δ(G[(X − S) ∪ (Y − T )]) ≥ k.

Proof. Let D be a γr×k,t(G)-set, and let w ∈ X and z ∈ Y be two
arbitrary vertices. The definition of k-tuple total restrained dominating
set implies that | D ∩ N(w) |≥ k and | D ∩ N(z) |≥ k. Since N(w) ∩
N(z) = ∅, we deduce | D |≥ 2k and thus 2k ≤ γr×k,t(G) ≤ n. If
there exist two k-subsets S ⊆ X and T ⊆ Y satisfying the above three
conditions, then obviously S∪T is a k-tuple total restrained dominating
set of G. This implies γr×k,t(G) ≤ 2k and so γr×k,t(G) = 2k.

Conversely, we assume γr×k,t(G) = 2k, and D is a γr×k,t(G)-set. Then

| D ∩X |=| D ∩ Y |= k.

Now let S = D ∩ X and T = D ∩ Y . Then T ⊆ N(x) for each vertex
x ∈ X and S ⊆ N(y) for each vertex y ∈ Y . If | X |> k and | Y |> k,
then δ(G[(X −S)∪ (Y − T )]) ≥ k, by the definition, and this completes
our proof. □

Corollary 3.2. Let G = Kn,m be a complete bipartite graph with n ≥
m ≥ k ≥ 1. Then

γr×k,t(G) =

{
2k if n ≥ m ≥ 2k,
n+m otherwise.

Now we present some bounds for γr×k,t(G), where G is the complete
p-partite graph Kn1,...,np with p ≥ 3. First a lower bound.

Proposition 3.3. Let G be a complete p-partite graph of order n with
p ≥ 3. Then

γr×k,t(G) ≥ ⌈ pk

p− 1
⌉.
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Proof. We assume that G = Kn1,...,np has the vertex partition V =
X1 ∪ ... ∪ Xp such that | Xi |= ni and n = n1 + ... + np. Let S be an
arbitrary kTRDS of G and let Si = Xi ∩ S has cardinality si. Since

every vertex of Xi is adjacent to at least k vertices of S−Xi =
p∪

i̸=j=1

Sj ,

we have

p∑
j=1

sj − si ≥ k,

for each 1 ≤ i ≤ p. Hence (p− 1) | S |≥ pk, and so | S |≥ ⌈ pk
p−1⌉. Since

S was arbitrary, we get γr×k,t(G) ≥ ⌈ pk
p−1⌉. □

For giving an upper bound for the k-tuple total restrained domination
number of a complete p-partite graph G with p ≥ 3, we use the following
definitions and notations. We assume that G = Kn1,...,np is a complete
p-partite graph with the vertex partition V = X1 ∪ ... ∪ Xp such that
| Xi |= ni and n = n1+ ...+np. Let S be a kTRDS of G = Kn1,...,np and
let Si = Xi ∩ S, S′

i = Xi − S, | Si |= si. Let also t(S) be the number of
is that si < ni and

t0 = min{t(S) | S is a kTRDS of G}.

We may assume t(S) ≥ 1. Because t0 = 0 if and only if γr×k,t(G) = n.

Then obviously t(S) ≥ 2. Without loss of generality, we may assume
si < ni if and only if 1 ≤ i ≤ t(S). Let wj ∈ Xj − S = Xj − Sj for
each 1 ≤ j ≤ t(S). Since S is a kTRDS, we get | N(wj) ∩ (V − S) |≥ k.
Hence for each 1 ≤ j ≤ t,

k ≤ | N(wj) ∩ (V − S) |

=
t(S)∑

i=1,i̸=j

| N(wj) ∩ S′
i |

=
t(S)∑

i=1,i̸=j

| S′
i |

=
t(S)∑
i=1

| S′
i | − | S′

j | .
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BecauseN(wj)∩(V−S) =
t(S)∪

j ̸=i=1

N(wj)∩S′
i. By summing the inequalities

we obtain

t(S)k ≤ (t(S)− 1)
t(S)∑
i=1

(ni − si)

= (t(S)− 1)
p∑

i=1
(ni − si)

= (t(S)− 1)(n− | S |).
Hence | S |≤ n− k − ⌈ k

t(S)−1⌉. Since S was arbitrary, we obtain

γr×k,t(G) ≤ n− k − ⌈ k

t0 − 1
⌉.

Therefore, we have proved the next result.

Proposition 3.4. Let G be a complete p-partite graph of order n with
p ≥ 3. If γr×k,t(G) < n, then γr×k,t(G) ≤ n− k − ⌈ k

t0−1⌉.

4. Some Bounds

Before giving some bounds for the k-tuple total restrained domination
number of a graph, we characterize the structure of a graph whose k-
tuple total restrained domination number is equal m, for any m ≥ k+1.

