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CONVOLUTION AND HOMOGENEOUS SPACES

R. A. KAMYABI-GOL AND N. TAVALLAEI*

Communicated by Fereidoun Ghahramani

Abstract. Let G be a locally compact Hausdorff topological group
and H be a compact subgroup of G. Then, the homogeneous space
G/H possesses a specific Radon measure, which is called a rela-
tively invariant measure. We show that the concepts of convolution
and involution can be extended to the integrable functions defined
on this homogeneous space. We study the properties of convolution
and prove that the space of integrable functions is an involutive
Banach algebra with an approximate identity. We also find a nec-
essary and sufficient condition on a closed subspace of this Banach
algebra to make it a left ideal.

1. Introduction

In functional analysis, convolution is an operator which maps two
integrable functions f and g into a third function that represents the
amount of overlap between f and a reversed and translated version of
g. More precisely, if f, g ∈ L1(R), then f ∗ g is defined by:

(f ∗ g)(x) =
∫

R
f(y) g(x− y) dy (almost all x ∈ R).
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In harmonic analysis, where G is a locally compact topological group,
we can define the convolution of two integrable functions on G, say f
and g, by,

(f ∗ g)(x) =
∫

G
f(y) g(y−1x) dy (almost all x ∈ G),

where dy is the left Haar measure on G. Recall that the convolution and
involution make L1(G) an involutive Banach algebra with an approxi-
mate identity. But in the case where H is a nontrivial subgroup of G,
there is neither an inverse map nor a left Haar measure on the homoge-
neous space G/H, in general. We focus on the homogeneous spaces of
the form G/H, where G is a locally compact topological group, H is a
compact subgroup of G, and G/H is attached to a relatively invariant
Radon measure. Then, we define a convolution and a specific involution
on L1(G/H), induced by those in L1(G) with the same effect.

This paper consists of 4 sections. Section 2 is devoted to fix some no-
tations and get some elementary results on homogeneous spaces which
will be used here. We then discuss conditions which enable us to de-
fine a convolution of two integrable functions. Section 3 is concerned
with the properties of homogeneous spaces of the form G/H, where H
is a compact subgroup of a locally compact topological group G. We
introduce a specific dense subset of Lp(G/H), 1 ≤ p ≤ +∞, which is
the main key to get the result. In Section 4, we introduce the convolu-
tion of two integrable functions on this kind of homogeneous space as
a generalized linear combination of the left translations of one of them.
Theorems 4.4 and 4.5 assert that L1(G/H) is an involutive Banach al-
gebra which has an approximate identity with the similar structure of
that in L1(G). Finally, a necessary and sufficient condition on a closed
subspace of L1(G/H) is given to make it a left ideal.

2. Notations and preliminary results

We start our work with fixing some useful notations. Let X be a
locally compact Hausdorff space and µ be a Radon measure on it. We
occasionally encounter the following spaces: C(X) is the space of all con-
tinuous complex-valued functions on X, Cc(X) consists of all functions
in C(X) with compact supports, and L1(X) denotes the set of all equiv-
alent classes of µ-almost everywhere defined integrable functions on X.
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From now on, we suppose that G is a locally compact topological group
with identity e and the left Haar measure dx, H is a closed subgroup
of G, and ∆G and ∆H are modular functions on G and H respectively.
Also, G/H is considered as a homogeneous space that G acts on it from
the left and q : G −→ G/H denotes the canonical mapping. For a func-
tion f on G, we define the functions f̌ by f̌(x) = f(x−1), x ∈ G, and
f̃ = ¯̌f . It is known that Cc(G/H) consists of all Pf functions, where
f ∈ Cc(G) and

Pf(xH) =
∫

H
f(xξ) dξ (x ∈ G).

Moreover, P : Cc(G) → Cc(G/H) is a surjective bounded linear opera-
tor which is not injective (cf. [2], Subsection 2.6).

Let µ be a Radon measure on G/H. For all x ∈ G, we define the
translation µx of µ by µx(E) = µ(xE), where E is a Borel subset of
G/H. Then, µ is said to be G-invariant if µx = µ, for all x ∈ G, and is
said to be strongly quasi-invariant provided that a continuous function
λ : G×G/H −→ (0,+∞) exists which satisfies,

dµx(yH) = λ(x, yH) dµ(yH) (x, y ∈ G).

If the functions λ(x, .) reduce to constants, then µ is called relatively
invariant under G. Also, we mean by a rho-function for the pair (G,H),
a continuous function ρ : G −→ (0,+∞) which satisfies,

ρ(xξ) =
∆H(ξ)
∆G(ξ)

ρ(x) (x ∈ G, ξ ∈ H).

