Bulletin of the

Iranian Mathematical Society

$$
\text { Vol. } 40 \text { (2014), No. 3, pp. 765-790 }
$$

Title:
OD-Characterization of almost simple groups related to $L_{3}(25)$
Author(s):
G. R. Rezaeezadeh, M. R. Darafsheh, M. Sajjadi and M. Bibak

OD-CHARACTERIZATION OF ALMOST SIMPLE GROUPS RELATED TO $L_{3}(25)$

G. R. REZAEEZADEH*, M. R. DARAFSHEH, M. SAJJADI AND M. BIBAK

(Communicated by Ali Reza Ashrafi)

Abstract

Let G be a finite group and $\pi(G)$ be the set of all the prime divisors of $|G|$. The prime graph of G is a simple graph $\Gamma(G)$ whose vertex set is $\pi(G)$ and two distinct vertices p and q are joined by an edge if and only if G has an element of order $p q$, and in this case we will write $p \sim q$. The degree of p is the number of vertices adjacent to p and is denoted by $\operatorname{deg}(p)$. If $|G|=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}, p_{i}^{\prime}$ s different primes, $p_{1}<p_{2}<\ldots<p_{k}$, then $D(G)=\left(\operatorname{deg}\left(p_{1}\right), \operatorname{deg}\left(p_{2}\right), \ldots, \operatorname{deg}\left(p_{k}\right)\right)$ is called the degree pattern of G. A finite group G is called k-fold OD-characterizable if there exist exactly k non-isomorphic groups S with $|G|=|S|$ and $D(G)=D(S)$. In this paper, we characterize groups with the same order and degree pattern as an almost simple groups related to $L_{3}(25)$.

Keywords: OD-characterizable group, degree pattern, prime graph. MSC(2010): Received: 30 April 2009, Accepted: 21 June 2010.

1. Introduction

Throughout this article, all groups under consideration are finite. For any group G, we denote by $\pi(G)$ the set of all prime divisors of $|G|$ and the set of orders of the elements of G is denoted by $\pi_{e}(G)$. The prime graph $\Gamma(G)$ of a group G is a simple graph whose vertex set is $\pi(G)$ and two distinct primes p and q are joined by an edge (written $p \sim q$) if and only if G contains an element of order $p q$. For $p \in \pi(G)$, we put $\operatorname{deg}(p):=$ $|\{q \in \pi(G) \mid p \sim q\}|$, which is called the degree of p. If $|G|=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$,

[^0]p_{i}^{\prime} s different primes, we define $D(G):=\left(\operatorname{deg}\left(p_{1}\right), \operatorname{deg}\left(p_{2}\right), \ldots, \operatorname{deg}\left(p_{k}\right)\right)$, where $p_{1}<p_{2}<\ldots<p_{k}$, which is called the degree pattern of G.

Definition 1.1. The group G is called k-fold OD-characterizable if there exist exactly k non-isomorphic groups H satisfying conditions $|G|=|H|$ and $D(G)=D(H)$. In particular, a 1-fold OD-characterizable group is simply called OD-characterizable.

The interest in characterizing finite groups by degree pattern started in [4] by M.R. Darafsheh,et.al., in which the authors proved that if G is a finite group such that $|G|=|M|$ and $D(G)=D(M)$, where M is one of these simple groups: (1) sporadic simple groups, (2) alternating A_{p} with p and $p-2$ primes, (3) some simple groups of Lie type, then $G \cong M$.

A group G is an almost simple group, if $S \unlhd G \lesssim \operatorname{Aut}(S)$, for some nonabelian group S. In many articles it has been shown that many finite almost simple groups are OD-characterizable or k-fold OD-characterizable for certain $k \geq 2$.

Let A and B be two groups then a split extension is denoted by $A: B$. If L is a finite simple group and $\operatorname{Aut}(L) \cong L: A$, then if B is a cyclic subgroup of A of order n, we will write $L: n$ for the split extension $L: B$. Moreover if there are more than one subgroup of order n in A, then we will denote them by $L: n_{1}, L: n_{2}$, etc.

In [3], for $p=23,31,43$ and 47, OD-characterizability of A_{p+3} has been proved. Also the authors have shown that the automorphism groups of these groups are 3 -fold OD-characterizable.

In [7], for $L:=L_{2}(49)$, it is shown that finite almost simple groups $L, L: 2_{1}, L: 2_{2}$ and $L: 2_{3}$ are OD-characterizable; $L: 2^{2}$ is 9 -fold OD-characterizable(2^{2} is the Klein's four group) and in [9], for $L:=$ $U_{6}(2)$, it is shown that finite almost simple groups L and $L: 2$ are OD-characterizable, $L: 3$ is 3 -fold OD-characterizable, and $L: \mathbb{S}_{3}$ is 5 -fold OD-characterizable. Also in [8], it is shown that all simple $K_{4}{ }^{-}$ groups except A_{10} are OD-characterizable (we recall that a finite group possessing exactly n prime divisors is called K_{n}-group).

We denote the socle of G by $\operatorname{Soc}(G)$, which is the subgroup generated by the set of all minimal normal subgroups of G. For $p \in \pi(G)$, we denote by G_{p} and $\operatorname{Syl}_{p}(G)$ a Sylow p-subgroup of G and the set of all Sylow p-subgroups of G respectively, also for a prime $t,|G|_{t}$ denotes the t-part of $|G|$, i.e., $|G|_{t}=t^{r}$ such that $t^{r}| | G \mid$ and $t^{r+1} \nmid|G|$. All further unexplained notations are standard and can be found in [5].

In this article our main aim is to show the characterizability of the almost simple groups related to $L:=L_{3}(25)$ by the degree pattern in the prime graph and the order of the group. In fact, we will prove the following Theorem.