Theorem 4.1. Let G be a graph with δ(G) ≥ k, and let m ≥ k + 1 be
an integer. Then γr×k,t(G) = m if and only if G = K ′

m or G = F ◦k K ′
m,

where m is the minimum of the set

⊤ = {t | G = F ′ ◦k K ′
t, for some graph F ′ with δ(F ′) ≥ k,

and some spanning subgraph K ′
t of Kt with δ(K ′

t) ≥ k},
and F = G−K ′

m with δ(F ′) ≥ k.

Proof. Let S be a γr×k,t(G)-set and let γr×k,t(G) = m, for some m ≥ k+1.

Then | S |= m, and every vertex has at least k neighbours in S, and also
every vertex in V − S has at least k neighbours in V − S. Then G[S]
is a spanning subgraph, say K ′

m, of Km with δ(K ′
m) ≥ k. If | V |= m,

then G = K ′
m. If not, let F be the induced subgraph G[V − S]. Then

δ(F ) ≥ k and G = F ◦k K ′
m. Also the definition of the k-tuple total

restrained domination number implies that m is the minimum of the set
⊤.

Conversely, let G = K ′
m or G = F ◦kK ′

m, where m is the minimum of
⊤, K ′

m is a spanning subgraph of Km with δ(K ′
m) ≥ k, and F = G−K ′

m
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with δ(F ′) ≥ k. Then γr×k,t(G) ≤ m. Because V (K ′
m) is a kTRDS of G

of cardinality m. If γr×k,t(G) = m′ < m, then the previous paragraph

implies G = F ′ ◦k K ′
m′ , for some spanning subgraph K ′

m′ of Km′ with
δ(K ′

m′) ≥ k, and F ′ = G − K ′
m′ with δ(F ′) ≥ k, that contradicts the

minimality of m. Therefore γr×k,t(G) = m. □

Corollary 4.2. Let G be a graph with δ(G) ≥ k. Then γr×k,t(G) = k+1
if and only if G = Kk+1 or G = F ◦k Kk+1, for some graph F with
δ(F ) ≥ k.

In the next two theorems we will present a lower bound and an upper
bound for the k-tuple total restrained domination number of a graph.

Theorem 4.3. If G is a graph on n vertices, with m edges and minimum
degree at least k, then

γr×k,t(G) ≥ 3n

2
− m

k
,(4.1)

with equality if and only if there exist k-regular graphs H and F of orders
γr×k,t(G) and n − γr×k,t(G), respectively, such that G is isomorphic to
F ◦∗k H.

Proof. Let S be a kTRDS ofG with minimum cardinality. Since δ(G[S]) ≥
k, δ(G[V −S]) ≥ k and S is a kTDS, we have the following inequalities:

m1 ≥ kγr
×k,t(G)

2 ,

m2 ≥ k(n−γr
×k,t(G))

2 ,
m3 ≥ k(n− γr×k,t(G)),

where m1 and m2 are respectively the number of edges in the induced
subgraphs G[S] and G[V −S] and m3 is the number of edges connecting
vertices in V − S to the vertices in S. By summing the inequalities, we
obtain

m = m1 +m2 +m3 ≥
3kn

2
− kγr×k,t(G)).

Hence γr×k,t(G) ≥ 3n
2 − m

k .

We know that the equality holds in (4.1) if and only if the inequality
occurring in the proof becomes equality, that is,

m1 =
kγr

×k,t(G)

2 ,

m2 =
k(n−γr

×k,t(G))

2 ,
m3 = k(n− γr×k,t(G)).
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The first and the second equalities is equivalent to the existence of k-
regular graphs H = G[S] and F = G[V (G)− S] of orders γr×k,t(G) and

n−γr×k,t(G), respectively, while the third equality gives that every vertex

of F is adjacent to exactly k vertices of H. Hence equality holds in (4.1)
if and only if G is isomorphic to F ◦∗k H. □

As an example, if G is the graph obtained by the complete graph
K2k+2 minus a perfect matching, then γr×k,t(G) = 3n

2 − m
k = k + 1.

Corollary 4.4. [4] If G is a graph without isolated vertices of order n
and size m, then

γrt (G) ≥ 3

2
n−m.

Theorem 4.5. Let G be a graph with δ(G) ≥ a + k, for some finite
number a. If γ×k,t(G) ≤ a, then γr×k,t(G) ≤ a.

Proof. Let us consider a kTDS S such that | S |≤ a. For every v ∈
V (G)− S, we have

deg(v) ≥ δ(G) ≥ a+ k ≥| S | +k.

Then | N(v) ∩ (V (G)− S) |≥ k. This means S is a kTRDS of G and so
γr×k,t(G) ≤ a. □

5. k-tuple total restrained domatic in graphs

In this section we mainly present basic properties of dr×k,t(G) and
some other bounds on the k-tuple total restrained domatic number of a
graph. First we give the next proposition which its proof is clear and
we have left it to the reader.

Proposition 5.1. If n > k ≥ 1 be two integers, then dr×k,t(Kn) = ⌊ n
k+1⌋.