As proved, (G,H) admits a rho-function and for each rho-function ρ
there is a strongly quasi-invariant measure µ on G/H such that∫

G/H
Pf(xH) dµ(xH) =

∫
G
f(x) ρ(x) dx (f ∈ Cc(G)),

and
dµx

dµ
(yH) =

ρ(xy)
ρ(y)

(x, y ∈ G).(2.1)

Moreover, all strongly quasi-invariant measures on G/H arise from rho-
functions in this manner, and all of these measures are strongly equiva-
lent (cf. [2], Subsection 2.6).
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It can be shown that G/H has a G-invariant Radon measure if and
only if the constant function ρ(x) = 1 is a rho-function for the pair
(G,H), or equivalently ∆G |H = ∆H (cf. [2], Theorem 2.49). Also,
one can show that the existence of a homomorph rho-function ρ : G →
(0,+∞) for the pair (G,H) is a necessary and sufficient condition for
the existence of a relatively invariant measure on G/H. Because, if µ is
a relatively invariant measure and λ : G → (0,+∞) is the continuous
function such that dµx = λ(x) dµ, then,∫

G
f(y) ρ(xy) dy =

∫
G/H

P (Lxf)(yH) dµ(yH)

= λ(x)
∫

G/H
Pf(yH) dµ(yH)

= λ(x)
∫

G
f(y) ρ(y) dy,

where x ∈ G and f ∈ Cc(G). Thus, for a fixed x ∈ G we have,∫
G
f(y) (ρ(xy)− λ(x) ρ(y)) dy = 0,

for all f ∈ Cc(G). This leads to:

ρ(xy)
ρ(y)

= λ(x) (x, y ∈ G).

Obviously, if ρ is a homomorphism, then by (2.1) we get dµx = ρ(x) dµ,
for all x ∈ G, which shows that µ is relatively invariant under G. More
precisely, every relatively invariant measure on G/H is a positive con-
stant multiple of another one, which arises from a homomorphism rho-
function (cf. [6]). Observe that if µ is the relatively invariant measure
which arises from a rho-function ρ, then by using (2.1), we achieve,

ρ(xy) =
ρ(x) ρ(y)
ρ(e)

(x, y ∈ G)(2.2)

(cf. [6]).

It should be mentioned that if µ is the strongly quasi-invariant mea-
sure on G/H arising from a rho-function ρ, then the following holds for
all f ∈ L1(G).

(a) There exists a subset E of G/H of zero measure such that the
mapping ξ 7→ f(xξ)

ρ(xξ) is in L1(H), for all x ∈ G that q(x) 6∈ E.
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(b) The function xH 7→
∫
H

f(xξ)
ρ(xξ) dξ, defined almost everywhere on

G/H, is integrable.
(c)

∫
G/H

∫
H

f(xξ)
ρ(xξ) dξ dµ(xH) =

∫
G f(x) dx.

Moreover, the mapping T : L1(G) 7→ L1(G/H) defined by

Tf(xH) =
∫

H

f(xξ)
ρ(xξ)

dξ (µ− almost all xH ∈ G

H
)(2.3)

is a surjecive bounded linear operator with ‖T‖ ≤ 1 (cf. [5], Sub-
section 3.4). More precisely, for all ϕ ∈ L1(G/H), there exists some
f ∈ L1(G) such that ϕ = Tf and f ≥ 0 almost everywhere, provided
that ϕ ≥ 0 almost everywhere. It can be shown that

‖ϕ‖1 = inf{‖f‖1 : f ∈ L1(G), ϕ = Tf},(2.4)

for all ϕ ∈ L1(G/H) and

‖ϕ‖1 = inf{‖f‖1 : f ∈ Cc(G), ϕ = Tf},(2.5)

where ϕ ∈ Cc(G/H) (cf. [5], Subsection 3.4). Throughout the rest of the
paper, we suppose that G/H has a relatively invariant Radon measure
µ which arises from a rho-function ρ.

For all f, g ∈ L1(G), the convolution of f and g, f ∗ g, is defined as
an element of L1(G) by:

f ∗ g(x) =
∫

G
f(y) g(y−1x) dy (almost all x ∈ G).