Main Theorem Let M be an almost simple group related to $L=$ $L_{3}(25)$. If G is a finite group such that $D(G)=D(M)$ and $|G|=|M|$, then the following assertions hold:
(a) If $M=L$, then $G \cong L$.
(b) If $M=L: 2_{1}$, then $G \cong L: 2_{1}$.
(c) If $M=L: 2_{2}$, then $G \cong L: 2_{2}$.
(d) If $M=L: 2_{3}$, then $G \cong L: 2_{3}$.
(e) If $M=L: 3$, then $G \cong L: 3, \mathbb{Z}_{3} \times L$ or $\mathbb{Z}_{3} . L$.
(f) If $M=L: 2^{2}$, then $G \cong L: 2^{2}, \mathbb{Z}_{2} \cdot\left(L: 2_{1}\right), \mathbb{Z}_{2} \cdot\left(L: 2_{2}\right), \mathbb{Z}_{2} \cdot\left(L: 2_{3}\right)$, $\mathbb{Z}_{4} \times L$ or $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \times L$.
(g) If $M=L:\left(D_{6}\right)_{1}$, then $G \cong L:\left(D_{6}\right)_{1}, \mathbb{Z}_{3} \times\left(L: 2_{1}\right),\left(\mathbb{Z}_{3} \times L\right) \cdot \mathbb{Z}_{2}$ or $\left(\mathbb{Z}_{3} \cdot L\right) \cdot \mathbb{Z}_{2}$.
(h) If $M=L:\left(D_{6}\right)_{2}$, then $G \cong L:\left(D_{6}\right)_{2}, \mathbb{Z}_{3} \cdot\left(L: 2_{2}\right),\left(\mathbb{Z}_{3} \times L\right) \cdot \mathbb{Z}_{2}$ or $\left(\mathbb{Z}_{3} \cdot L\right) . \mathbb{Z}_{2}$.
(i) If $M=L: 6$, then $G \cong L: 6, \mathbb{Z}_{3} \times\left(L: 2_{3}\right), \mathbb{Z}_{3} \cdot\left(L: 2_{3}\right),\left(\mathbb{Z}_{3} \times L\right) \cdot \mathbb{Z}_{2}$ or $\left(\mathbb{Z}_{3} \cdot L\right) \cdot \mathbb{Z}_{2}$.
(j) If $M=L: D_{12}$, then $G \cong L: D_{12}, \mathbb{Z}_{2} \times\left(L:\left(D_{6}\right)_{1}\right), \mathbb{Z}_{2} \times(L:$ $\left.\left(D_{6}\right)_{2}\right), \mathbb{Z}_{2} \times(L: 6), \mathbb{Z}_{3} \cdot\left(L: 2^{2}\right),\left(\mathbb{Z}_{3} \times\left(L: 2_{3}\right)\right) \cdot \mathbb{Z}_{2},\left(\mathbb{Z}_{3} \cdot\left(L: 2_{1}\right)\right) \cdot \mathbb{Z}_{2}$, $\left(\mathbb{Z}_{3} \cdot\left(L: 2_{2}\right)\right) \cdot \mathbb{Z}_{2},\left(\mathbb{Z}_{3} \cdot\left(L: 2_{3}\right)\right) \cdot \mathbb{Z}_{2}, \mathbb{Z}_{4} \times(L: 3),\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \times(L: 3)$, $\left(\mathbb{Z}_{4} \times L\right) \cdot \mathbb{Z}_{3},\left(\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \times L\right) \cdot \mathbb{Z}_{3}, \mathbb{Z}_{6} \times\left(L: 2_{1}\right), \mathbb{Z}_{6} \times\left(L: 2_{2}\right), \mathbb{Z}_{6} \times\left(L: 2_{3}\right)$, $\left(\mathbb{Z}_{6} \times L\right) \cdot \mathbb{Z}_{2}, D_{6} \times\left(L: 2_{1}\right), D_{6} \times\left(L: 2_{2}\right), D_{6} \times\left(L: 2_{3}\right), \mathbb{Z}_{12} \times L$, $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{6}\right) \times L, D_{12} \times L, A_{4} \times L, T \times L$.

2. Preliminary lemmas

It is well-known that $\operatorname{Aut}\left(L_{3}(25)\right) \cong L_{3}(25): D_{12}$ where D_{12} denotes the dihedral group of order 12 . We remark that D_{12} has the following non-trivial proper subgroups up to conjugacy: three subgroups of order 2 , one cyclic subgroup each of order 3 and 6 , two subgroups isomorphic to $D_{6} \cong \mathbb{S}_{3}$ and one subgroup of order 4 isomorphic to the Klein's four group denoted by 2^{2}. The field and the duality automorphisms of $L_{3}(25)$ are denoted by 2_{1} and 2_{2} respectively, and we set $2_{3}=2_{1} \cdot 2_{2}$ (duality $*$ field which is called the diagonal automorphism). Therefore up to conjugacy we have the following almost simple groups related to $L_{3}(25)$.

Lemma 2.1. If G is an almost simple group related to $L=L_{3}(25)$, then G is isomorphic to one of the following groups: $L, L: 2_{1}, L: 2_{2}, L$: $2_{3}, L: 3, L: 2^{2}, L:\left(D_{6}\right)_{1}, L:\left(D_{6}\right)_{2}, L: 6, L: D_{12}$.

A completely reducible group will be called a $C R$-group. A $C R$-group has trivial center if and only if it is a direct product of non-abelian simple groups and in this case, it is called a centerless $C R$-group. The following Lemma determines the structure of the automorphism group of a centerless $C R$-group.

Lemma 2.2. [5], Theorem 3.3.20 Let R be a finite centerless $C R$-group and write $R=R_{1} \times R_{2} \times \ldots \times R_{k}$, where R_{i} is a direct product of n_{i} isomorphic copies of a simple group H_{i}, and H_{i} and H_{j} are not isomorphic if $i \neq j$. Then $\operatorname{Aut}(R)=\operatorname{Aut}\left(R_{1}\right) \times \operatorname{Aut}\left(R_{2}\right) \times \ldots \times \operatorname{Aut}\left(R_{k}\right)$ and $\operatorname{Aut}\left(R_{i}\right) \cong \operatorname{Aut}\left(H_{i}\right)$ 踇i , where in this wreath product $\operatorname{Aut}\left(H_{i}\right)$ appears in its right regular representation and the symmetric group $\mathbb{S}_{n_{i}}$ in its natural permutation representation. Moreover, these isomorphisms induce isomorphisms $\operatorname{Out}(R) \cong \operatorname{Out}\left(R_{1}\right) \times \operatorname{Out}\left(R_{2}\right) \times \ldots \times \operatorname{Out}\left(R_{k}\right)$ and $\operatorname{Out}\left(R_{i}\right) \cong \operatorname{Out}\left(H_{i}\right)\left\langle\mathbb{S}_{n_{i}}\right.$.
Lemma 2.3. [2], Theorem 10.3.1 Let G be a Frobenius group with kernel K and complement H. Then:
(a) K is a nilpotent group.
(b) $|K| \equiv 1(\bmod |H|)$.

