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Abstract. Let G be a finite group and π(G) be the set of all the
prime divisors of |G|. The prime graph of G is a simple graph
Γ(G) whose vertex set is π(G) and two distinct vertices p and
q are joined by an edge if and only if G has an element of or-
der pq, and in this case we will write p ∼ q. The degree of p
is the number of vertices adjacent to p and is denoted by deg(p).
If |G| = pα1

1 pα2
2 ...p

αk
k , p,is different primes, p1 < p2 < ... < pk,

then D(G) = (deg(p1), deg(p2), ..., deg(pk)) is called the degree pat-
tern of G. A finite group G is called k-fold OD-characterizable if
there exist exactly k non-isomorphic groups S with |G| = |S| and
D(G) = D(S). In this paper, we characterize groups with the same
order and degree pattern as an almost simple groups related to
L3(25).
Keywords: OD-characterizable group, degree pattern, prime graph.
MSC(2010): Received: 30 April 2009, Accepted: 21 June 2010.

1. Introduction

Throughout this article, all groups under consideration are finite. For
any group G, we denote by π(G) the set of all prime divisors of |G| and
the set of orders of the elements of G is denoted by πe(G). The prime
graph Γ(G) of a group G is a simple graph whose vertex set is π(G) and
two distinct primes p and q are joined by an edge (written p ∼ q) if and
only ifG contains an element of order pq. For p ∈ π(G), we put deg(p) :=
|{q ∈ π(G)|p ∼ q}|, which is called the degree of p. If |G| = pα1

1 pα2
2 ...pαk

k ,
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p,is different primes, we define D(G) := (deg(p1), deg(p2), ..., deg(pk)),
where p1 < p2 < ... < pk, which is called the degree pattern of G.

Definition 1.1. The group G is called k-fold OD-characterizable if there
exist exactly k non-isomorphic groups H satisfying conditions |G| = |H|
and D(G) = D(H). In particular, a 1-fold OD-characterizable group is
simply called OD-characterizable.

The interest in characterizing finite groups by degree pattern started
in [4] by M.R. Darafsheh,et.al., in which the authors proved that if G
is a finite group such that |G| = |M | and D(G) = D(M), where M is
one of these simple groups: (1) sporadic simple groups, (2) alternating
Ap with p and p − 2 primes, (3) some simple groups of Lie type, then
G ∼= M .

A group G is an almost simple group, if S⊴G ≲ Aut(S), for some non-
abelian group S. In many articles it has been shown that many finite al-
most simple groups are OD-characterizable or k-fold OD-characterizable
for certain k ≥ 2.

Let A and B be two groups then a split extension is denoted by A : B.
If L is a finite simple group and Aut(L) ∼= L : A, then if B is a cyclic
subgroup of A of order n, we will write L : n for the split extension
L : B. Moreover if there are more than one subgroup of order n in A,
then we will denote them by L : n1, L : n2, etc.

In [3], for p = 23, 31, 43 and 47, OD-characterizability of Ap+3 has
been proved. Also the authors have shown that the automorphism
groups of these groups are 3-fold OD-characterizable.

In [7], for L := L2(49), it is shown that finite almost simple groups
L, L : 21, L : 22 and L : 23 are OD-characterizable; L : 22 is 9-fold
OD-characterizable( 22 is the Klein,s four group) and in [9], for L :=
U6(2), it is shown that finite almost simple groups L and L : 2 are
OD-characterizable, L : 3 is 3-fold OD-characterizable, and L : S3 is
5-fold OD-characterizable. Also in [8], it is shown that all simple K4-
groups except A10 are OD-characterizable (we recall that a finite group
possessing exactly n prime divisors is called Kn-group).

We denote the socle of G by Soc(G), which is the subgroup generated
by the set of all minimal normal subgroups of G. For p ∈ π(G), we
denote by Gp and Sylp(G) a Sylow p-subgroup of G and the set of all
Sylow p-subgroups of G respectively, also for a prime t, |G|t denotes the
t-part of |G|, i.e., |G|t = tr such that tr||G| and tr+1 ∤ |G|. All further
unexplained notations are standard and can be found in [5].
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In this article our main aim is to show the characterizability of the
almost simple groups related to L := L3(25) by the degree pattern in
the prime graph and the order of the group. In fact, we will prove the
following Theorem.

Main Theorem Let M be an almost simple group related to L =
L3(25). If G is a finite group such that D(G) = D(M) and |G| = |M |,
then the following assertions hold:

(a) If M = L, then G ∼= L.
(b) If M = L : 21, then G ∼= L : 21.
(c) If M = L : 22, then G ∼= L : 22.
(d) If M = L : 23, then G ∼= L : 23.
(e) If M = L : 3, then G ∼= L : 3, Z3 × L or Z3.L.
(f) IfM = L : 22, thenG ∼= L : 22, Z2.(L : 21), Z2.(L : 22), Z2.(L : 23),

Z4 × L or (Z2 × Z2)× L.
(g) If M = L : (D6)1, then G ∼= L : (D6)1, Z3 × (L : 21), (Z3 × L).Z2

or (Z3.L).Z2.
(h) If M = L : (D6)2, then G ∼= L : (D6)2, Z3.(L : 22), (Z3 ×L).Z2 or

(Z3.L).Z2.
(i) If M = L : 6, then G ∼= L : 6, Z3×(L : 23), Z3.(L : 23), (Z3×L).Z2

or (Z3.L).Z2.
(j) If M = L : D12, then G ∼= L : D12, Z2 × (L : (D6)1), Z2 × (L :

(D6)2), Z2 × (L : 6), Z3.(L : 22), (Z3 × (L : 23)).Z2, (Z3.(L : 21)).Z2,
(Z3.(L : 22)).Z2, (Z3.(L : 23)).Z2, Z4 × (L : 3), (Z2 × Z2) × (L : 3),
(Z4×L).Z3, ((Z2×Z2)×L).Z3, Z6×(L : 21), Z6×(L : 22), Z6×(L : 23),
(Z6 × L).Z2, D6 × (L : 21), D6 × (L : 22), D6 × (L : 23), Z12 × L,
(Z2 × Z6)× L, D12 × L, A4 × L, T × L.

2. Preliminary lemmas

It is well-known that Aut(L3(25)) ∼= L3(25) : D12 where D12 denotes
the dihedral group of order 12. We remark that D12 has the following
non-trivial proper subgroups up to conjugacy: three subgroups of order
2, one cyclic subgroup each of order 3 and 6, two subgroups isomorphic
to D6

∼= S3 and one subgroup of order 4 isomorphic to the Klein,s four
group denoted by 22. The field and the duality automorphisms of L3(25)
are denoted by 21 and 22 respectively, and we set 23 = 21.22(duality∗field
which is called the diagonal automorphism). Therefore up to conjugacy
we have the following almost simple groups related to L3(25).
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Lemma 2.1. If G is an almost simple group related to L = L3(25),
then G is isomorphic to one of the following groups: L,L : 21, L : 22, L :
23, L : 3, L : 22, L : (D6)1, L : (D6)2, L : 6, L : D12.

A completely reducible group will be called a CR-group. A CR-group
has trivial center if and only if it is a direct product of non-abelian
simple groups and in this case, it is called a centerless CR-group. The
following Lemma determines the structure of the automorphism group
of a centerless CR-group.

Lemma 2.2. [5], Theorem 3.3.20 Let R be a finite centerless CR-group
and write R = R1 × R2 × ... × Rk, where Ri is a direct product of
ni isomorphic copies of a simple group Hi, and Hi and Hj are not
isomorphic if i ̸= j. Then Aut(R) = Aut(R1)×Aut(R2)× ...×Aut(Rk)
and Aut(Ri) ∼= Aut(Hi) ≀ Sni, where in this wreath product Aut(Hi)
appears in its right regular representation and the symmetric group Sni

in its natural permutation representation. Moreover, these isomorphisms
induce isomorphisms Out(R) ∼= Out(R1)×Out(R2)× ...×Out(Rk) and
Out(Ri) ∼= Out(Hi) ≀ Sni.

Lemma 2.3. [2], Theorem 10.3.1 Let G be a Frobenius group with kernel
K and complement H. Then:

(a)K is a nilpotent group.
(b)|K| ≡ 1(mod|H|).

Let p ≥ 5 be a prime. We denote by Sp the set of all simple groups
with prime divisors at most p. Clearly, if q ≤ p, then Sq ⊆ Sp. We list
all simple groups S in class S31 with their order and the order of their
outer automorphisms o = |Out(S)| in TABLE 1, taken from [6].TABLE
1: Simple groups in Sp, p ≤ 31.