It is known that L1(G) is an involutive Banach algebra on which the
involution operator assigns to each f ∈ L1(G) the function f∗ that

is defined by f∗(x) = f(x−1)
∆G(x) , x ∈ G (cf. [1, 2]). It is worthwhile

mentioning that if H is a closed normal subgroup of G and µ is the
invariant measure on the topological group G/H, which arises from the
constant rho-function ρ(x) = 1, then T : L1(G) → L1(G/H), defined by
(2.3), is an algebra homomorphism; i.e., T (f ∗ g) = (Tf) ∗ (Tg), for all
f, g ∈ L1(G) (cf. [5], Theorem 3.5.4). From this point of view, for all
ϕ,ψ ∈ L1(G/H), we will define a convolution ϕ ∗ψ by ϕ ∗ψ = T (f ∗ g),
where f, g ∈ L1(G), ϕ = Tf , ψ = Tg. Obviously, ϕ ∗ ψ is well-defined
just when T (f ∗ g) = 0, provided that one of Tf or Tg vanishes. For all
f, g ∈ L1(G) and x ∈ G, we have,

T (f ∗ g)(xH) = ρ(e)
∫

G

f(y)
ρ(y)

Tg(y−1xH) dy.(2.6)
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Since

T (f ∗ g)(xH) =
∫

H

f ∗ g(xε)
ρ(xε)

dε

=
∫

H

∫
G
f(y) g(y−1xε)

ρ(e)
ρ(y) ρ(y−1xε)

dε dy

=
∫

G

ρ(e)
ρ(y)

f(y)
∫

H

g(y−1xε)
ρ(y−1xε)

dε dy

= ρ(e)
∫

G

f(y)
ρ(y)

Tg(y−1xH) dy,

Then, Tg = 0 implies that T (f ∗ g) = 0, for all f ∈ L1(G). But
in the following we give a counterexample which shows Tf = 0 does
not generally imply T (f ∗ g) = 0, for all g ∈ L1(G). It means that, in
general case, the mapping ∗ : L1(G/H) × L1(G/H) → L1(G/H) is not
well-defined. To reach the goal, we offer some conditions on (G,H) to
obtain T (f ∗ g) = 0 from Tf = 0, for all g ∈ L1(G). To do this, we will
analyze some properties of integrable functions.

Proposition 2.1. For all f ∈ Cc(G) the following statements are equiv-
alent:

(a) T (f ∗ g) = 0, for all g ∈ L1(G).
(b) T (Rxf) = 0, for all x ∈ G, where Rxf is defined by Rxf(y) =
f(yx), y ∈ G.

Proof. It is clear that T (f ∗ g) = 0, for all g ∈ L1(G) just when
T (f ∗ g) = 0, for all g ∈ Cc(G). Now, for all g ∈ Cc(G), by using (2.2)
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and (2.6) we get

T (f ∗ g)(xH) = ρ(e)
∫

G

f(y)
ρ(y)

ψ(y−1xH) dy

=
ρ2(e)
ρ(x)

∫
G

(Lx−1f)(y)
ρ(y)

ψo q(y−1) dy

=
ρ(e)
ρ(x)

∫
G

(Lx−1f )̌ (y)
∆G(y)

ρ(y) ψo q(y) dy

=
ρ(e)
ρ(x)

∫
G
ηx(y)ψo q(y) dy

=
∫

G/H
T (ηx)(yH)ψ(yH) dµ(yH),

where x ∈ G, ψ = Tg, and ηx = (Lx−1f )̌ ρ

∆G
∈ Cc(G). This shows that

T (f ∗ g) = 0, for all g ∈ Cc(G), if and only if T (ηx) = 0, for all x ∈ G.
On the other hand,

T (ηx)(yH) =
1

∆G(y)

∫
H

f(xξ−1y−1)
∆G(ξ)

dξ

=
ρ(e)

∆G(y)

∫
H

f(xξy−1)
ρ(ξ)

dξ

=
ρ(x)

∆G(y)
T (Ry−1f)(xH),

for all y ∈ G. Hence, T (ηx) = 0, for all x ∈ G, if and only if T (Ryf) = 0,
for all y ∈ G. �

Therefore, we need some conditions on which T (Ryf) = 0 is obtained
from Tf = 0, for all f ∈ Cc(G) and y ∈ G. Note that this is equivalent
to get P (Ryf) = 0, for all f ∈ Cc(G) with Pf = 0 and all y ∈ G.
The next lemma shows that this is equivalent to get P (f̌) = 0 from
P (f) = 0, for all f ∈ Cc(G), where H is a unimodular subgroup of G.
And Example 2.3 shows that it may not hold in general.