Let $p \geq 5$ be a prime. We denote by \mathfrak{S}_{p} the set of all simple groups with prime divisors at most p. Clearly, if $q \leq p$, then $\mathfrak{S}_{q} \subseteq \mathfrak{S}_{p}$. We list all simple groups S in class \mathfrak{S}_{31} with their order and the order of their outer automorphisms $o=|\operatorname{Out}(S)|$ in TABLE 1, taken from [6].TABLE 1: Simple groups in $\mathfrak{S}_{p}, p \leq 31$.

S	$\|S\|$	O	S	$\|S\|$	O
A_{5}	$2^{2} \cdot 3 \cdot 5$	2	$L_{2}(64)$	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13$	6
A_{6}	$2^{3} \cdot 3^{2} \cdot 5$	4	$U_{4}(5)$	$2^{7} \cdot 3^{4} \cdot 5^{6} \cdot 7 \cdot 13$	4
$S_{4}(3)$	$2^{6} \cdot 3^{4} \cdot 5$	2	$L_{3}(9)$	$2^{7} \cdot 3^{6} \cdot 5 \cdot 7 \cdot 13$	4
$L_{2}(7)$	$2^{3} \cdot 3 \cdot 7$	2	$S_{6}(3)$	$2^{9} \cdot 3^{9} \cdot 5 \cdot 7 \cdot 13$	2
$L_{2}(8)$	$2^{3} \cdot 3^{2} \cdot 7$	3	$O_{7}(3)$	$2^{9} \cdot 3^{9} \cdot 5 \cdot 7 \cdot 13$	2
$U_{3}(3)$	$2^{5} \cdot 3^{3} \cdot 7$	2	$G_{2}(4)$	$2^{12} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 13$	2
A_{7}	$2^{3} \cdot 3^{2} \cdot 5 \cdot 7$	2	$S_{4}(8)$	$2^{12} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 13$	6
$L_{2}(49)$	$2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2}$	4	$O_{8}^{+}(3)$	$2^{12} \cdot 3^{12} \cdot 5^{2} \cdot 7 \cdot 13$	24
$U_{3}(5)$	$2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7$	6	$L_{5}(3)$	$2^{9} \cdot 3^{10} \cdot 5 \cdot 11^{2} \cdot 13$	2
$L_{3}(4)$	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7$	12	A_{13}	$2^{9} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$	2

(Continued)

S	$\|S\|$	O	S	$\|S\|$	O
A_{8}	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7$	2	A_{14}	$2^{10} \cdot 3^{5} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13$	2
A_{9}	$2^{6} \cdot 3^{4} \cdot 5 \cdot 7$	2	A_{15}	$2^{10} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13$	2
J_{2}	$2^{7} \cdot 3^{3} \cdot 5^{2} \cdot 7$	2	$L_{6}(3)$	$2^{11} \cdot 3^{15} \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13^{2}$	4
A_{10}	$2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7$	2	Suz	$2^{13} \cdot 3^{7} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$	2
$U_{4}(3)$	$2^{7} \cdot 3^{6} \cdot 5 \cdot 7$	8	A_{16}	$2^{14} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13$	2
$S_{4}(7)$	$2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 7^{4}$	2	$F i_{22}$	$2^{17} \cdot 3^{9} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$	2
$S_{6}(2)$	$2^{9} \cdot 3^{4} \cdot 5 \cdot 7$	1	$L_{2}(17)$	$2^{4} \cdot 3^{2} \cdot 17$	2
$O_{8}^{+}(2)$	$2^{12} \cdot 3^{5} \cdot 5^{2} \cdot 7$	6	$L_{2}(16)$	$2^{4} \cdot 3 \cdot 5 \cdot 17$	4
$L_{2}(11)$	$2^{2} \cdot 3 \cdot 5 \cdot 11$	2	$S_{4}(4)$	$2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 17$	4
M_{11}	$2^{4} \cdot 3^{2} \cdot 5 \cdot 11$	1	He	$2^{10} \cdot 3^{3} \cdot 5^{2} \cdot 7^{3} \cdot 17$	2
M_{12}	$2^{6} \cdot 3^{3} \cdot 5 \cdot 11$	2	$O_{8}^{-}(2)$	$2^{12} \cdot 3^{4} \cdot 5 \cdot 7 \cdot 17$	2
$U_{5}(2)$	$2^{10} \cdot 3^{5} \cdot 5 \cdot 11$	2	$L_{4}(4)$	$2^{12} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 17$	4
M_{22}	$2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$	2	$S_{8}(2)$	$2^{16} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 17$	1