S |S| o S |S| o
A5 22 · 3 · 5 2 L2(64) 26 · 32 · 5 · 7 · 13 6

A6 23 · 32 · 5 4 U4(5) 27 · 34 · 56 · 7 · 13 4

S4(3) 26 · 34 · 5 2 L3(9) 27 · 36 · 5 · 7 · 13 4

L2(7) 23 · 3 · 7 2 S6(3) 29 · 39 · 5 · 7 · 13 2

L2(8) 23 · 32 · 7 3 O7(3) 29 · 39 · 5 · 7 · 13 2

U3(3) 25 · 33 · 7 2 G2(4) 212 · 33 · 52 · 7 · 13 2

A7 23 · 32 · 5 · 7 2 S4(8) 212 · 34 · 5 · 72 · 13 6

L2(49) 24 · 3 · 52 · 72 4 O+
8 (3) 212 · 312 · 52 · 7 · 13 24

U3(5) 24 · 32 · 53 · 7 6 L5(3) 29 · 310 · 5 · 112 · 13 2

L3(4) 26 · 32 · 5 · 7 12 A13 29 · 35 · 52 · 7 · 11 · 13 2

(Continued)
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S |S| o S |S| o
A8 26 · 32 · 5 · 7 2 A14 210 · 35 · 52 · 72 · 11 · 13 2

A9 26 · 34 · 5 · 7 2 A15 210 · 36 · 53 · 72 · 11 · 13 2

J2 27 · 33 · 52 · 7 2 L6(3) 211 · 315 · 5 · 7 · 112 · 132 4

A10 27 · 34 · 52 · 7 2 Suz 213 · 37 · 52 · 7 · 11 · 13 2

U4(3) 27 · 36 · 5 · 7 8 A16 214 · 36 · 53 · 72 · 11 · 13 2

S4(7) 28 · 32 · 52 · 74 2 Fi22 217 · 39 · 52 · 7 · 11 · 13 2

S6(2) 29 · 34 · 5 · 7 1 L2(17) 24 · 32 · 17 2

O+
8 (2) 212 · 35 · 52 · 7 6 L2(16) 24 · 3 · 5 · 17 4

L2(11) 22 · 3 · 5 · 11 2 S4(4) 28 · 32 · 52 · 17 4

M11 24 · 32 · 5 · 11 1 He 210 · 33 · 52 · 73 · 17 2

M12 26 · 33 · 5 · 11 2 O−
8 (2) 212 · 34 · 5 · 7 · 17 2

U5(2) 210 · 35 · 5 · 11 2 L4(4) 212 · 34 · 52 · 7 · 17 4

M22 27 · 32 · 5 · 7 · 11 2 S8(2) 216 · 35 · 52 · 7 · 17 1

A11 27 · 34 · 52 · 7 · 11 2 U4(4) 212 · 32 · 53 · 13 · 17 4

McL 27 · 36 · 53 · 7 · 11 2 U3(17) 26 · 34 · 7 · 13 · 173 6

HS 29 · 32 · 53 · 7 · 11 2 O−
10(2) 220 · 36 · 52 · 7 · 11 · 17 2

A12 29 · 35 · 52 · 7 · 11 2 L2(13
2) 23 · 3 · 5 · 7 · 132 · 17 4

U6(2) 215 · 36 · 5 · 7 · 11 6 S4(13) 26 · 32 · 5 · 72 · 134 · 17 2

L3(3) 24 · 33 · 13 2 L3(16) 212 · 32 · 52 · 7 · 13 · 17 24

L2(25) 23 · 3 · 52 · 13 4 S6(4) 218 · 34 · 53 · 7 · 13 · 17 2

U3(4) 26 · 3 · 52 · 13 4 O+
8 (4) 224 · 35 · 54 · 7 · 13 · 172 12

S4(5) 26 · 32 · 54 · 13 2 F4(2) 224 · 36 · 52 · 72 · 13 · 17 2

L4(3) 27 · 36 · 5 · 13 4 A17 214 · 36 · 53 · 72 · 11 · 13 · 17 2

2F4(2)
′

211 · 33 · 52 · 13 2 A18 215 · 38 · 53 · 72 · 11 · 13 · 17 2

L2(13) 22 · 3 · 7 · 13 2 L2(19) 22 · 32 · 5 · 19 2

L2(27) 22 · 33 · 7 · 13 6 L3(7) 25 · 32 · 73 · 19 6

G2(3) 26 · 36 · 7 · 13 2 U3(2
3) 29 · 34·7 · 19 18

3D4(2) 212 · 34 · 72 · 13 3 U3(19) 25 · 32 · 52 · 73 · 19 2

Sz(8) 26 · 5 · 7 · 13 3 L4(7) 29 · 34 · 52 · 76 · 19 4

J3 27 · 35 · 5 · 17 · 19 2 A29 226 · 313 · 56 · 74 2

.112 · 132 · 17 · 19 · 23 · 29

J1 25 · 3 · 5 · 7 · 11 · 19 1 A30 227 · 314 · 57 · 74 2

.112 · 132 · 17 · 19 · 23 · 29

L3(11) 24 · 3 · 52 · 7 · 113 · 19 2 L2(31) 25 · 3 · 5 · 31 2

HN 214 · 36 · 56 · 7 · 11 · 19 2 L3(5) 25 · 3 · 53 · 31 2

U4(2
3) 218 · 37 · 5 · 72 · 13 · 19 6 L2(2

5) 25 · 3 · 11 · 31 5

A19 216 · 38 · 53 · 72 · 11 · 13 · 17 · 19 2 L2(5
3) 22 · 32 · 53 · 7 · 31 6

A20 218 · 38 · 54 · 72 · 11 · 13 · 17 · 19 2 G2(5) 26 · 33 · 56 · 7 · 31 1

A21 218 · 39 · 54 · 73 · 11 · 13 · 17 · 19 2 L5(2) 210 · 32 · 5 · 7 · 31 2

(Continued)
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S |S| o S |S| o
A22 220 · 39 · 54 · 73 · 112 · 13 · 17 · 19 2 L6(2) 215 · 34 · 5 · 72 · 31 2

2E6(2) 236 · 39 · 52 · 72 · 11 · 13 · 17 · 19 6 L4(5) 27 · 32 · 56 · 13 · 31 8

L2(23) 23 · 3 · 11 · 23 2 L3(5
2) 27 · 32 · 56 · 7 · 13 · 31 12

U3(23) 27 · 32 · 11 · 132 · 233 6 O7(5) 29 · 34 · 59 · 7 · 13 · 31 2

M23 27 · 32 · 5 · 7 · 11 · 23 1 S6(5) 29 · 34 · 59 · 7 · 13 · 31 2

M24 210 · 33 · 5 · 7 · 11 · 23 1 O+
8 (5) 212 · 35 · 512 · 7 · 132 · 31 24

Co3 210 · 37 · 53 · 7 · 11 · 23 1 O+
10(2) 220 · 35 · 52 · 7 · 17 · 31 2

Co2 218 · 36 · 53 · 7 · 11 · 23 1 U3(31) 211 · 3 · 5 · 72 · 19 · 313 2

Co1 221 · 39 · 54 · 72 · 11 · 13 · 23 1 L5(2
2) 220 · 35 · 52 · 7 · 11 · 17 · 31 4

Fi23 218 · 313 · 52 · 7 1 S10(2) 225 · 36 · 52 · 7 · 11 · 17 · 31 1

.11 · 13 · 17 · 23

A23 220 · 39 · 54 · 73 2 O+
12(2) 230 · 38 · 52 · 72 · 11 · 17 · 31 2

.112 · 13 · 17 · 19 · 23

A24 223 · 310 · 54 · 73 2 O
′
N 29 · 34 · 5 · 73 · 11 · 19 · 31 2

.112 · 13 · 17 · 19 · 23

A25 223 · 310 · 56 · 73 2 Th 215 · 310 · 53 · 72 · 13 · 19 · 31 1

.112 · 13 · 17 · 19 · 23

A26 224 · 310 · 56 · 73 2 O−
12(2) 230 · 36 · 53 · 7 · 11 · 13 · 17 · 31 2

.112 · 132 · 17 · 19 · 23

A27 224 · 313 · 56 · 73 2 L6(2
2) 230 · 36 · 53 · 72 · 11 · 13 · 17 · 31 12

.112 · 132 · 17 · 19 · 23

A28 226 · 313 · 56 · 74 2 S12(2) 236 · 38 · 53 · 72 · 11 · 13 · 17 · 31 1

.112 · 132 · 17 · 19 · 23

L2(29) 22 · 3 · 5 · 7 · 29 2 A31 224 · 313 · 56 · 74 · 112 2

.132 · 17 · 19 · 23 · 29 · 31

L2(17
2) 25 · 32 · 5 · 172 · 29 4 A32 229 · 313 · 56 · 74 · 112 2

.132 · 17 · 19 · 23 · 29 · 31

S4(17) 210 · 34 · 5 · 174 · 29 2 A33 229 · 314 · 56 · 74 · 113 2

.132 · 17 · 19 · 23 · 29 · 31

Ru 214 · 33 · 53 · 7 · 13 · 29 1 A34 230 · 314 · 56 · 74 · 113 2

.132 · 172 · 19 · 23 · 29 · 31

U4(17) 211 · 37 · 5 · 7 · 13 · 176 · 29 4 A35 230 · 314 · 57 · 75 · 113 2

.132 · 172 · 19 · 23 · 29 · 31

Fi
′
24 221 · 316 · 52 · 73 · 11 2 A36 232 · 316 · 57 · 75 · 113 2

.13 · 17 · 23 · 29 .132 · 172 · 19 · 23 · 29 · 31

3. Proof of the main theorem

We assume M is an almost simple group related to L = L3(25) and G is a
finite group such that D(G) = D(M) and |G| = |M |. We break the proof into
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a number of separate propositions. In each proposition, under assumptions we
diagram all possibilities for Γ(G) by use of the variables for some vertices. Also
since in some propositions we need to know the structure of Γ(M) to determine
the possibilities for G, we diagram the prime graph of all extensions of L in
pages 23 to 25. Note that the set of order elements in each of the following
propositions and also the Schur multiplier of all extensions are calculated using
Magma.