Lemma 2.2. Let H be a closed subgroup of a locally compact topological
group G. Consider the following statements:

(a) P f̌ = 0 provided that Pf = 0, for all f ∈ Cc(G).
(b) Pf = 0 implies that P (Rxf) = 0, where x ∈ G and f ∈
Cc(G).
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Then, (a) necessitates (b), and they are also equivalent in the case where
H is a unimodular subgroup of G.

Proof. Evidently, Pf = 0 is equivalent to P (Lxf) = 0, where f ∈ Cc(G)
and x ∈ G. So, we can deduce (b) from (a), because Rxf = (Lxf̌ )̌ , for
all f ∈ Cc(G) and x ∈ G. The reverse implication becomes true when H
is a unimodular subgroup of G, since then P f̌(xH) = P (Rx−1f)(eH),
for all x ∈ G and f ∈ Cc(G). �

Example 2.3. Let G be the affine group, G = R ×′ R+, which is the
cartesian product of R and R+ endowed with the usual topology and
the operation,

(b1, a1).(b2, a2) = (b1 + a1b2 , a1a2).

In this case, b a will be another presentation for (b, a) ∈ G. Suppose
that H = R+ and define f1 : R+ → R and f2 : R → R by:

f1(x) =

 0 x ≤ 1
x sin(2πx) 1 < x ≤ 2

0 2 < x
and f2(x) =

{
f1(x

2 ) x > 0
0 x ≤ 0.

Let f : G→ R be so that

f(t, ξ) = f1(ξ)f2(t) (t ∈ R , ξ ∈ R+).

Trivially, f1 and f2 are continuous with compact supports and so is f .
Pf = 0, since for all x ∈ G,

Pf(xH) =
∫

R+

f(xξ)
1
ξ
dξ

=
∫

R+

f(thξ)
1
ξ
dξ

= f2(t)
∫

R+

f1(hξ)
1
ξ
dξ

= f2(t)
∫

R+

f1(ξ)
1
ξ
dξ

= f2(t)
∫ 2

1
sin(2πξ) dξ

= 0,
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where x = th , t ∈ R , and h ∈ R+. But P (Ryf) 6= 0, for y = 2 ∈ R.
Indeed,

P (Ryf)(eH) =
∫

R+

f((0, ξ).(2, 1))
1
ξ
dξ

=
∫

R+

f(2ξ, ξ)
1
ξ
dξ

=
∫

R+

f1(ξ)
2 1
ξ
dξ

=
∫ 2

1
ξ2 sin2(2πξ))

1
ξ
dξ

=
3
4
.

3. On an special kind of homogeneous space

Throughout this section, let G be a locally compact topological group
and H be a compact subgroup of G. It is clear that, in this case ∆G |H =
∆H = 1 and for all rho-functions ρ and r ∈ R,

ρr(xξ) = ρr(x) (x ∈ G, ξ ∈ H).(3.1)

This guarantees the existence of a continuous function η on G/H so that
η(xH) = ρr(x), for all x ∈ G. Also, ∆G is a homomorphism rho-function
and hence G/H has a relatively invariant Radon measure µ which arises
from a rho-function ρ. We define F (G,H) as follows:

F (G,H) = {f ∈ Cc(G) : ∀x ∈ G ∀ξ ∈ H; f(xξ) = f(x)},

and F+(G,H) will denote the set of its positive elements. In the next
lemma, we show that Cc(G/H) consists of all functions of the form Tf ,
where f ∈ Cc(G) is constant on the left cosets of H.

Lemma 3.1. For all ϕ ∈ Cc(G/H) there is some f ∈ F (G,H) such
that ϕ = Tf and supp (f) = KH, where K is a compact subset of G for
which supp (ϕ) = q(K). Moreover, we can take f ∈ F+(G,H) where
ϕ ∈ C+

c (G/H).
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Proof. Let f = (ϕ o q) ρ
m(H) , where m(H) =

∫
H dξ. Obviously, f ∈ Cc(G)

and if ϕ is positive, then so is f . Also, supp (f) = KH, f(xξ) = f(x),
and

Tf(xH) =
∫

H

f(xξ)
ρ(xξ)

dξ

=
1

m(H)

∫
H

ϕ(xH) ρ(x)
ρ(x)

dξ

= ϕ(xH),

where x ∈ G and ξ ∈ H. �

For all 1 ≤ p ≤ +∞, there exists a left module action of L1(G) on
Lp(G/H), defined by,

f ∗p ψ(xH) = ρ(e)
1
p

∫
G

f(y)

ρ(y)
1
p

ψ(y−1xH) dy (µ− almost all xH ∈ G

H
),

where f ∈ L1(G) and ψ ∈ Lp(G/H). This action makes Lp(G/H),
1 ≤ p < +∞, a Banach left L1(G)-module with an approximate identity
(cf. [7]). We need an special kind of approximate identity for Lp(G/H)
that we introduce as follows.