Theorem 5.2. If G is a graph of order n with δ(G) ≥ k, then

γr×k,t(G) · dr×k,t(G) ≤ n.

Moreover, if γr×k,t(G)·dr×k,t(G) = n, then for each kTRDP {V1, V2, ..., Vd}
of V (G) with d = dr×k,t(G), each set Vi is a γr×k,t(G)-set.
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Proof. Let {V1, V2, ..., Vd} be a kTRDP of V (G) such that d = dr×k,t(G).
Then

d · γr×k,t(G) =
d∑

i=1
γr×k,t(G)

≤
d∑

i=1
| Vi |

= n.

If γr×k,t(G) · dr×k,t(G) = n, then the inequality occurring in the proof

becomes equality. Hence for the kTRDP {V1, V2, ..., Vd} of G and for
each i, | Vi |= γr×k,t(G). Thus each set Vi is a γr×k,t(G)-set. □

An immediate consequence of Theorem 5.2 and Corollary 4.2 now
follows.

Corollary 5.3. If G is a graph of order n with δ(G) ≥ k, then

dr×k,t(G) ≤ n

k + 1
,

with equality if and only if G = Kk+1 or G = F ◦kKk+1, for some graph
F with δ(F ) ≥ k.

For bipartite graphs, Proposition 3.1 improves the bound given in
Corollary 5.3.

Corollary 5.4. If G is a bipartite graph of order n with the vertex
partition V (G) = X ∪ Y and δ(G) ≥ k, then

dr×k,t(G) ≤ n

2k
,

with equality if and only if there exist two k-subsets S ⊆ X and T ⊆ Y
such that

1. for each vertex x ∈ X, T ⊆ N(x), and
2. for each vertex y ∈ Y , S ⊆ N(y), and
3. δ(G[(X − S) ∪ (Y − T )]) ≥ k.

Now, we show that the k-tuple total restrained domatic number of a
graph is equal to the k-tuple total domatic number of it.

Theorem 5.5. Let G be a graph with δ(G) ≥ k ≥ 1. Then

dr×k,t(G) = d×k,t(G).

Proof. Each k-tuple total restrained dominating set in G is a k-tuple
total dominating set in G, therefore each k-tuple total restrained do-
matic partition of V (G) is a k-tuple total domatic partition of V (G) and
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dr×k,t(G) ≤ d×k,t(G). Now let d = d×k,t(G) ≥ 2 and let D = {D1, ..., Dd}
be a k-tuple total domatic partition of V (G). Choose D1 as an arbitrary
class of D. Let x ∈ V (G). As D1 is a k-tuple total dominating set of G,
there exists k-subset S1

x ⊆ N(x)∩D1. Now suppose x ∈ V (G)−D1, then
x ∈ Di for some 2 ≤ i ≤ d. The set Di is also a k-tuple total dominating
set of G, therefore there exists k-subset Si

x ⊆ N(x) ∩Di and evidently
Si
x ⊆ V (G) −D1, because D1 ∩Di = ∅. So, we have proved that D1 is

a k-tuple total restrained dominating set in G. The set D1 was chosen
arbitrarily, hence D is a k-tuple total restrained domatic partition of
G and d×k,t(G) ≤ dr×k,t(G), which together with the former inequality
gives the required result. □
Corollary 5.6. [12] Let G be a graph without isolated vertices. Then

drt (G) = dt(G).

Now, we give a sufficient condition for γr×k,t(G) = γ×k,t(G).

Theorem 5.7. Let G be a graph with minimum degree at least k. If
d∗×k,t(G) ≥ 2, then γr×k,t(G) = γ×k,t(G).

Proof. Every k-tuple total restrained dominating set in G is also k-tuple
total dominating set in G, therefore γ×k,t(G) ≤ γr×k,t(G). The condition

d∗×k,t(G) ≥ 2 implies that there exist two disjoint k-tuple total dominat-

ing sets S and S′ in G such that | S |= γ×k,t(G). Let x ∈ V (G) − S.
Then x is adjacent to at least k vertices of S′, since S′ is a k-tuple total
dominating set of G. This implies that x is adjacent to at least k vertices
of V (G) − S. Therefore, S is a k-tuple total restrained dominating set
of G and so γr×k,t(G) ≤| S |= γ×k,t(G). The previous two inequalities

give γr×k,t(G) = γ×k,t(G). □

Corollary 5.8. Let G be a graph without isolated vertices. If d∗t (G) ≥ 2,
then γrt (G) = γt(G).

The converse of Theorem 5.7 does not hold. For example, if G =
Kk+1, then γr×k,t(G) = γ×k,t(G) = k + 1 but d∗×k,t(G) = 1. Also as
another example let G = Kn,m be the complete bipartite graph with the
conditions k ≤ n ≤ m < 2k and (n,m) ̸= (k, k). Then γ×k,t(G) = 2k <
γr×k,t(G) = n+m, but d∗×k,t(G) = 1.
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