Proposition 3.1. If M = L, then G ∼= L.

Proof. By TABLE 1, |L| = 27.32.56.7.13.31. πe(L) = {1, 2, 3, 4, 5, 6, 7, 8, 10, 12,
13, 16, 20, 24, 26, 31, 40, 52, 104, 208, 217}, soD(L) = (3, 1, 1, 1, 1, 1). Now under
assumptions |G| = |L| and D(G) = D(L), we conclude that Γ(G) has following
forms:

•••

•

• •
e2c

d

a b
Figure 3.1:

where {a, b, c, d, e} = π(G)− {2}.

To simplify, in every proposition, we break the proof into several steps.
Step 1. Let K be the maximal normal solvable subgroup of G. Then K is

a {2, 3, 5}-group. In particular, G is non-solvable.
We consider these two parts depending on {a, b}.
Part A. {a, b} ̸= {13, 31}. First, we show that K is a 31

′
-group. Assume

the contrary and let 31 ∈ π(K). We claim 13 does not divide the order of K.
Otherwise, we may suppose that T is a Hall {13, 31}-subgroup of K. It is seen
that T is a nilpotent subgroup of order 13.31. Thus, 13.31 ∈ πe(K) ⊆ πe(G),
a contradiction. Thus, {31} ⊆ π(K) ⊆ π(G)− {13}. Let K31 ∈ Syl31(K). By
Frattini argument, G = KNG(K31). Therefore, NG(K31) contains an element
x of order 13. Since G has no element of order 13.31, ⟨x⟩ should act fixed point
freely on K31, that is implying ⟨x⟩K31 is a Frobenius group. By Lemma 2.3(b),
|⟨x⟩||(|K31| − 1). It follows that 13|31 − 1, which is a contradiction. Now we

show that K is a p
′
-group where p ∈ {a, b, c, d, e} − {3, 5, 31} = {7, 13}. First

suppose that p ∈ {c, d, e} − {3, 5, 31}. Assume the contrary and let x be an
element of K of order p. According to Γ(G), CG(x) is a {2, p}-group. Since
NG(⟨x⟩)
CG(x) ≲ Aut(⟨x⟩) ∼= Zp−1, π(NG(⟨x⟩)) ⊆ {2, 3, p}. By Frattini argument,

G = KNG(⟨x⟩), so 31 must divide the order of K, which is a contradiction. It

is enough to show that K is a p
′
-group where p ∈ {a, b} − {3, 5, 31}. Assume

the contrary, so we may suppose that x is an element of K of order p. Then by
Γ(G), CG(x) is a {a, b}-group. Using similar argument as before, we see that
π(NG(⟨x⟩)) ⊆ {2, 3, a, b}, therefore {c, d, e} ⊆ π(K), that is a contradiction.
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So K is a {2, 3, 5}-group.
Part B. {a, b} = {13, 31}. First, we show that K is a 31

′
-group. Assume the

contrary that 31 ∈ π(K). By the same argument in Part A and considering 7

instead of 13, we get a contradiction. Now we show that K is a p
′
-group for

p = 7 and 13. Let p ∈ π(K) and x be an element of K of order p. First, put

p = 7 then by Γ(G), CG(x) is a {2, 7}-group. Since NG(⟨x⟩)
CG(x) ≲ Aut(⟨x⟩) ∼= Z6,

NG(⟨x⟩) is a {2, 3, 7}-group. Now by Frattini argument, G = KNG(⟨x⟩), so 31
must divide the order of K and that is a contradiction. Next we put p = 13,
then by Γ(G) we see that CG(x) is a {13, 31}-group. By the same argument as
before, NG(⟨x⟩) is a {2, 3, 13, 31}-group, so 7 must divide the order of K which
is a contradiction. Therefore K is a {2, 3, 5}-group.

In addition since K ̸= G, G is non-solvable, and this completes the proof of
Step 1.

Step 2. The quotient G
K is an almost simple group. In fact, S ⊴ G

K ≲
Aut(S), where S is a finite non-abelian simple group.

Let G = G
K . S := Soc(G) = P1 × P2 × ... × Pm, where Pi

,s are finite
non-abelian simple groups (by Step 1, we conclude that every minimal normal
subgroup of G

K is non-abelian). Also CḠ(S) = 1. Because if 1 ̸= T
K =: CḠ(S),

then by Zorn’s Lemma, there exists a normal minimal subgroup M of Ḡ such
that M ≤ T

K = CḠ(S) ≤ CḠ(M). So M ⊆ CḠ(M) ∩ M = Z(M) and it

implies that M is abelian, a contradiction. Now since
NG(S)

CG(S) ≲ Aut(S), we

have S ⊴ G
K ≲ Aut(S). If we show that m = 1, the proof of Step 2 is complete.

Suppose that m ≥ 2. We claim 31 does not divide |S|. Assume the contrary
and let 31 | |S|, on the other hand, {2, 3} ⊂ π(Pi) for every i (by TABLE
1), hence 2 ∼ 31 and 3 ∼ 31, which is a contradiction. Now, by Step 1, we
observe that 31 ∈ π(G) ⊆ π(Aut(S)). But Aut(S) = Aut(S1) × Aut(S2) ×
...×Aut(Sr), where the groups Sj are direct products of isomorphic Pi

,s such
that S = S1 × S2 × ... × Sr. Therefore, for some j, 31 divides the order of an
automorphism group of a direct product Sj of t isomorphic simple groups Pi.
Since Pi ∈ S31, it follows that |Out(Pi)| is not divisible by 31 (see TABLE 1),
so 31 does not divide the order of Aut(Pi). Now, by Lemma 2.2, we obtain
|Aut(Sj)| = |Aut(Pi)|t!.t! . Therefore, t ≥ 31 and so 262 must divide the order
of G, which is a contradiction. Therefore, m = 1 and S = P1, so the proof of
Step 2 is complete.

Step 3. G is isomorphic to L3(25).
By TABLE 1 and Step 1, it is evident that |S| = 2α.3β .5γ .7.13.31, where

2 ≤ α ≤ 7, 1 ≤ β ≤ 2 and 0 ≤ γ ≤ 6. Now, using collected results contained in
TABLE 1, we conclude that S ∼= L3(25) and by Step 2, L ⊴ G

K ≲ Aut(L). As
|G| = |L|, we deduce K = 1, so G ∼= L, and the proof is complete. □

Proposition 3.2. If M = L : 21, then G ∼= L : 21.
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Proof. As |L : 21| = 28.32.56.7.13.31 and πe(L : 21) = {1, 2, 3, 4, 5, 6, 7, 8, 10, 12,
13, 16, 20, 24, 26, 31, 40, 48, 52, 62, 104, 208, 217} thenD(L : 21) = (4, 1, 1, 1, 1, 2).
Since |G| = |L : 21| and D(G) = D(L : 21), the prime graph of G has several
possibilities are shown in the following figure:

• •

•

•

•

•
c 31

b

2 a

d

Figure 3.2:

where {a, b, c, d} = {3, 5, 7, 13}.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is
a {2, 3, 5}-group. In particular, G is non-solvable.

We consider separate parts depending on a:
Part A. Let a = 3. We choose one of the primes in {b, c, d} that is unequal

to 5 as r. First, we show that K is a 31
′
-group. Assume the contrary and let

31 ∈ π(K). Then r doesn’t divide the order ofK. Otherwise, there exists a Hall
{r, 31}-subgroup T of K and it is seen that T is a nilpotent subgroup of order
r.31. Thus, r.31 ∈ πe(K) ⊆ πe(G), a contradiction. Thus, {31} ⊆ π(K) ⊆
π(G) − {r}. Let K31 ∈ Syl31(K). By Frattini argument, G = KNG(K31).
Therefore, NG(K31) contains an element x of order r. Since G has no element
of order r.31, ⟨x⟩ should act fixed point freely on K31, which implies that
⟨x⟩K31 is a Frobenius group. By Lemma 2.3(b), |⟨x⟩||(|K31| − 1). It follows
that r|31− 1, which is a contradiction, because we know that r ̸= 3, 5. Now we

show that K is a p
′
-group for p = 7 and 13. Assume the contrary: p||K| and

x is an element of K of order p. According to Γ(G), CG(x) is a {2, p}-group.
Since NG(⟨x⟩)

CG(x) ≲ Aut(⟨x⟩) ∼= Zp−1, NG(⟨x⟩) is a {2, 3, p}-group. As by Frattini

argument, G = KNG(⟨x⟩), then 31 must divide the order of K, which is a
contradiction. Therefore K is a {2, 3, 5}-group.
Part B. Let a ̸= 3. In this part we choose one of the primes in {b, c, d} that
is unequal to 3 and 5 as r. By a similar way in Part A, it is seen that K is a
31

′
-group. We prove that K is a p

′
-group where p ∈ {b, c, d} − {3, 5}. Assume

the contrary, let p||K| and x be an element of K of order p. By the exact way
in Part A for p = 7 and 13, we get a contradiction. It is enough to show that
K is a a

′
-group if a ̸= 5. Let a ∈ π(K), and x be an element of K of order a.

By Γ(G), CG(x) is a {a, 31}-group, therefore NG(⟨x⟩) is a {2, 3, a, 31}-group,
and since by Frattini argument, G = KNG(⟨x⟩), r must divide the order of K,
which is a contradiction.
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In addition since K ̸= G, G is non-solvable and this completes the proof of
Step 1.