Lemma 3.2. Let U be a neighborhood base at e in G. For all U ∈ U ,
there exists a function hU ∈ C+

c (G) such that h̃U ∈ F (G,H), supp (hU ) ⊆
U , and ‖hU

ρ
1
p
‖1 = ρ(e)−

1
p . Moreover, ‖hU ∗p ϕ− ϕ ‖p → 0 as U → {e} if

1 ≤ p < +∞ and ϕ ∈ Lp(G/H), or if p = +∞ and ϕ is left uniformly
continuous.

Proof. Without loss of generality, suppose that each U in U is symmet-
ric with compact closure. For all U ∈ U , there exists an open set VU with
compact closure such thatH VU ⊆ U . Let kU ∈ C+

c (G), whose support is
contained in VU . By using Lemma 3.1, we can take some sU ∈ F+(G,H)
so that supp (sU ) ⊆ VUH and TkU = TsU . For all 1 ≤ p ≤ +∞, let

hU = ρ
1
p s̃U

ρ(e)
1
p ‖s̃U‖1

. Obviously, hU ∈ C+
c (G), h̃U = ρ(e)

1
p sU

‖s̃U‖1 ρ
1
p
∈ F (G,H),

‖hU

ρ
1
p
‖1 = ρ(e)−

1
p , and

supp (hU ) ⊆ HVU ⊆ U.
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It has been shown that such a family of functions with properties supp (hU )

⊆ U , and ‖hU

ρ
1
p
‖1 = ρ(e)−

1
p is an approximate identity for Lp(G/H) as a

Banach left L1(G)-module, where 1 ≤ p < +∞. This is due to the fact
that

‖hU ∗p ϕ− ϕ ‖p =(
∫

G/H
|hU ∗p ϕ(xH)− ϕ(xH)|p dµ(xH))

1
p

=(
∫

G/H
|
∫

G
( ρ(e)

ρ(y) )
1
p hU (y) (ϕ(y−1xH)− ϕ(xH)) dy|p dµ(xH))

1
p

≤
∫

G
( ρ(e)

ρ(y) )
1
p hU (y) (

∫
G/H

| (ϕ(y−1xH)− ϕ(xH)) |p dµ(xH))
1
p dy

≤ sup{ ‖Lyϕ− ϕ‖p : y ∈ U},

where ϕ ∈ Lp(G/H). Also, for all ϕ ∈ L∞(G/H), ‖hU ∗∞ϕ−ϕ ‖∞ → 0
as U → {e} if ϕ is left uniformly continuous (cf. [7]). �

From now on, let

P (
G

H
) = {ϕ ∈ Cc(

G

H
) : ∃η ∈ C(

G

H
) ∀x ∈ G; ϕ(x−1H) = η(xH)ϕ(xH)}.

We denote by 〈P (G/H)〉 the linear span of P (G/H) and show that
each continuous function with compact support is the uniform limit of
a sequence in this space.

Proposition 3.3. 〈P (G/H)〉 is a dense subset of Lp(G/H), where 1 ≤
p ≤ +∞.

Proof. Without loss of generality, suppose that m(H) = 1. We first
prove that for all f ∈ F (G,H), f̃ ∗1ϕ ∈ P (G/H), where ϕ = Tf . Then,
we show that the linear space 〈P (G/H)〉 contains all functions of the
form f̃ ∗1 ψ, and by using this, we conclude that 〈P (G/H)〉 contains all
functions of the form f̃ ∗p ψ, where f ∈ F (G,H) and ψ ∈ Cc(G/H), for
1 ≤ p ≤ +∞. It turns out that 〈P (G/H)〉 is dense in Lp(G/H) by using
an approximate identity. For details, let η be the continuous function
on G/H for which η(xH) = ρ2(x)

ρ2(e)
, x ∈ G. Recall that (3.1) guarantees

that η is well-defined. If f ∈ F (G,H) and ϕ = Tf , then for all x ∈ G,
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we have,

f̃ ∗1 ϕ(xH) =
∫

G

ρ(e)
ρ(y)

f̃(y)ϕ(y−1xH) dy

=
∫

G
f̃(y)

∫
H

f(y−1x)
ρ(xξ)

dξ dy

=
m(H)
ρ(x)

(f̃ ∗ f)(x),

and hence,

f̃ ∗1 ϕ(x−1H) =
m(H) ρ(x)
ρ2(e)

(f̃ ∗ f)(x)

= η(xH) f̃ ∗1 ϕ(xH).