A_{11}	$2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 11$	2	$U_{4}(4)$	$2^{12} \cdot 3^{2} \cdot 5^{3} \cdot 13 \cdot 17$	4
$M^{c} L$	$2^{7} \cdot 3^{6} \cdot 5^{3} \cdot 7 \cdot 11$	2	$U_{3}(17)$	$2^{6} \cdot 3^{4} \cdot 7 \cdot 13 \cdot 17^{3}$	6
HS	$2^{9} \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 11$	2	$O_{10}^{-}(2)$	$2^{20} \cdot 3^{6} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 17$	2
A_{12}	$2^{9} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 11$	2	$L_{2}\left(13^{2}\right)$	$2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \cdot 17$	4
$U_{6}(2)$	$2^{15} \cdot 3^{6} \cdot 5 \cdot 7 \cdot 11$	6	$S_{4}(13)$	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13^{4} \cdot 17$	2
$L_{3}(3)$	$2^{4} \cdot 3^{3} \cdot 13$	2	$L_{3}(16)$	$2^{12} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17$	24
$L_{2}(25)$	$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$	4	$S_{6}(4)$	$2^{18} \cdot 3^{4} \cdot 5^{3} \cdot 7 \cdot 13 \cdot 17$	2
$U_{3}(4)$	$2^{6} \cdot 3 \cdot 5^{2} \cdot 13$	4	$O_{8}^{+}(4)$	$2^{24} \cdot 3^{5} \cdot 5^{4} \cdot 7 \cdot 13 \cdot 17^{2}$	12
$S_{4}(5)$	$2^{6} \cdot 3^{2} \cdot 5^{4} \cdot 13$	2	$F_{4}(2)$	$2^{24} \cdot 3^{6} \cdot 5^{2} \cdot 7^{2} \cdot 13 \cdot 17$	2
$L_{4}(3)$	$2^{7} \cdot 3^{6} \cdot 5 \cdot 13$	4	A_{17}	$2^{14} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17$	2
${ }^{2} F_{4}(2){ }^{\prime}$	$2^{11} \cdot 3^{3} \cdot 5^{2} \cdot 13$	2	A_{18}	$2^{15} \cdot 3^{8} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17$	2
$L_{2}(13)$	$2^{2} \cdot 3 \cdot 7 \cdot 13$	2	$L_{2}(19)$	$2^{2} \cdot 3^{2} \cdot 5 \cdot 19$	2
$L_{2}(27)$	$2^{2} \cdot 3^{3} \cdot 7 \cdot 13$	6	$L_{3}(7)$	$2^{5} \cdot 3^{2} \cdot 7^{3} \cdot 19$	6
$G_{2}(3)$	$2^{6} \cdot 3^{6} \cdot 7 \cdot 13$	2	$U_{3}\left(2^{3}\right)$	$2^{9} \cdot 3^{4 \cdot} 7 \cdot 19$	18
${ }^{3} D_{4}(2)$	$2^{12} \cdot 3^{4} \cdot 7^{2} \cdot 13$	3	$U_{3}(19)$	$2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 7^{3} \cdot 19$	2
$S z(8)$	$2^{6} \cdot 5 \cdot 7 \cdot 13$	3	$L_{4}(7)$	$2^{9} \cdot 3^{4} \cdot 5^{2} \cdot 7^{6} \cdot 19$	4
J_{3}	$2^{7} \cdot 3^{5} \cdot 5 \cdot 17 \cdot 19$	2	A_{29}	$\begin{gathered} 2^{26} \cdot 3^{13} \cdot 5^{6} \cdot 7^{4} \\ .11^{2} \cdot 13^{2} \cdot 17 \cdot 19 \cdot 23 \cdot 29 \end{gathered}$	2
J_{1}	$2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$	1	A_{30}	$\begin{gathered} 2^{27} \cdot 3^{14} \cdot 5^{7} \cdot 7^{4} \\ .11^{2} \cdot 13^{2} \cdot 17 \cdot 19 \cdot 23 \cdot 29 \end{gathered}$	2
$L_{3}(11)$	$2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11^{3} \cdot 19$	2	$L_{2}(31)$	$2^{5} \cdot 3 \cdot 5 \cdot 31$	2
$H N$	$2^{14} \cdot 3^{6} \cdot 5^{6} \cdot 7 \cdot 11 \cdot 19$	2	$L_{3}(5)$	$2^{5} \cdot 3 \cdot 5^{3} \cdot 31$	2
$U_{4}\left(2^{3}\right)$	$2^{18} \cdot 3^{7} \cdot 5 \cdot 7^{2} \cdot 13 \cdot 19$	6	$L_{2}\left(2^{5}\right)$	$2^{5} \cdot 3 \cdot 11 \cdot 31$	5
A_{19}	$2^{16} \cdot 3^{8} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19$	2	$L_{2}\left(5^{3}\right)$	$2^{2} \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 31$	6
A_{20}	$2^{18} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19$	2	$G_{2}(5)$	$2^{6} \cdot 3^{3} \cdot 5^{6} \cdot 7 \cdot 31$	1
A_{21}	$2^{18} \cdot 3^{9} \cdot 5^{4} \cdot 7^{3} \cdot 11 \cdot 13 \cdot 17 \cdot 19$	2	$L_{5}(2)$	$2^{10} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31$	2