Step 2. The quotient G
K is an almost simple group. In fact, S ⊴ G

K ≲
Aut(S), where S is a finite non-abelian simple group.

Let G = G
K . If we set S := Soc(G), S = P1 × P2 × ... × Pm, where Pi

,s
are finite non-abelian simple groups. In Step 2 of Proposition 3.1, we showed
that S ⊴ G

K ≲ Aut(S), then it is enough to prove that m = 1 to complete
the proof of Step 2. Suppose that m ≥ 2. We claim 13 does not divide
|S|. Assume the contrary and let 13 | |S|, on the other hand, {2, 3} ⊂ π(Pi)
for every i (by TABLE 1), hence 2 ∼ 13 and 3 ∼ 13, which is a contra-
diction. Now, by Step 1, we observe that 13 ∈ π(G) ⊆ π(Aut(S)). But
Aut(S) = Aut(S1) × Aut(S2) × ... × Aut(Sr), where the groups Sj are di-
rect products of isomorphic Pi

,s such that S = S1 × S2 × ... × Sr. Therefore,
for some j, 13 divides the order of an automorphism group of a direct prod-
uct Sj of t isomorphic simple groups Pi. Since Pi ∈ S31, it follows that
|Out(Pi)| is not divisible by 13 (see TABLE 1). Now, by Lemma 2.2, we obtain
|Aut(Sj)| = |Aut(Pi)|t!.t! . Therefore, t ≥ 13 and so 226 must divide the order
of G, which is a contradiction. Therefore m = 1 and S = P1.

By TABLE 1 and Step 1, it is evident that |S| = 2α.3β .5γ .7.13.31, where
2 ≤ α ≤ 8, 1 ≤ β ≤ 2 and 0 ≤ γ ≤ 6. Now, using collected results contained in
TABLE 1, we conclude that S ∼= L3(25) and by Step 2, L ⊴ G

K ≲ Aut(L). As
|G| = |L : 21| = 2|L|, we deduce |K| = 1 or 2.

If |K| = 1, then G ∼= L : 21 because |G| = 2|L|. Obviously, G can not be
isomorphic to L : 22 or L : 23, because deg(31) = 1 in Γ(L : 22) and Γ(L : 23),
(see page 24).

If |K| = 2, then K ≤ Z(G) and so deg(2) = 5, which is a contradiction. □

Proposition 3.3. If M = L : 22, then G ∼= L : 22.

Proof. By TABLE 1, |L : 22| = 28.32.56.7.13.31. πe(L) = {1, 2, 3, 4, 5, 6, 7, 8, 10,
12, 13, 16, 20, 24, 26, 31, 40, 48, 52, 104, 208, 217}, so D(L : 22) = (3, 1, 1, 1, 1, 1).
Since |G| = |L : 22| and D(G) = D(L : 22), we conclude that Γ(G) has the
possibilities like Proposition 3.1.

•••

•

• •
e2c

d

a b
Figure 3.3:

where {a, b, c, d, e} = π(G)− {2}.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is
a {2, 3, 5}-group. In particular, G is non-solvable.
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Similarly to those in Proposition 3.1, We can prove these assertions.
Step 2. The quotient G

K is an almost simple group. In fact, S ⊴ G
K ≲

Aut(S), where S is a finite non-abelian simple group.
The proof is similar to Step 2, in Proposition 3.1.

Now by TABLE 1 and Step 1, it is evident that |S| = 2α.3β .5γ .7.13.31,
where 2 ≤ α ≤ 8, 1 ≤ β ≤ 2 and 0 ≤ γ ≤ 6. By using collected results
contained in TABLE 1, we deduce that S ∼= L3(25) and by Step 2 we conclude
that L⊴ G

K ≲ Aut(L). As |G| = |L : 22| = 2|L|, hence |K| = 1 or 2.
If |K| = 1, G ∼= L : 22 because |G| = 2|L|. As deg(2) = 4 in Γ(L : 21) and

Γ(L : 23) (see pages 23 and 24), we have only one possibility for G.
If |K| = 2, then K ≤ Z(G) and so deg(2) = 5, which is a contradiction. □

Proposition 3.4. If M = L : 23, then G ∼= L : 23.

Proof. By TABLE 1, |L : 23| = 28.32.56.7.13.31. πe(L : 23) = {1, 2, 3, 4, 5, 6, 7, 8
, 10, 12, 13, 14, 16, 20, 24, 26, 31, 40, 52, 104, 208, 217}, soD(L : 23) = (4, 1, 1, 2, 1,
1). Since |G| = |L : 23| and D(G) = D(L : 23), we conclude that there exist
some possibilities for Γ(G) are as follows:

• •

•

•

•

•
c 7

b

2 a

d

Figure 3.4:

where {a, b, c, d} = {3, 5, 13, 31}.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is
a {2, 3, 5}-group. In particular, G is non-solvable.
We consider different parts depending on a like Proposition 3.2:
Part A. Let a = 3. We choose one of the primes in {b, c, d} that is unequal to

5 as r. We show that K is a 7
′
-group. Assume the contrary and let 7 ∈ π(K).

Then r doesn’t divide the order of K. Otherwise, there exists a Hall {r, 7}-
subgroup T of K and it is seen that T is a nilpotent subgroup of order r.7.
Thus, r.7 ∈ πe(K) ⊆ πe(G), a contradiction. Thus, {7} ⊆ π(K) ⊆ π(G)− {r}.
Let K7 ∈ Syl7(K). By Frattini argument, G = KNG(K7). Therefore, NG(K7)
contains an element x of order r. Since G has no element of order r.7, ⟨x⟩ should
act fixed point freely on K7, implying ⟨x⟩K7 is a Frobenius group. By Lemma
2.3(b), |⟨x⟩||(|K7|−1). It follows that r|7−1, which is a contradiction, because

we know that r ̸= 2, 3. Now we show that K is a p
′
-group for p = 13 and 31.

Assume the contrary: p||K| and x is an element of K of order p. According to

Γ(G), CG(x) is a {2, p}-group. Since NG(⟨x⟩)
CG(x) ≲ Aut(⟨x⟩) ∼= Zp−1, NG(⟨x⟩) is

a {2, 3, 5, p}-group. By Frattini argument, G = KNG(⟨x⟩) then 7 must divide
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the order of K, which is a contradiction. Therefore K is a {2, 3, 5}-group.
Part B. Let a ̸= 3. We choose one of the primes in {b, c, d} that is unequal

to 5 and 3 as r. By a similar way in Part A, it is seen that K is a 7
′
-group.

Next we prove that K is a p
′
-group where p ∈ {b, c, d} − {3, 5}. Assume the

contrary, let p||K| and x be an element of K of order p. By the structure of
Γ(G), we conclude that CG(x) is a {2, p}-group, and by the same argument
as in Part A, we see that NG(⟨x⟩) is a {2, 3, 5, p}-group. As G = KNG(⟨x⟩),
then 7 must divide the order of K, which is a contradiction. It is enough to
show that K is a a

′
-group if a ̸= 5. Let a ∈ π(K), and x be an element of K

of order a. By Γ(G), CG(x) is a {a, 7}-group. We use the same technique as
before and we can easily see that NG(⟨x⟩) is a {2, 3, 5, 7, a}-group. Since by
Frattini argument, G = KNG(⟨x⟩), r must divide the order of K, which is a
contradiction. Therefore K is a {2, 3, 5}-group.

In addition since K ̸= G, G is non-solvable and this completes the proof of
Step 1.

Step 2. The quotient G
K is an almost simple group. In fact, S ⊴ G

K ≲
Aut(S), where S is a finite non-abelian simple group.

Let G = G
K . If we set S := Soc(G), S = P1 × P2 × ... × Pm, where

Pi
,s are finite non-abelian simple groups. In Step 2 of Proposition 3.1, we

showed that S ⊴ G
K ≲ Aut(S), then it is enough to prove that m = 1

to complete the proof of Step 2. Suppose that m ≥ 2. We claim 31 does
not divide |S|. Assume the contrary and let 31 | |S|, on the other hand,
{2, 3} ⊂ π(Pi) (by TABLE 1), hence 2 ∼ 31 and 3 ∼ 31, which is a con-
tradiction. Now, by Step 1, we observe that 31 ∈ π(G) ⊆ π(Aut(S)). But
Aut(S) = Aut(S1) × Aut(S2) × ... × Aut(Sr), where the groups Sj are di-
rect products of isomorphic Pi

,s such that S = S1 × S2 × ... × Sr. Therefore,
for some j, 31 divides the order of an automorphism group of a direct prod-
uct Sj of t isomorphic simple groups Pi. Since Pi ∈ S31, it follows that
|Out(Pi)| is not divisible by 31 (see TABLE 1). Now, by Lemma 2.2, we obtain
|Aut(Sj)| = |Aut(Pi)|t!.t! . Therefore, t ≥ 31 and so 262 must divide the order
of G, which is a contradiction. Therefore m = 1 and S = P1.

By TABLE 1 and Step 1, it is evident that |S| = 2α.3β .5γ .7.13.31, where
2 ≤ α ≤ 8, 1 ≤ β ≤ 2 and 0 ≤ γ ≤ 6. Now, using collected results contained in
TABLE 1, we conclude that S ∼= L3(25) and by Step 2, L ⊴ G

K ≲ Aut(L). As
|G| = |L : 23| = 2|L|, we deduce |K| = 1 or 2.