This shows that

{f̃ ∗1 ϕ : f ∈ F (G,H), ϕ = Tf} ⊆ P (
G

H
).

It is easy to check that for all f ∈ F (G,H) and ψ ∈ Cc(G/H), we have,

f̃ ∗1 ψ =
1
4

Σ4
n=1i

n (g + in f )̃ ∗1 (ψ + in Tf),

where g ∈ F (G,H) and ψ = Tg, and so we have f̃ ∗1 ψ ∈ 〈P (G/H)〉. It
can easily be seen that, for all 1 ≤ p ≤ +∞, f ∈ F (G,H), ψ ∈ Cc(G/H),
and x ∈ G, we have,

f̃ ∗p ψ = (
ρ

1
p
−1
f

ρ(e)
1
p
−1

)̃ ∗1 ψ and
ρ

1
p
−1
f

ρ(e)
1
p
−1

∈ F (G,H).

This implies f̃ ∗p ψ ∈ 〈P (G/H)〉 if f ∈ F (G,H) and ψ ∈ Cc(G/H).
Now, for all 1 ≤ p ≤ +∞, let {hU}U∈U be a family of functions in
Cc(G/H), as introduced in Lemma 3.2. Then, for all ψ ∈ Cc(G/H), we
have ‖hU ∗p ψ − ψ ‖p → 0 as U → {e}. With the argument above, for
all U ∈ U , hU ∗p ψ ∈ 〈P (G/H)〉. This completes the proof. �

Theorem 3.4. Let H be a compact subgroup of G. Then, for all
f ∈ Cc(G), Pf = 0 if and only if P f̌ = 0.

Proof. Since (f̌ )̌ = f , then we only need to prove that Pf = 0 implies
P f̌ = 0, where f ∈ Cc(G). For this, let µ be the invariant measure on
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G/H, which arises from ρ(x) = 1. Also, let f ∈ Cc(G) and Pf = 0. For
all ψ ∈ P (G/H), there exists a continuous function η on G/H such that
for all x ∈ G, ψ(x−1H) = η(xH)ψ(xH). Also, ∆G(x−1) = γ o q(x), for
some continuous function γ on G/H. Therefore, we have,

∫
G/H

P (f̌)(xH) ψ(xH) dµ(xH)=
∫

G

f(x) ψ o q(x−1) ∆G(x−1) dx

=
∫

G

f(x) η o q(x) ψ o q(x) γ(xH) dx

=
∫

G/H

P (f)(xH) η(xH)ψ(xH) γ(xH) dµ(xH),

=0.

for all ψ ∈ P (G/H) and hence P (f̌) = 0. �

4. Main results

A group acts on itself by its own multiplication. A left translation
of a function defined on a group G is defined via the action of G on
itself. The convolution of two integrable functions f and g on G can be
introduced as a generalized linear combination of the left translations of
g. Through this point of view, we can extend the concept of convolution
to more general cases.

If H is a closed subgroup of G, then G/H may be considered as a
homogeneous space on which G acts on G/H by x(yH) = (xy)H, where
x, y ∈ G. Thus, a type of the left translation Lxϕ of a function ϕ onG/H
may be defined by Lxϕ(yH) = ϕ(x−1yH), where x, y ∈ G. It is easy to
check that for all ϕ ∈ Cc(G/H), Lxϕ ∈ Cc(G/H) and Lxϕ = P (Lxf),
where ϕ = Pf and x ∈ G. The left translations of integrable functions
on a homogeneous space can be introduced in a similar way. More
precisely, for all ϕ ∈ L1(G/H) and x ∈ G, there is an element Lxϕ of
L1(G/H), called the left translation of ϕ by x, which satisfies,

Lxϕ(yH) = ϕ(x−1yH) (µ− almost all yH ∈ G

H
).

For all ϕ ∈ L1(G/H), the mapping from G into L1(G/H), defined by
x 7→ Lxϕ, is continuous. Also, ‖Lxϕ‖1 = ρ(x)

ρ(e)‖ϕ‖1, where x ∈ G and
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ϕ ∈ L1(G/H) (cf. [7]).