(Continued)

S	$\|S\|$	O	S	$\|S\|$	O
A_{22}	$2^{20} \cdot 3^{9} \cdot 5^{4} \cdot 7^{3} \cdot 11^{2} \cdot 13 \cdot 17 \cdot 19$	2	$L_{6}(2)$	$2^{15} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 31$	2
${ }^{2} E_{6}(2)$	$2^{36} \cdot 3^{9} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19$	6	$L_{4}(5)$	$2^{7} \cdot 3^{2} \cdot 5^{6} \cdot 13 \cdot 31$	8
$L_{2}(23)$	$2^{3} \cdot 3 \cdot 11 \cdot 23$	2	$L_{3}\left(5^{2}\right)$	$2^{7} \cdot 3^{2} \cdot 5^{6} \cdot 7 \cdot 13 \cdot 31$	12
$U_{3}(23)$	$2^{7} \cdot 3^{2} \cdot 11 \cdot 13^{2} \cdot 23^{3}$	6	$O_{7}(5)$	$2^{9} \cdot 3^{4} \cdot 5^{9} \cdot 7 \cdot 13 \cdot 31$	2
M_{23}	$2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 23$	1	$S_{6}(5)$	$2^{9} \cdot 3^{4} \cdot 5^{9} \cdot 7 \cdot 13 \cdot 31$	2
M_{24}	$2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 23$	1	$O_{8}^{+}(5)$	$2^{12} \cdot 3^{5} \cdot 5^{12} \cdot 7 \cdot 13^{2} \cdot 31$	24
Co_{3}	$2^{10} \cdot 3^{7} \cdot 5^{3} \cdot 7 \cdot 11 \cdot 23$	1	$O_{10}^{+}(2)$	$2^{20} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 17 \cdot 31$	2
Co_{2}	$2^{18} \cdot 3^{6} \cdot 5^{3} \cdot 7 \cdot 11 \cdot 23$	1	$U_{3}(31)$	$2^{11} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 19 \cdot 31^{3}$	2
Co_{1}	$2^{21} \cdot 3^{9} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 23$	1	$L_{5}\left(2^{2}\right)$	$2^{20} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 17 \cdot 31$	4
$F i_{23}$	$2^{18} \cdot 3^{13} \cdot 5^{2} \cdot 7$	1	$S_{10}(2)$	$2^{25} \cdot 3^{6} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 17 \cdot 31$	1
A_{23}	$\begin{gathered} .11 \cdot 13 \cdot 17 \cdot 23 \\ 2^{20} \cdot 3^{9} \cdot 5^{4} \cdot 7^{3} \\ .11^{2} \cdot 13 \cdot 17 \cdot 19 \cdot 23 \end{gathered}$	2	$O_{12}^{+}(2)$	$2^{30} \cdot 3^{8} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 17 \cdot 31$	2
A_{24}	$\begin{gathered} 2^{23} \cdot 3^{10} \cdot 5^{4} \cdot 7^{3} \\ .11^{2} \cdot 13 \cdot 17 \cdot 19 \cdot 23 \end{gathered}$	2	$O^{\prime} N$	$2^{9} \cdot 3^{4} \cdot 5 \cdot 7^{3} \cdot 11 \cdot 19 \cdot 31$	2
A_{25}	$\begin{gathered} 2^{23} \cdot 3^{10} \cdot 5^{6} \cdot 7^{3} \\ .11^{2} \cdot 13 \cdot 17 \cdot 19 \cdot 23 \end{gathered}$	2	Th	$2^{15} \cdot 3^{10} \cdot 5^{3} \cdot 7^{2} \cdot 13 \cdot 19 \cdot 31$	1
A_{26}	$\begin{gathered} 2^{24} \cdot 3^{10} \cdot 5^{6} \cdot 7^{3} \\ .11^{2} \cdot 13^{2} \cdot 17 \cdot 19 \cdot 23 \end{gathered}$	2	$O_{12}^{-}(2)$	$2^{30} \cdot 3^{6} \cdot 5^{3} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 31$	2
A_{27}	$\begin{gathered} 2^{24} \cdot 3^{13} \cdot 5^{6} \cdot 7^{3} \\ .11^{2} \cdot 13^{2} \cdot 17 \cdot 19 \cdot 23 \end{gathered}$	2	$L_{6}\left(2^{2}\right)$	$2^{30} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 31$	12
A_{28}	$\begin{gathered} 2^{26} \cdot 3^{13} \cdot 5^{6} \cdot 7^{4} \\ .11^{2} \cdot 13^{2} \cdot 17 \cdot 19 \cdot 23 \end{gathered}$	2	$S_{12}(2)$	$2^{36} \cdot 3^{8} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 31$	1
$L_{2}(29)$	$2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 29$	2	A_{31}	$\begin{gathered} 2^{24} \cdot 3^{13} \cdot 5^{6} \cdot 7^{4} \cdot 11^{2} \\ .13^{2} \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \end{gathered}$	2
$L_{2}\left(17^{2}\right)$	$2^{5} \cdot 3^{2} \cdot 5 \cdot 17^{2} \cdot 29$	4	A_{32}	$\begin{gathered} 2^{29} \cdot 3^{13} \cdot 5^{6} \cdot 7^{4} \cdot 11^{2} \\ .13^{2} \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \end{gathered}$	2
$S_{4}(17)$	$2^{10} \cdot 3^{4} \cdot 5 \cdot 17^{4} \cdot 29$	2	A_{33}	$\begin{gathered} 2^{29} \cdot 3^{14} \cdot 5^{6} \cdot 7^{4} \cdot 11^{3} \\ .13^{2} \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \end{gathered}$	2
$R u$	$2^{14} \cdot 3^{3} \cdot 5^{3} \cdot 7 \cdot 13 \cdot 29$	1	A_{34}	$\begin{gathered} 2^{30} \cdot 3^{14} \cdot 5^{6} \cdot 7^{4} \cdot 11^{3} \\ .13^{2} \cdot 17^{2} \cdot 19 \cdot 23 \cdot 29 \cdot 31 \end{gathered}$	2
$U_{4}(17)$	$2^{11} \cdot 3^{7} \cdot 5 \cdot 7 \cdot 13 \cdot 17^{6} \cdot 29$	4	A_{35}	$\begin{gathered} 2^{30} \cdot 3^{14} \cdot 5^{7} \cdot 7^{5} \cdot 11^{3} \\ .13^{2} \cdot 17^{2} \cdot 19 \cdot 23 \cdot 29 \cdot 31 \end{gathered}$	2
$F i_{24}^{\prime}$	$\begin{gathered} 2^{21} \cdot 3^{16} \cdot 5^{2} \cdot 7^{3} \cdot 11 \\ .13 \cdot 17 \cdot 23 \cdot 29 \end{gathered}$	2	A_{36}	$\begin{gathered} 2^{32} \cdot 3^{16} \cdot 5^{7} \cdot 7^{5} \cdot 11^{3} \\ .13^{2} \cdot 17^{2} \cdot 19 \cdot 23 \cdot 29 \cdot 31 \end{gathered}$	2

3. Proof of the main theorem

We assume M is an almost simple group related to $L=L_{3}(25)$ and G is a finite group such that $D(G)=D(M)$ and $|G|=|M|$. We break the proof into
a number of separate propositions. In each proposition, under assumptions we diagram all possibilities for $\Gamma(G)$ by use of the variables for some vertices. Also since in some propositions we need to know the structure of $\Gamma(M)$ to determine the possibilities for G, we diagram the prime graph of all extensions of L in pages 23 to 25 . Note that the set of order elements in each of the following propositions and also the Schur multiplier of all extensions are calculated using Magma.
Proposition 3.1. If $M=L$, then $G \cong L$.
Proof. By TABLE $1,|L|=2^{7} .3^{2} .5^{6} .7 .13 .31 . \pi_{e}(L)=\{1,2,3,4,5,6,7,8,10,12$, $13,16,20,24,26,31,40,52,104,208,217\}$, so $D(L)=(3,1,1,1,1,1)$. Now under assumptions $|G|=|L|$ and $D(G)=D(L)$, we conclude that $\Gamma(G)$ has following forms:

Figure 3.1:

where $\{a, b, c, d, e\}=\pi(G)-\{2\}$.
To simplify, in every proposition, we break the proof into several steps.
Step 1. Let K be the maximal normal solvable subgroup of G. Then K is a $\{2,3,5\}$-group. In particular, G is non-solvable.
We consider these two parts depending on $\{a, b\}$.
Part A. $\{a, b\} \neq\{13,31\}$. First, we show that K is a 31^{\prime}-group. Assume the contrary and let $31 \in \pi(K)$. We claim 13 does not divide the order of K. Otherwise, we may suppose that T is a Hall $\{13,31\}$-subgroup of K. It is seen that T is a nilpotent subgroup of order 13.31. Thus, $13.31 \in \pi_{e}(K) \subseteq \pi_{e}(G)$, a contradiction. Thus, $\{31\} \subseteq \pi(K) \subseteq \pi(G)-\{13\}$. Let $K_{31} \in \operatorname{Syl}_{31}(K)$. By Frattini argument, $G=K N_{G}\left(K_{31}\right)$. Therefore, $N_{G}\left(K_{31}\right)$ contains an element x of order 13. Since G has no element of order 13.31, $\langle x\rangle$ should act fixed point freely on K_{31}, that is implying $\langle x\rangle K_{31}$ is a Frobenius group. By Lemma 2.3(b), $|\langle x\rangle| \mid\left(\left|K_{31}\right|-1\right)$. It follows that $13 \mid 31-1$, which is a contradiction. Now we show that K is a p^{\prime}-group where $p \in\{a, b, c, d, e\}-\{3,5,31\}=\{7,13\}$. First suppose that $p \in\{c, d, e\}-\{3,5,31\}$. Assume the contrary and let x be an element of K of order p. According to $\Gamma(G), C_{G}(x)$ is a $\{2, p\}$-group. Since $\frac{N_{G}(\langle x\rangle)}{C_{G}(x)} \lesssim \operatorname{Aut}(\langle x\rangle) \cong \mathbb{Z}_{p-1}, \pi\left(N_{G}(\langle x\rangle)\right) \subseteq\{2,3, p\}$. By Frattini argument, $G=K N_{G}(\langle x\rangle)$, so 31 must divide the order of K, which is a contradiction. It is enough to show that K is a p^{\prime}-group where $p \in\{a, b\}-\{3,5,31\}$. Assume the contrary, so we may suppose that x is an element of K of order p. Then by $\Gamma(G), C_{G}(x)$ is a $\{a, b\}$-group. Using similar argument as before, we see that $\pi\left(N_{G}(\langle x\rangle)\right) \subseteq\{2,3, a, b\}$, therefore $\{c, d, e\} \subseteq \pi(K)$, that is a contradiction.

So K is a $\{2,3,5\}$-group.
Part B. $\{a, b\}=\{13,31\}$. First, we show that K is a 31^{\prime}-group. Assume the contrary that $31 \in \pi(K)$. By the same argument in Part A and considering 7 instead of 13 , we get a contradiction. Now we show that K is a p^{\prime}-group for $p=7$ and 13. Let $p \in \pi(K)$ and x be an element of K of order p. First, put $p=7$ then by $\Gamma(G), C_{G}(x)$ is a $\{2,7\}$-group. Since $\frac{N_{G}(\langle x\rangle)}{C_{G}(x)} \lesssim \operatorname{Aut}(\langle x\rangle) \cong \mathbb{Z}_{6}$, $N_{G}(\langle x\rangle)$ is a $\{2,3,7\}$-group. Now by Frattini argument, $G=K N_{G}(\langle x\rangle)$, so 31 must divide the order of K and that is a contradiction. Next we put $p=13$, then by $\Gamma(G)$ we see that $C_{G}(x)$ is a $\{13,31\}$-group. By the same argument as before, $N_{G}(\langle x\rangle)$ is a $\{2,3,13,31\}$-group, so 7 must divide the order of K which is a contradiction. Therefore K is a $\{2,3,5\}$-group.

In addition since $K \neq G, G$ is non-solvable, and this completes the proof of Step 1.

Step 2. The quotient $\frac{G}{K}$ is an almost simple group. In fact, $S \unlhd \frac{G}{K} \lesssim$ $\operatorname{Aut}(S)$, where S is a finite non-abelian simple group.

Let $\bar{G}=\frac{G}{K} . \quad S:=\operatorname{Soc}(\bar{G})=P_{1} \times P_{2} \times \ldots \times P_{m}$, where P_{i} 's are finite non-abelian simple groups (by Step 1, we conclude that every minimal normal subgroup of $\frac{G}{K}$ is non-abelian). Also $C_{\bar{G}}(S)=1$. Because if $1 \neq \frac{T}{K}=: C_{\bar{G}}(S)$, then by Zorn's Lemma, there exists a normal minimal subgroup M of \bar{G} such that $M \leq \frac{T}{K}=C_{\bar{G}}(S) \leq C_{\bar{G}}(M)$. So $M \subseteq C_{\bar{G}}(M) \cap M=Z(M)$ and it implies that M is abelian, a contradiction. Now since $\frac{N_{\bar{G}}(S)}{C_{\bar{G}}(S)} \lesssim \operatorname{Aut}(S)$, we have $S \unlhd \frac{G}{K} \lesssim \operatorname{Aut}(S)$. If we show that $m=1$, the proof of Step 2 is complete. Suppose that $m \geq 2$. We claim 31 does not divide $|S|$. Assume the contrary and let $31\left||S|\right.$, on the other hand, $\{2,3\} \subset \pi\left(P_{i}\right)$ for every i (by TABLE 1 , hence $2 \sim 31$ and $3 \sim 31$, which is a contradiction. Now, by Step 1, we observe that $31 \in \pi(\bar{G}) \subseteq \pi(\operatorname{Aut}(S))$. But $\operatorname{Aut}(S)=\operatorname{Aut}\left(S_{1}\right) \times \operatorname{Aut}\left(S_{2}\right) \times$ $\ldots \times \operatorname{Aut}\left(S_{r}\right)$, where the groups S_{j} are direct products of isomorphic P_{i} 's such that $S=S_{1} \times S_{2} \times \ldots \times S_{r}$. Therefore, for some j, 31 divides the order of an automorphism group of a direct product S_{j} of t isomorphic simple groups P_{i}. Since $P_{i} \in \mathfrak{S}_{31}$, it follows that $\left|\operatorname{Out}\left(P_{i}\right)\right|$ is not divisible by 31 (see TABLE 1), so 31 does not divide the order of $\operatorname{Aut}\left(P_{i}\right)$. Now, by Lemma 2.2, we obtain $\left|\operatorname{Aut}\left(S_{j}\right)\right|=\left|\operatorname{Aut}\left(P_{i}\right)\right|^{t!} \cdot t!$. Therefore, $t \geq 31$ and so 2^{62} must divide the order of G, which is a contradiction. Therefore, $m=1$ and $S=P_{1}$, so the proof of Step 2 is complete.