If |K| = 1, G ∼= L : 23, because |G| = 2|L|. As deg(7) = 1 in Γ(L : 21) and
Γ(L : 22) (see pages 23 and 24), G can not be isomorphic to them.

If |K| = 2, then K ≤ Z(G) and so deg(2) = 5, which is a contradiction. □

Proposition 3.5. If M = L : 3, then G ∼= L : 3, Z3 × L or Z3.L.
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Proof. By TABLE 1, |L : 3| = 27.33.56.7.13.31. πe(L : 3) = {1, 2, 3, 4, 5, 6, 7, 8,
10, 12, 13, 15, 16, 20, 21, 24, 26, 30, 31, 39, 40, 48, 52, 60, 78, 93, 104, 120, 156, 208,
217, 312, 624, 651}, so D(L : 3) = (3, 5, 2, 2, 2, 2). Since |G| = |L : 3| and
D(G) = D(L : 3), we immediately conclude that Γ(G) has several possibilities
are as follows:

• ••

•• •

a b c

2 3 d

Figure 3.5:

where {a, b, c, d} = {5, 7, 13, 31}.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is
a {2, 3, 5}-group. In particular, G is non-solvable.
We consider the following different parts:
Part A. Let 31 ∈ {d, c}. First, we show that K is a 31

′
-group. Assume the

contrary and let 31 ∈ π(K). Since there is no difference in the proof between
choosing d as 31 and c as 31, we put d = 31. We know that one of the primes in
{a, b} is unequal to 5, we put it r. So r does not divide the order of K. Other-
wise, we may suppose that T is a Hall {31, r}-subgroup of K. It is easy to see
that T is a nilpotent subgroup of order r.31. Thus, r.31 ∈ πe(K) ⊆ πe(G), a
contradiction. Thus, {31} ⊆ π(K) ⊆ π(G)−{r}. Let K31 ∈ Syl31(K), by Frat-
tini argument G = KNG(K31). Therefore, NG(K31) has an element x of order
r. Since G has no element of order r.31, ⟨x⟩ should act fixed point freely on
K31, implying ⟨x⟩K31 is a Frobenius group. By Lemma 2.3(b), |⟨x⟩||(|K31|−1).

It follows that r|31−1, which is a contradiction. So K is a 31
′
-group. Next, we

prove that K is a p
′
-group for p ∈ {a, b, c} − {5}. If we assume p||K| and x is

an element of K of order p, we get a contradiction, because if p ∈ {a, b}− {5},
then by Γ(G), NG(⟨x⟩) is a {2, 3, p}-group and since by Frattini argument
G = KNG(⟨x⟩), 31 must divide the order of K, which is impossible. Also if
p ∈ {c} − {5}, we see that NG(⟨x⟩) is a {2, 3, 31, c}-group and by the same
argument as before, r must divide |K|, which is a contradiction. Therefore K
is a {2, 3, 5}-group.
Part B. Let {31} ⊈ {d, c}. To show that K is a 31

′
-group, we assume on the

contrary that 31||K|. If we put r = 13 and follow the same technique in Part

A, we get a contradiction. Thus K is a 31
′
-group. Next, we prove that K is

a p
′
-group where p ∈ {7, 13}. If we assume p||K| and x is an element of K

of order p, we get a contradiction, because π(CG(x)) ⊆ π(G)− {31} and so is
π(NG(⟨x⟩)). Since by Frattini argument G = KNG(⟨x⟩), 31 must divide the
order of K, which is impossible. Therefore K is a {2, 3, 5}-group.
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In addition since K ̸= G, G is non-solvable and the proof of this step is com-
plete.

Step 2. The quotient G
K is an almost simple group. In fact, S ⊴ G

K ≲
Aut(S), where S is a finite non-abelian simple group.

Let G = G
K . If we set S := Soc(G), S = P1 × P2 × ... × Pm, where Pi

,s
are finite non-abelian simple groups. In Step 2 of Proposition 3.1, we showed
that S ⊴ G

K ≲ Aut(S), then it is enough to prove that m = 1 to complete
the proof of Step 2. Suppose that m ≥ 2. We choose one of the primes in
{d, c} that is unequal to 5 as r. We claim r does not divide |S|. Assume
the contrary and let r | |S|. Since 2 ∈ π(Pi), hence 2 ∼ r, which is a con-
tradiction. Now, by Step 1, we observe that r ∈ π(G) ⊆ π(Aut(S)). But
Aut(S) = Aut(S1) × Aut(S2) × ... × Aut(Sr), where the groups Sj are direct
products of isomorphic Pi

,s such that S = S1 × S2 × ... × Sr. Therefore, for
some j, r divides the order of an automorphism group of a direct product Sj of
t isomorphic simple groups Pi. Since Pi ∈ S31, it follows that |Out(Pi)| is not
divisible by r (note that r ∈ {7, 13, 31} and see TABLE 1). Now, by Lemma
2.2, we obtain |Aut(Sj)| = |Aut(Pi)|t!.t! . Therefore, t ≥ r ≥ 7 and so 214 must
divide the order of G, which is a contradiction. Therefore m = 1 and S = P1.

By TABLE 1 and Step 1, it is evident that |S| = 2α.3β .5γ .7.13.31, where
2 ≤ α ≤ 7, 1 ≤ β ≤ 3 and 0 ≤ γ ≤ 6. Now, using collected results contained in
TABLE 1, we conclude that S ∼= L3(25) and by Step 2, L ⊴ G

K ≲ Aut(L). As
|G| = |L : 3| = 3|L|, we deduce |K| = 1 or 3.

If |K| = 1, then by assumption, G ∼= L : 3.

If |K| = 3, K ≤ CG(K) and therefore, CG(K)
K ⊴ G

K
∼= L implies that

CG(K)
K = 1 or CG(K)

K
∼= L because L is simple. If CG(K)

K = 1, then |L| =

|GK | = | G
CG(K) |||Aut(K)| = 2, a contradiction. So, G = CG(K). Therefore

K ≤ Z(G), that is, G is a central extension of K by L. If G splits over K, we
obtain G ∼= Z3 × L, otherwise, we have G ∼= Z3.L. □

Proposition 3.6. If M = L : 22, then G ∼= L : 22, Z2× (L : 21), Z2× (L : 22),
Z2 × (L : 23), Z4 × L or (Z2 × Z2)× L.

Proof. As |L : 22| = 29.32.56.7.13.31 and πe(L : 22) = {1, 2, 3, 4, 5, 6, 7, 8, 10, 12,
13, 14, 16, 20, 24, 26, 31, 40, 48, 52, 62, 104, 208, 217}, then D(L : 22) = (5, 1, 1, 2,
1, 2). By assumptions |G| = |L : 22| and D(G) = D(L : 22), we conclude that
Γ(G) has the following form (like Γ(L : 22), see page 24):
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• • •

• • •

31 13 5

7 2 3

Figure 3.6:

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is
a {2, 3, 5}-group. In particular, G is non-solvable.

First, we claim K is a 31
′
-group. Similarly to the former propositions, we

assume the contrary that 31 ∈ π(K). we easily see 13 does not divide the
order of K. Because otherwise, we may suppose that T is a Hall {13, 31}-
subgroup of K such that this subgroup is a nilpotent of order 13.31. Thus,
13.31 ∈ πe(K) ⊆ πe(G), a contradiction. Thus, {31} ⊆ π(K) ⊆ π(G) − {13}.
Now let K31 ∈ Syl31(K), by Frattini argument G = KNG(K31). Therefore,
NG(K31) has an element x of order 13. Since G has no element of order
13.31, ⟨x⟩ should act fixed point freely on K31, implying ⟨x⟩K31 is a Frobenius
group. By Lemma 2.3(b), |⟨x⟩||(|K31| − 1). It follows that 13|31 − 1, which

is a contradiction, therefore K is a 31
′
-group. To show that K is a p

′
-group

for p = 7 and 13, we assume the contrary that there exists an element x of
K of order p. First put p = 13. By the structure of Γ(G), we see that CG(x)
is a {2, 13}-group, then NG(⟨x⟩) is a {2, 3, 13}-group. So since by Frattini
argument, G = KNG(⟨x⟩) then 31 must divide the order of K, which is a
contradiction. But for p = 7, we see that NG(⟨x⟩) is a {2, 3, 7, 31}-group and
then 13 must divide the order of K, which is impossible. Therefore K is a
{2, 3, 5}-group. In addition since K ̸= G, G is non-solvable and the proof of
Step 1 is complete.

Step 2. The quotient G
K is an almost simple group. In fact, S ⊴ G

K ≲
Aut(S), where S is a finite non-abelian simple group.

To get the proof, follow the method in the proof of Step 2 in Proposition 3.2.

By TABLE 1 and Step 1, it is evident that |S| = 2α.3β .5γ .7.13.31, where
2 ≤ α ≤ 9, 1 ≤ β ≤ 2 and 0 ≤ γ ≤ 6. Now, using collected results contained in
TABLE 1, we conclude that S ∼= L3(25) and by Step 2, L ⊴ G

K ≲ Aut(L). As

|G| = |L : 22| = 4|L|, we deduce |K| = 1, 2 or 4.
If |K| = 1, then by assumption, G ∼= L : 22.
If |K| = 2, then K ≤ Z(G). In this case G is a central extension of Z2 by

L : 21, L : 22 or L : 23. If G splits over K then G ∼= Z2 × (L : 21), Z2 × (L : 22)
or Z2× (L : 23), otherwise |K| must divide the Schur multiplier of L : 21, L : 22
or L : 23, which are 1, 1 and 3 respectively, and it is impossible.