From now on, we suppose that H is a compact subgroup of G and
µ is a relatively invariant measure on G/H, which arises from a rho-
function ρ. For all ϕ,ψ ∈ Cc(G/H), we define ϕ ∗ ψ, the convolution
of ϕ and ψ, by ϕ ∗ ψ = T (f ∗ g), in which f, g ∈ Cc(G) are so that
ϕ = Tf and ψ = Tg. Then, a glance at Proposition 2.1, Lemma 2.2,
and Theorem 3.4 persuade us that ϕ ∗ ψ is well-defined. The following
corollaries easily follow from the definition.

Corollary 4.1. The following identities hold for all ϕ,ϕ1, ϕ2, ψ, ψ1, ψ2 ∈
Cc(G/H) and c ∈ C:

(a) (ϕ1 + c ϕ 2) ∗ ψ = (ϕ1 ∗ ψ) + c (ϕ 2 ∗ ψ).
(b) ϕ ∗ (ψ1 + c ψ 2) = (ϕ ∗ ψ1) + c (ϕ ∗ ψ 2).
(c) ϕ ∗ ψ ∈ Cc(G/H) where ϕ,ψ ∈ Cc(G/H), and ϕ ∗ ψ ∈
C +

c (G/H) if ϕ,ψ ∈ C +
c ( G

H ).

Proposition 4.2. For all ϕ,ψ ∈ Cc(G/H), ‖ϕ ∗ ψ‖1 ≤ ‖ϕ‖1 . ‖ψ‖1.

Proof. Let ϕ,ψ ∈ Cc(G/H). Then, for all f, g ∈ Cc(G) with ϕ = Tf
and ψ = Tg, we have,

‖ϕ ∗ ψ‖1 = ‖T (f ∗ g)‖1

≤ ‖f ∗ g‖1

≤ ‖f‖1.‖g‖1.

Therefore,

‖ϕ ∗ ψ‖1 ≤ inf{‖f‖1 : f ∈ Cc(G), ϕ = Tf} . inf{‖g‖1 : g ∈ Cc(G), ψ = Tg}
= ‖ϕ‖1 . ‖ψ‖1.

�

Proposition 4.2 helps us define the convolution of two elements of
L1(G/H) by using the unique extension of the convolution on Cc(G/H):{

∗ : Cc( G
H )× Cc( G

H ) −→ L1( G
H ),

(ϕ,ψ) 7−→ ϕ ∗ ψ.

In other words, for all ϕ,ψ ∈ L1(G/H), ϕ ∗ ψ can be defined as the
limit of {ϕn ∗ ψn}n∈N in L1(G/H), where {ϕn}n∈N and {ψn}n∈N are
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two sequences in Cc(G/H) which approach ϕ and ψ, respectively, in
L1(G/H).

Theorem 4.3. For all ϕ,ψ ∈ L1(G/H), ϕ ∗ ψ = T (f ∗ g), where
f, g ∈ L1(G) such that ϕ = Tf and ψ = Tg.

Proof. For all ϕ,ψ ∈ L1(G/H), fix two elements f, g ∈ L1(G) so that
ϕ = Tf and ψ = Tg. There exist sequences {fn}n∈N and {gn}n∈N in
Cc(G) converging to f and g, respectively, in L1(G). Then, we can write,

ϕ ∗ ψ = limn→+∞(Tfn) ∗ (Tgn)
= limn→+∞T (fn ∗ gn)
= T (f ∗ g).

�

As indicated before, the convolution of two integrable functions f and
g, f ∗ g, is usually introduced as a generalized linear combination of the
left translations of g. When H is a compact subgroup of G, the convo-
lution of two integrable functions ϕ and ψ, defined on L1(G/H), can be
considered as a generalized linear combination of the left translations of
ψ. Since by using (2.6) and Theorem 4.3, we have,

ϕ∗ψ(xH) = ρ(e)
∫

G

f(y)
ρ(y)

ψ(y−1xH) dy (for µ−almost all xH ∈ G

H
)

(4.1)
where f ∈ L1(G) and ϕ = Tf .

Now, for all ϕ ∈ L1(G/H), we introduce ϕ∗ as T (f∗), where f ∈
L1(G) is such that ϕ = Tf . This operator is well-defined, since T (f∗) =
0 if T (f) = 0. To show this, let f ∈ L1(G) and T (f) = 0. For all
ψ ∈ P (G/H), there exists a continuous function η on G/H for which
ψ(x−1H) = η(xH)ψ(xH) , x ∈ G. Therefore, we have,∫

G/H

T (f∗)(xH)ψ(xH) dµ(xH) =
∫

G

f(x−1)
∆G(x)

ψ o q(x) dx

=
∫

G

f(x) η o q(x) ψ o q(x) dx

=
∫

G/H

Tf(xH) η(xH) ψ(xH) dµ(xH)

= 0,
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for all ψ ∈ P (G/H). Hence, T (f∗) = 0, where f ∈ L1(G) and Tf = 0.