Step 3. G is isomorphic to $L_{3}(25)$.
By TABLE 1 and Step 1, it is evident that $|S|=2^{\alpha} .3^{\beta} .5^{\gamma} .7 .13 .31$, where $2 \leq \alpha \leq 7,1 \leq \beta \leq 2$ and $0 \leq \gamma \leq 6$. Now, using collected results contained in TABLE 1, we conclude that $S \cong L_{3}(25)$ and by Step $2, L \unlhd \frac{G}{K} \lesssim \operatorname{Aut}(L)$. As $|G|=|L|$, we deduce $K=1$, so $G \cong L$, and the proof is complete.

Proposition 3.2. If $M=L: 2_{1}$, then $G \cong L: 2_{1}$.

Proof. As $\left|L: 2_{1}\right|=2^{8} .3^{2} .5^{6} .7 .13 .31$ and $\pi_{e}\left(L: 2_{1}\right)=\{1,2,3,4,5,6,7,8,10,12$, $13,16,20,24,26,31,40,48,52,62,104,208,217\}$ then $D\left(L: 2_{1}\right)=(4,1,1,1,1,2)$. Since $|G|=\left|L: 2_{1}\right|$ and $D(G)=D\left(L: 2_{1}\right)$, the prime graph of G has several possibilities are shown in the following figure:

Figure 3.2:
where $\{a, b, c, d\}=\{3,5,7,13\}$.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is a $\{2,3,5\}$-group. In particular, G is non-solvable.

We consider separate parts depending on a :
Part A. Let $a=3$. We choose one of the primes in $\{b, c, d\}$ that is unequal to 5 as r. First, we show that K is a 31^{\prime}-group. Assume the contrary and let $31 \in \pi(K)$. Then r doesn't divide the order of K. Otherwise, there exists a Hall $\{r, 31\}$-subgroup T of K and it is seen that T is a nilpotent subgroup of order r.31. Thus, $r .31 \in \pi_{e}(K) \subseteq \pi_{e}(G)$, a contradiction. Thus, $\{31\} \subseteq \pi(K) \subseteq$ $\pi(G)-\{r\}$. Let $K_{31} \in \operatorname{Syl}_{31}(K)$. By Frattini argument, $G=K N_{G}\left(K_{31}\right)$. Therefore, $N_{G}\left(K_{31}\right)$ contains an element x of order r. Since G has no element of order r.31, $\langle x\rangle$ should act fixed point freely on K_{31}, which implies that $\langle x\rangle K_{31}$ is a Frobenius group. By Lemma 2.3(b), $|\langle x\rangle| \mid\left(\left|K_{31}\right|-1\right)$. It follows that $r \mid 31-1$, which is a contradiction, because we know that $r \neq 3,5$. Now we show that K is a p^{\prime}-group for $p=7$ and 13. Assume the contrary: $p \| K \mid$ and x is an element of K of order p. According to $\Gamma(G), C_{G}(x)$ is a $\{2, p\}$-group. Since $\frac{N_{G}(\langle x\rangle)}{C_{G}(x)} \lesssim \operatorname{Aut}(\langle x\rangle) \cong \mathbb{Z}_{p-1}, N_{G}(\langle x\rangle)$ is a $\{2,3, p\}$-group. As by Frattini argument, $G=K N_{G}(\langle x\rangle)$, then 31 must divide the order of K, which is a contradiction. Therefore K is a $\{2,3,5\}$-group.
Part B. Let $a \neq 3$. In this part we choose one of the primes in $\{b, c, d\}$ that is unequal to 3 and 5 as r. By a similar way in Part A, it is seen that K is a 31^{\prime}-group. We prove that K is a p^{\prime}-group where $p \in\{b, c, d\}-\{3,5\}$. Assume the contrary, let $p \| K \mid$ and x be an element of K of order p. By the exact way in Part A for $p=7$ and 13, we get a contradiction. It is enough to show that K is a a^{\prime}-group if $a \neq 5$. Let $a \in \pi(K)$, and x be an element of K of order a. By $\Gamma(G), C_{G}(x)$ is a $\{a, 31\}$-group, therefore $N_{G}(\langle x\rangle)$ is a $\{2,3, a, 31\}$-group, and since by Frattini argument, $G=K N_{G}(\langle x\rangle), r$ must divide the order of K, which is a contradiction.

In addition since $K \neq G, G$ is non-solvable and this completes the proof of Step 1.

Step 2. The quotient $\frac{G}{K}$ is an almost simple group. In fact, $S \unlhd \frac{G}{K} \lesssim$ Aut(S), where S is a finite non-abelian simple group.

Let $\bar{G}=\frac{G}{K}$. If we set $S:=\operatorname{Soc}(\bar{G}), S=P_{1} \times P_{2} \times \ldots \times P_{m}$, where P_{i} 's are finite non-abelian simple groups. In Step 2 of Proposition 3.1, we showed that $S \unlhd \frac{G}{K} \lesssim \operatorname{Aut}(S)$, then it is enough to prove that $m=1$ to complete the proof of Step 2. Suppose that $m \geq 2$. We claim 13 does not divide $|S|$. Assume the contrary and let $13\left||S|\right.$, on the other hand, $\{2,3\} \subset \pi\left(P_{i}\right)$ for every i (by TABLE 1), hence $2 \sim 13$ and $3 \sim 13$, which is a contradiction. Now, by Step 1, we observe that $13 \in \pi(\bar{G}) \subseteq \pi(\operatorname{Aut}(S))$. But $\operatorname{Aut}(S)=\operatorname{Aut}\left(S_{1}\right) \times \operatorname{Aut}\left(S_{2}\right) \times \ldots \times \operatorname{Aut}\left(S_{r}\right)$, where the groups S_{j} are direct products of isomorphic P_{i} 's such that $S=S_{1} \times S_{2} \times \ldots \times S_{r}$. Therefore, for some $j, 13$ divides the order of an automorphism group of a direct product S_{j} of t isomorphic simple groups P_{i}. Since $P_{i} \in \mathfrak{S}_{31}$, it follows that $\left|\operatorname{Out}\left(P_{i}\right)\right|$ is not divisible by 13 (see TABLE 1). Now, by Lemma 2.2, we obtain $\left|\operatorname{Aut}\left(S_{j}\right)\right|=\left|\operatorname{Aut}\left(P_{i}\right)\right|^{t!} . t!$. Therefore, $t \geq 13$ and so 2^{26} must divide the order of G, which is a contradiction. Therefore $m=1$ and $S=P_{1}$.