If |K| = 4, K ≤ CG(K) and therefore, CG(K)
K ⊴ G

K
∼= L implies that

CG(K)
K = 1 or CG(K)

K
∼= L because L is simple. If CG(K)

K = 1, then |L| =
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|GK | = | G
CG(K) |||Aut(K)| = 2 or 6, a contradiction. So, G = CG(K). Therefore

K ≤ Z(G), that is, G is a central extension of K by L. If G is a non-split
extension of K by L, then |K| must divide the Schur multiplier of L, which
is 3 (see [1]), but this is a contradiction. Therefore G splits over K. Hence
G ∼= K × L. So we have G ∼= Z4 × L or (Z2 × Z2)× L. □

Proposition 3.7. If M = L : (D6)1, then G ∼= L : (D6)1, Z3.(L : 21),
(Z3 × L).Z2 or (Z3.L).Z2.

Proof. As |L : (D6)1| = 6|L| = 28.33.56.7.13.31 and πe(L : (D6)1) = {1, 2, 3, 4, 5
, 6, 7, 8, 10, 12, 13, 15, 16, 20, 21, 24, 26, 30, 31, 39, 40, 48, 52, 60, 62, 78, 93, 104, 120
, 156, 208, 217, 312, 624, 651}, then D(L : (D6)1) = (4, 5, 2, 2, 2, 3). Since |G| =
|L : (D6)1| and D(G) = D(L : (D6)1), we conclude that there exist several
possibilities for Γ(G):

• • •

• • •

a 31 b

2 3 c

Figure 3.7:

where {a, b, c} = {5, 7, 13}.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is
a {2, 3, 5}-group. In particular, G is non-solvable.

First, we show that K is a 31
′
-group. Assume the contrary that 31||K|. We

know one of the primes in {a, b} is unequal to 5, put it r. Therefore by a
similar proof as in Proposition 3.5 (Step 1, Part A) we can get a contradiction

and therefore K is a 31
′
-group. Now we prove that K is a p

′
-group for p ∈

{a, b, c}− {5} = {7, 13}. Assume the contrary: p||K| and x is an element of K
of order p. First, let p ∈ {a, b} − {5}, then by Γ(G) we conclude that CG(x) is
a {2, 3, p}-group and therefore so is NG(⟨x⟩). As G = KNG(⟨x⟩), then 31 must
divide the order of K, which is a contradiction. For p ∈ {c}−{5}, NG(⟨x⟩) is a
{2, 3, 31, c}-group. Similar to the above discussion, as G = KNG(⟨x⟩), r have
to divide |K|, which is impossible. So K is a {2, 3, 5}-group. In addition since
K ̸= G, G is non-solvable and the proof of Step 1 is complete.

Step 2. The quotient G
K is an almost simple group. In fact, S ⊴ G

K ≲
Aut(S), where S is a finite non-abelian simple group.

Let G = G
K . If we set S := Soc(G), S = P1 × P2 × ... × Pm, where Pi

,s are
finite non-abelian simple groups. In Step 2 of Proposition 3.1, we showed that
S ⊴ G

K ≲ Aut(S), then it is enough to prove that m = 1 to complete the proof
of Step 2. Suppose that m ≥ 2. We claim r (r is one of the primes of a and b
that is unequal to 5) does not divide |S|. Assume the contrary and let r | |S|, so
by considering |G|r = r (note that r ∈ {7, 13}), we conclude that r just divides
the order of one of the Pi

,s. Without losing generality, we assume that r||P1|.



781 Rezaeezadeh, Darafsheh, Sajjadi and Bibak

Then the rest of the Pi
,s must be {2, 3}-group (because only 2 and 3 are ad-

jacent to r in Γ(G)), this is a contradiction because Pi
,s are finite non-abelian

simple groups. Now, by Step 1, we observe that r ∈ π(G) ⊆ π(Aut(S)). But
Aut(S) = Aut(S1) × Aut(S2) × ... × Aut(Sr), where the groups Sj are direct
products of isomorphic Pi

,s such that S = S1 × S2 × ... × Sr. Therefore, for
some j, r divides the order of an automorphism group of a direct product Sj of
t isomorphic simple groups Pi. Since Pi ∈ S31, it follows that |Out(Pi)| is not
divisible by r (see TABLE 1), so r does not divide the order of Aut(Pi). Now,
by Lemma 2.2, we obtain |Aut(Sj)| = |Aut(Pi)|t!.t!. Therefore, t ≥ r ≥ 7 and
so 214 must divide the order of G, which is a contradiction. Therefore m = 1
and S = P1.

By TABLE 1 and Step 1, it is evident that |S| = 2α.3β .5γ .7.13.31, where
2 ≤ α ≤ 8, 1 ≤ β ≤ 3 and 0 ≤ γ ≤ 6. Now, using collected results contained in
TABLE 1, we conclude that S ∼= L3(25) and by Step 2, L ⊴ G

K ≲ Aut(L). As
|G| = |L : (D6)1| = 6|L|, we deduce |K| = 1, 2, 3 or 6.

If |K| = 1, then G ∼= L : (D6)1, because |G| = 6|L|. Obviously, G can not
be isomorphic to L : (D6)2 and L : 6, because deg(31) = 2 in Γ(L : (D6)2) and
Γ(L : 6).

If |K| = 2, then K ≤ Z(G) and so deg(2) = 5, which is a contradiction.
If |K| = 3, then G

K
∼= L : 21, L : 22 or L : 23. But G

CG(K) ≲ Aut(K) ∼= Z2.

Thus | G
CG(K) | = 1 or 2. If | G

CG(K) | = 1, then K ≤ Z(G), that is, G is a central

extension of Z3 by L : 21, L : 22 or L : 23. If G splits over K, then only
Z3 × (L : 21) is possible for G because in Γ(Z3 × (L : 22)) and Γ(Z3 × (L : 23)),
deg(31) = 2. Otherwise we get a contradiction, because 3 does not divide the
Schur multiplier of L : 21 and L : 22 anddeg(31) ̸= 3 in Γ(Z3.(L : 23)). If

| G
CG(K) | = 2, then K < CG(K), hence by 1 ̸= CG(K)

K ⊴ G
K

∼= L : 21, L : 22

or L : 23 and simplicity of L, we obtain CG(K)
K

∼= L. Since K ≤ Z(CG(K)),
CG(K) is a central extension of K by L. Thus CG(K) ∼= Z3 × L or Z3.L.
Therefore, G ∼= (Z3 × L).Z2 or (Z3.L).Z2.

If |K| = 6, then CG(K)K
K ⊴ G

K
∼= L implies that CG(K)K

K = 1 or CG(K)K
K

∼= L,

because L is simple. If CG(K)K
K = 1, then CG(K) ≤ K and hence, |L| =

|GK ||| G
CG(K) |||Aut(K)| = 2 or 6, a contradiction. Therefore, G = CG(K)K.

Now we consider following cases:

(1) If K ∼= Z6, then G = CG(K). Therefore K ≤ Z(G) and it follows that
deg(2) = 5, a contradiction.

(2) If K ∼= D6, then CG(K)∩K = 1. So CG(K) ∼= CG(K)K
K = G

K
∼= L and

therefore G ∼= D6 ×L, which implies that deg(2) = 5, a contradiction.

□
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Proposition 3.8. If M = L : (D6)2, then G ∼= L : (D6)2, Z3 × (L : 22),
(Z3 × L).Z2 or (Z3.L).Z2.

Proof. As |L : (D6)2| = 6|L| = 28.33.56.7.13.31 and πe(L : (D6)2) = {1, 2, 3, 4,
5, 6, 7, 8, 10, 12, 13, 15, 16, 20, 21, 24, 26, 30, 31, 39, 40, 48, 52, 60, 78, 93, 104, 120,
156, 208, 217, 312, 624, 651}, then D(L : (D6)2) = (3, 5, 2, 2, 2, 2). Since |G| =
|L : (D6)2| and D(G) = D(L : (D6)2), there exist several possibilities for Γ(G)
similarly to Proposition 3.5:

• ••

•• •

a b c

2 3 d

Figure 3.8:

where {a, b, c, d} = {5, 7, 13, 31}.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is
a {2, 3, 5}-group. In particular, G is non-solvable.
The proof is similar to that of Proposition 3.5.

Step 2. The quotient G
K is an almost simple group. In fact, S ⊴ G

K ≲
Aut(S), where S is a finite non-abelian simple group.
Again we refer to Step 2 of Proposition 3.5 to get the proof.

By TABLE 1 and Step 1, it is evident that |S| = 2α.3β .5γ .7.13.31, where
2 ≤ α ≤ 8, 1 ≤ β ≤ 3 and 0 ≤ γ ≤ 6. Now, using collected results contained in
TABLE 1, we conclude that S ∼= L3(25) and by Step 2, L ⊴ G

K ≲ Aut(L). As
|G| = |L : (D6)2| = 6|L|, we deduce |K| = 1, 2, 3 or 6.