It is easy to show that the linear operator ϕ 7→ ϕ∗, ϕ ∈ L1(G/H),
is an involution on L1(G/H). Our main result is that the convolution
and the involution defined on L1(G/H), make it an involutive Banach
algebra with an approximate identity with a similar structure to L1(G).

Theorem 4.4. L1(G/H) is an involutive Banach algebra.

Proof. The associativity of convolution “ ∗ ” on L1(G/H) is obtained
from Theorem 4.3 and the associativity of convolution on L1(G). Also, it
is easily observed that the equalities in Corollary 4.1 remain valid for all
functions in L1(G/H). A conclusion similar to the proof of Theorem 4.1
proves that:

‖ϕ ∗ ψ‖1 ≤ ‖ϕ‖1.‖ψ‖1 (ϕ,ψ ∈ L1(
G

H
)).

Moreover, for all ϕ ∈ L1(G/H), we have,

‖ϕ∗‖1 = inf{‖g‖1 : g ∈ L1(G), ϕ∗ = Tg}
= inf{‖f∗‖1 : f ∈ L1(G), ϕ = Tf}
= inf{‖f‖1 : f ∈ L1(G), ϕ = Tf}
= ‖ϕ‖1.

�

Theorem 4.5. Let U be a neighborhood base at e in G. For all U ∈ U ,
take ψU = T (hU ), where hU ∈ C+

c (G) is such that supp (hU ) ⊆ U , ȟU =
hU , and

∫
G hU (x) dx = 1. Then, for all ϕ ∈ L1(G/H), ‖ϕ∗ψU−ϕ‖1 → 0

and ‖ψU ∗ ϕ− ϕ‖1 → 0 as U → {e}.

Proof. Let U be a neighborhood base at e. For all U ∈ U , there
exists a function hU ∈ C+

c (G) so that supp (hU ) ⊆ U , ȟU = hU , and∫
G hU (x) dx = 1. Then, {hU}U∈U is an approximate identity for L1(G)

(cf. [2], Proposition 2.42). Now, let ψU = T (hU ), where U ∈ U , and
suppose that ϕ ∈ L1(G/H). Then, ϕ = Tf , for some f ∈ L1(G) and
hence,

‖ϕ ∗ ψU − ϕ‖1 = ‖T (f ∗ hU )− Tf‖1

≤ ‖f ∗ hU − f‖1.
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This implies that ‖ϕ ∗ ψU − ϕ‖1 → 0 as U → {e}. In a similar way, it
can be shown that ‖ψU ∗ ϕ− ϕ‖1 → 0 as well, where U → {e}. �

Finally, we give a necessary and sufficient condition on a closed sub-
space of L1(G/H) to make it a left ideal. But, first we point out that
one can show by an easy calculation that

Lx(ϕ ∗ ψ) = (Lxϕ) ∗ ψ,

for all ϕ,ψ ∈ L1(G/H) and x ∈ G.

Theorem 4.6. Let I be a closed subspace of L1(G/H). Then, I is a
left ideal if and only if it is closed under left translations.

Proof. Suppose that I is a left ideal, {ψU}U∈U is an approximate
identity, and ϕ ∈ I. Then, for all x ∈ G we can write,

Lxϕ = limU→{e}Lx(ψU ∗ ϕ)

= limU→{e}(LxψU ) ∗ ϕ,

which shows that Lxϕ ∈ I. For the converse, suppose that I is closed
under left translations. It follows from (4) that for all ϕ,ψ ∈ Cc(G/H),
ϕ ∗ ψ is in the closed linear span of the left translations of ψ, which
shows that ϕ ∗ψ belongs to I. Using the fact that Cc(G/H) is dense in
L1(G/H), we achieve ϕ ∗ ψ ∈ I for all ϕ,ψ ∈ L1(G/H). �

It is easy to see that if H is the trivial subgroup {e}, then T (f ∗
g)(xH) = f ∗ g(x), x ∈ G, where (G/H, µ) is considered as a measure
space with the G-invariant measure µ which arises from the constant
function ρ(x) = 1.
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