If |K| = 1, then G ∼= L : (D6)2, because |G| = 6|L|. Obviously G can’t be
isomorphic to L : (D6)1 and L : 6, because deg(2) = 4 in Γ(L : (D6)1) and
Γ(L : 6).

If |K| = 2, then K ≤ Z(G) and so deg(2) = 5, which is a contradiction.
If |K| = 3, then G

K
∼= L : 21, L : 22 or L : 23. But G

CG(K) ≲ Aut(K) ∼= Z2.

Thus | G
CG(K) | = 1 or 2. If | G

CG(K) | = 1, then K ≤ Z(G), that is, G is a

central extension of Z3 by L : 21, L : 22 or L : 23. If G splits over K, then
only G ∼= Z3 × (L : 22) because in Γ(Z3 × (L : 21)) and Γ(Z3 × (L : 23)),
deg(2) = 4. Otherwise we get a contradiction, because 3 does not divide the
Schur multiplier of L : 21 and L : 22, and deg(2) = 4 in (Z3.(L : 23)). If

| G
CG(K) | = 2, then K < CG(K), hence by 1 ̸= CG(K)

K ⊴ G
K

∼= L : 21, L : 22

or L : 23 and simplicity of L, we obtain CG(K)
K

∼= L. Since K ≤ Z(CG(K)),
CG(K) is a central extension of K by L. Thus CG(K) ∼= Z3 × L or Z3.L.
Therefore, G ∼= (Z3 × L).Z2 or (Z3.L).Z2.
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If |K| = 6, then CG(K)K
K ⊴ G

K
∼= L implies that CG(K)K

K = 1 or CG(K)K
K

∼= L,

because L is simple. If CG(K)K
K = 1, then CG(K) ≤ K and hence, |L| =

|GK ||| G
CG(K) |||Aut(K)| = 2 or 6, a contradiction. Therefore, G = CG(K)K.

Now we consider following cases:

(1) If K ∼= Z6, then G = CG(K). Therefore K ≤ Z(G) and it follows that
deg(2) = 5, a contradiction.

(2) If K ∼= D6, then CG(K)∩K = 1. So CG(K) ∼= CG(K)K
K = G

K
∼= L and

therefore G ∼= D6 ×L, which implies that deg(2) = 5, a contradiction.

□

Proposition 3.9. If M = L : 6, then G ∼= L : 6, Z3 × (L : 23), Z3.(L : 23),
(Z3 × L).Z2 or (Z3.L).Z2.

Proof. As |L : 6| = 28.33.56.7.13.31 and πe(L : 6) = {1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13,
14, 15, 16, 20, 21, 24, 26, 30, 31, 39, 40, 42, 48, 52, 60, 78, 93, 104, 120, 156, 208, 217,
312, 624, 651}, then D(L : 6) = (4, 5, 2, 3, 2, 2) and since |G| = |L : 6| and
D(G) = D(L : 6) then the prime graph of G has the following forms:

• • •

• • •

a 7 b

2 3 c

Figure 3.9:

where {a, b, c} = {5, 13, 31}.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is
a {2, 3, 5}-group. In particular, G is non-solvable.

First, we show that K is a 7
′
-group. Assume the contrary that 7||K|. We

know that one of the primes in {a, b} is unequal to 5, we put it r. So r does
not divide the order of K. Otherwise, we may suppose that T is a Hall {7, r}-
subgroup of K. It is easy to see that T is a nilpotent subgroup of order r.7.
Thus, r.7 ∈ πe(K) ⊆ πe(G), a contradiction. Thus, {7} ⊆ π(K) ⊆ π(G)− {r}.
Let K7 ∈ Syl7(K), by Frattini argument G = KNG(K7). Therefore, NG(K7)
has an element x of order r. Since G has no element of order r.7, ⟨x⟩ should
act fixed point freely on K7, implying ⟨x⟩K7 is a Frobenius group. By Lemma
2.3(b), |⟨x⟩||(|K7|−1). It follows that r|7−1, which is a contradiction, because

r = 13 or 31. So K is a 7
′
-group. Next, we prove that K is a p

′
-group for

p ∈ {a, b, c} − {5} = {13, 31}. If we assume p||K| and x is an element of K
of order p, we get a contradiction, because if p ∈ {a, b} − {5} then by Γ(G),
NG(⟨x⟩) is a {2, 3, 5, p}-group and since by Frattini argument G = KNG(⟨x⟩),
7 must divide the order of K, which is impossible. Also if p ∈ {c}−{5}, we see
that NG(⟨x⟩) is a {2, 3, 5, 7, c}-group, then we conclude that r must divide the
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order of K, which is impossible. Therefore K is a {2, 3, 5}-group. In addition
since K ̸= G, G is non-solvable.

Step 2. The quotient G
K is an almost simple group. In fact, S ⊴ G

K ≲
Aut(S), where S is a finite non-abelian simple group.

The proof is similar to those in Proposition 3.7. But the reader must replace
t ≥ r ≥ 7 and 214 with t ≥ r ≥ 13 and 226 respectively.

By TABLE 1 and Step 1, it is evident that |S| = 2α.3β .5γ .7.13.31, where
2 ≤ α ≤ 8, 1 ≤ β ≤ 3 and 0 ≤ γ ≤ 6. Now, using collected results contained in
TABLE 1, we conclude that S ∼= L3(25) and by Step 2, L ⊴ G

K ≲ Aut(L). As
|G| = |L : 6| = 6|L|, we deduce |K| = 1, 2, 3 or 6.

If |K| = 1, then G ∼= L : 6 because |G| = 6|L|. Obviously G can not be
isomorphic to L : (D6)1 or L : (D6)2, because deg(7) = 2 in Γ(L : (D6)1) and
Γ(L : (D6)2).

If |K| = 2, then K ≤ Z(G) and so deg(2) = 5, which is a contradiction.
If |K| = 3, then G

K
∼= L : 21, L : 22 or L : 23. But G

CG(K) ≲ Aut(K) ∼= Z2.

Thus | G
CG(K) | = 1 or 2. If | G

CG(K) | = 1, then K ≤ Z(G), that is, G is a central

extension of Z3 by L : 21, L : 22 or L : 23. If G splits over K, then only
G ∼= Z3 × (L : 23) because in Γ(Z3 × (L : 21)) we have deg(31) = 3 and in
Γ(Z3 × (L : 22)) we have deg(2) = 3. Otherwise only G ∼= Z3.(L : 23) because
3 does not divide the Schur multiplier of L : 21 and L : 22 . If | G

CG(K) | = 2,

then K < CG(K), hence by 1 ̸= CG(K)
K ⊴ G

K
∼= L : 21, L : 22 or L : 23 and

simplicity of L, we obtain CG(K)
K

∼= L. Since K ≤ Z(CG(K)), CG(K) is a
central extension of K by L. Thus CG(K) ∼= Z3 × L or Z3.L. Therefore,
G ∼= (Z3 × L).Z2 or (Z3.L).Z2.

If |K| = 6, then CG(K)K
K ⊴ G

K
∼= L implies that CG(K)K

K = 1 or CG(K)K
K

∼= L,

because L is simple. If CG(K)K
K = 1, then CG(K) ≤ K and hence, |L| =

|GK ||| G
CG(K) |||Aut(K)| = 2 or 6, a contradiction. Therefore, G = CG(K)K.

Now we consider following cases:

(1) If K ∼= Z6, then G = CG(K). Therefore K ≤ Z(G) and it follows that
deg(2) = 5, a contradiction.

(2) If K ∼= D6, then CG(K)∩K = 1. So CG(K) ∼= CG(K)K
K = G

K
∼= L and

therefore G ∼= D6 ×L, which implies that deg(2) = 5, a contradiction.

□

Proposition 3.10. If M = L : D12, then G ∼= L : D12, Z2 × (L : (D6)1),
Z2 × (L : (D6)2), Z2 × (L : 6), Z3.(L : 22), (Z3 × (L : 23)).Z2, (Z3.(L : 21)).Z2,
(Z3.(L : 22)).Z2, (Z3.(L : 23)).Z2, Z4× (L : 3), (Z2×Z2)× (L : 3), (Z4×L).Z3,
((Z2 × Z2) × L).Z3, Z6 × (L : 21), Z6 × (L : 22) , Z6 × (L : 23), (Z6 × L).Z2,
D6 × (L : 21), D6 × (L : 22), D6 × (L : 23), Z12 × L, (Z2 × Z6)× L, D12 × L,
A4 × L, T × L.
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Proof. As |L : D12| = 29.33.56.7.13.31 and πe(L : D12) = {1, 2, 3, 4, 5, 6, 7, 8, 10
, 12, 13, 14, 15, 16, 20, 21, 24, 26, 30, 31, 39, 40, 42, 48, 52, 60, 62, 78, 93, 104, 120, 156
, 208, 217, 312, 624, 651}, then D(L : D12) = (5, 5, 2, 3, 2, 3). By assumptions
|G| = |L : D12| and D(G) = D(L : D12), so the prime graph of G has the
following form (like Γ(L : D12), see page 25):

• •

•

• •

•
2

13315 7

3

Figure 3.10:

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is
a {2, 3, 5}-group. In particular, G is non-solvable.

First, by the same way in Proposition 3.6 we can prove thatK is a 31
′
-group.

Now we show that K is a p
′
-group for p = 7 and 13. Suppose the contrary:

p||K| and x is an element of K of order p. First put p = 13. According to Γ(G),

CG(x) is a {2, 3, 13}-group and since NG(⟨x⟩)
CG(x) ≲ Aut(⟨x⟩) ∼= Z12, so is NG(⟨x⟩).

As by Frattini argument, G = KNG(⟨x⟩) then 31 must divide the order of
K, which is a contradiction. Now put p = 7, then by the same argument as
before we see that NG(⟨x⟩) is a {2, 3, 7, 31}-group. Since G = KNG(⟨x⟩), 13
must divide |K|, which is a contradiction. Therefore K is a {2, 3, 5}-group. In
addition since K ̸= G, G is non-solvable and the proof of this step is completed.

Step 2. The quotient G
K is an almost simple group. In fact, S ⊴ G

K ≲
Aut(S), where S is a finite non-abelian simple group.

The proof is similar to Step 2 of Proposition 3.7, by replacing r with 13.

By TABLE 1 and Step 1, it is evident that |S| = 2α.3β .5γ .7.13.31, where
2 ≤ α ≤ 9, 1 ≤ β ≤ 3 and 0 ≤ γ ≤ 6. Now, using collected results contained in
TABLE 1, we conclude that S ∼= L3(25) and by Step 2, L ⊴ G

K ≲ Aut(L). As
|G| = |L : D12| = 12|L|, we deduce |K| = 1, 2, 3, 4, 6 or 12.

If |K| = 1, then by assumption G ∼= L : D12.
If |K| = 2, then G

K
∼= L : (D6)1, L : (D6)2 or L : 6 and K ≤ Z(G). It follows

that G is a central extension of K by L : (D6)1, L : (D6)2 or L : 6. If G splits
over K, then G ∼= Z2× (L : (D6)1), Z2× (L : (D6)2) or Z2× (L : 6). Otherwise
2 must divide the Schur multiplier of L : (D6)1, L : (D6)2 or L : 6, which is
impossible.

If |K| = 3, then G
K

∼= L : 22. But G
CG(K) ≲ Aut(K) ∼= Z2. Thus | G

CG(K) | =
1 or 2. If | G

CG(K) | = 1, then K ≤ Z(G), that is, G is a central extension

of K by L : 22. If G splits over K, then G ∼= Z3 × (L : 22). We get a
contradiction, because 3 does not divide the Schur multiplier of L : 22, which
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is 1. If | G
CG(K) )| = 2, then K < CG(K), hence by 1 ̸= CG(K)

K ⊴ G
K

∼= L :

22 and simplicity of L, we obtain CG(K)
K

∼= L : 21, L : 22 or L : 23. Since
K ≤ Z(CG(K)), CG(K) is a central extension of K by L : 21, L : 22 or
L : 23. If CG(K) splits over K then CG(K) ∼= Z3 × (L : 21), Therefore,
G ∼= (Z3×(L : 21)).Z2, (Z3×(L : 22)).Z2, (Z3×(L : 23)).Z2, or (Z3.(L : 23)).Z2.

If |K| = 4, then G
K

∼= L : 3 and K ∼= Z4 or Z2 × Z2. In this case we have
G

CG(K) ≲ Aut(K) ∼= Z2 or D6. Thus | G
CG(K) | = 1, 2, 3 or 6. If | G

CG(K) | = 1,

then K ≤ Z(G), that is, G is a central extension of K by L : 3. If G splits
over K, then G ∼= Z4 × (L : 3) or (Z2 × Z2) × (L : 3). Otherwise we get a
contradiction because 4 must divide the Schur multiplier of L : 3, which is 3. If
| G
CG(K) | ̸= 1, as | G

CG(K) | = 2, 3 or 6, then K < CG(K), and by simplicity of L,

we conclude that 1 ̸= CG(K)
K must be an extension of L. So only | G

CG(K) | = 3

is acceptable and therefore CG(K)
K

∼= L. Now since K ≤ Z(CG(K)), CG(K) is
a central extension of K by L. If CG(K) splits over K, CG(K) ∼= Z4 × L or
(Z2 × Z2) × L, otherwise |K| must divide the Schur multiplier of L, which is
impossible. Therefore G ∼= (Z4 × L).Z3 or ((Z2 × Z2)× L).Z3.

If |K| = 6, then G
K

∼= L : 21, L : 22 or L : 23 and K ∼= Z6 or D6.

If K ∼= Z6, then
G

CG(K) ≲ Z2 and so | G
CG(K) | = 1 or 2. If | G

CG(K) | = 1, then

K ≤ Z(G), that is G is a central extension of Z6 by L : 21, L : 22 or L : 23. If
G splits over K, we obtain G ∼= Z6 × (L : 21), Z6 × (L : 22) or Z6 × (L : 23),
otherwise we get a contradiction because 6 must divide the Schur multiplier of
L : 21, L : 22 or L : 23, and it is impossible. If | G

CG(K) | = 2, then K < CG(K),

hence by 1 ̸= CG(K)
K ⊴ G

K
∼= L : 21, L : 22 or L : 23 and simplicity of L, we

obtain CG(K)
K

∼= L. Since K ≤ Z(CG(K)), CG(K) is a central extension of K
by L. If CG(K) splits over K, CG(K) ∼= Z6 × L and if CG(K) is a non-split
extension of K by L, |K| must divide the Schur multiplier of L, which is im-
possible. Therefore G ∼= (Z6 × L).Z2.
If K ∼= D6, then

G
CG(K) ≲ D6 and so | G

CG(K) | = 1, 2, 3 or 6. If | G
CG(K) | = 1,

then K ≤ Z(G), a contradiction. If | G
CG(K) | = 2, then we have |KCG(K)| =

6.|G|/2 = 3|G| because K∩CG(K) = 1, that is a contradiction. If | G
CG(K) | = 3,

then we have |KCG(K)| = 6.|G|/3 = 2|G| because K ∩ CG(K) = 1, that
is a contradiction. If | G

CG(K) | = 6, then G
CG(K)

∼= D6. Thus CG(K) ̸= 1.

Then, 1 ̸= CG(K) ∼= CG(K)K
K ⊴ G

K
∼= L : 21, L : 22 or L : 23, follows that

CG(K) ∼= L : 21, L : 22 or L : 23. Therefore G ∼= D6 × (L : 21), D6 × (L : 22)
or D6 × (L : 23).

Before processing the last case, we recall the following fact.
There exist five non-isomorphic groups of order 12. Two of them are abelian

and three are non-abelian. The non-abelian groups are: alternating group A4,
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dihedral group D12 and the dicyclic group T with generators a and b, subject
to the relations a6 = 1, a3 = b2 and b−1ab = a−1.

If |K| = 12, then CG(K)K
K ⊴ G

K
∼= L implies that CG(K)K

K = 1 or CG(K)K
K

∼= L,

because L is simple. If CG(K)K
K = 1, then CG(K) ≤ K and hence, |L| =

|GK ||| G
CG(K) |||Aut(K)| ≤ 12[log212], a contradiction. Therefore, G = CG(K)K.

Now we consider following cases:

(1) If K ∼= Z12 or Z2 × Z6, then G = CG(K). Therefore K ≤ Z(G), that
is G is a central extension of K by L. If G splits over K, we obtain
G ∼= Z12 × L or (Z2 × Z6) × L, and otherwise we get a contradiction
because |K| must divide the Schur multiplier of L, which is 3.

(2) If K ∼= D12, then G = K.L and G
CG(K)

∼= K
Z(K)

∼= D6. Since CG(K)
Z(K)

∼=
CG(K)K

K = G
K

∼= L and Z(K) ⩽ Z(CG(K)), we conclude that CG(K)
is a central extension of Z(K) ∼= Z2 by L. If CG(K) is a non-split
extension, then 2 must divide the Schur multiplier of L, which is 3
and it is impossible. Thus CG(K) ∼= Z2 × L and hence G is a split
extension of K by L. Now, since Hom(L,Aut(D12)) is trivial, we have
G ∼= D12 × L.

(3) If K ∼= A4, then G
CG(K)

∼= K
Z(K)

∼= A4, then CG(K) ̸= 1. Thus

1 ̸= CG(K) ∼= CG(K)K
K ⊴ G

K
∼= L. Hence L ∼= CG(K) because L is

simple. Therefore G ∼= A4 × L, because Z(A4) = 1.
(4) If K ∼= T , then by the similar way in case K ∼= D12, we can conclude

that G is a split extension of T by L. Also, since Hom(L,Aut(T )) is
trivial, we have G ∼= T × L.

The proof of our main Theorem is complete. □

According to what we said before the proof, here we diagram Γ(M) by |M |
and πe(M), where M is an almost simple group related to L = L3(25).

•••

•

• •
1323

5

31 7
Γ(L):
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• •

•

•

•

•
3 31

5

2 7

13

Γ(L : 21):

•••

•

• •
1323

5

31 7
Γ(L : 22):

• •

•

•

•

•
3 7

5

2 31

13

Γ(L : 23):

• ••

•• •

5 13 7

2 3 31

Γ(L : 3):

• • •

• • •

31 13 5

7 2 3

Γ(L : 22):
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• • •

• • •

5 31 13

2 3 7

Γ(L : (D6)1):

• ••

•• •

5 13 7

2 3 31

Γ(L : (D6)2):

• • •

• • •

5 7 13

2 3 31

Γ(L : 6):

• •

•

• •

•
2

13315 7

3

Γ(L : D12):
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