By TABLE 1 and Step 1, it is evident that $|S|=2^{\alpha} .3^{\beta} .5^{\gamma} .7 .13 .31$, where $2 \leq \alpha \leq 8,1 \leq \beta \leq 2$ and $0 \leq \gamma \leq 6$. Now, using collected results contained in TABLE 1, we conclude that $S \cong L_{3}(25)$ and by Step $2, L \unlhd \frac{G}{K} \lesssim \operatorname{Aut}(L)$. As $|G|=\left|L: 2_{1}\right|=2|L|$, we deduce $|K|=1$ or 2 .

If $|K|=1$, then $G \cong L: 2_{1}$ because $|G|=2|L|$. Obviously, G can not be isomorphic to $L: 2_{2}$ or $L: 2_{3}$, because $\operatorname{deg}(31)=1$ in $\Gamma\left(L: 2_{2}\right)$ and $\Gamma\left(L: 2_{3}\right)$, (see page 24).

If $|K|=2$, then $K \leq Z(G)$ and so $\operatorname{deg}(2)=5$, which is a contradiction.
Proposition 3.3. If $M=L: 2_{2}$, then $G \cong L: 2_{2}$.
Proof. By TABLE 1, $\left|L: 2_{2}\right|=2^{8} .3^{2} .5^{6} .7 .13 .31 . \pi_{e}(L)=\{1,2,3,4,5,6,7,8,10$, $12,13,16,20,24,26,31,40,48,52,104,208,217\}$, so $D\left(L: 2_{2}\right)=(3,1,1,1,1,1)$. Since $|G|=\left|L: 2_{2}\right|$ and $D(G)=D\left(L: 2_{2}\right)$, we conclude that $\Gamma(G)$ has the possibilities like Proposition 3.1.

Figure 3.3:

where $\{a, b, c, d, e\}=\pi(G)-\{2\}$.
Step 1. Let K be the maximal normal solvable subgroup of G. Then K is a $\{2,3,5\}$-group. In particular, G is non-solvable.

Similarly to those in Proposition 3.1, We can prove these assertions.
Step 2. The quotient $\frac{G}{K}$ is an almost simple group. In fact, $S \unlhd \frac{G}{K} \lesssim$ $\operatorname{Aut}(S)$, where S is a finite non-abelian simple group.

The proof is similar to Step 2, in Proposition 3.1.
Now by TABLE 1 and Step 1, it is evident that $|S|=2^{\alpha} \cdot 3^{\beta} \cdot 5^{\gamma} \cdot 7 \cdot 13 \cdot 31$, where $2 \leq \alpha \leq 8,1 \leq \beta \leq 2$ and $0 \leq \gamma \leq 6$. By using collected results contained in TABLE 1, we deduce that $S \cong L_{3}(25)$ and by Step 2 we conclude that $L \unlhd \frac{G}{K} \lesssim \operatorname{Aut}(L)$. As $|G|=\left|L: 2_{2}\right|=2|L|$, hence $|K|=1$ or 2 .

If $|K|=1, G \cong L: 2_{2}$ because $|G|=2|L|$. As $\operatorname{deg}(2)=4$ in $\Gamma\left(L: 2_{1}\right)$ and $\Gamma\left(L: 2_{3}\right)$ (see pages 23 and 24), we have only one possibility for G.

If $|K|=2$, then $K \leq Z(G)$ and so $\operatorname{deg}(2)=5$, which is a contradiction.
Proposition 3.4. If $M=L: 2_{3}$, then $G \cong L: 2_{3}$.
Proof. By TABLE $1,\left|L: 2_{3}\right|=2^{8} .3^{2} .5^{6} .7 .13 .31 . \pi_{e}\left(L: 2_{3}\right)=\{1,2,3,4,5,6,7,8$, $10,12,13,14,16,20,24,26,31,40,52,104,208,217\}$, so $D\left(L: 2_{3}\right)=(4,1,1,2,1$, 1). Since $|G|=\left|L: 2_{3}\right|$ and $D(G)=D\left(L: 2_{3}\right)$, we conclude that there exist some possibilities for $\Gamma(G)$ are as follows:

Figure 3.4:
where $\{a, b, c, d\}=\{3,5,13,31\}$.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is a $\{2,3,5\}$-group. In particular, G is non-solvable.
We consider different parts depending on a like Proposition 3.2:
Part A. Let $a=3$. We choose one of the primes in $\{b, c, d\}$ that is unequal to 5 as r. We show that K is a 7^{\prime}-group. Assume the contrary and let $7 \in \pi(K)$. Then r doesn't divide the order of K. Otherwise, there exists a Hall $\{r, 7\}$ subgroup T of K and it is seen that T is a nilpotent subgroup of order r.7. Thus, $r .7 \in \pi_{e}(K) \subseteq \pi_{e}(G)$, a contradiction. Thus, $\{7\} \subseteq \pi(K) \subseteq \pi(G)-\{r\}$. Let $K_{7} \in \operatorname{Syl}_{7}(K)$. By Frattini argument, $G=K N_{G}\left(K_{7}\right)$. Therefore, $N_{G}\left(K_{7}\right)$ contains an element x of order r. Since G has no element of order $r .7,\langle x\rangle$ should act fixed point freely on K_{7}, implying $\langle x\rangle K_{7}$ is a Frobenius group. By Lemma $2.3(\mathrm{~b}),|\langle x\rangle| \mid\left(\left|K_{7}\right|-1\right)$. It follows that $r \mid 7-1$, which is a contradiction, because we know that $r \neq 2,3$. Now we show that K is a p^{\prime}-group for $p=13$ and 31 . Assume the contrary: $p \| K \mid$ and x is an element of K of order p. According to $\Gamma(G), C_{G}(x)$ is a $\{2, p\}$-group. Since $\frac{N_{G}(\langle x\rangle)}{C_{G}(x)} \lesssim \operatorname{Aut}(\langle x\rangle) \cong \mathbb{Z}_{p-1}, N_{G}(\langle x\rangle)$ is a $\{2,3,5, p\}$-group. By Frattini argument, $G=K N_{G}(\langle x\rangle)$ then 7 must divide
the order of K, which is a contradiction. Therefore K is a $\{2,3,5\}$-group.
Part B. Let $a \neq 3$. We choose one of the primes in $\{b, c, d\}$ that is unequal to 5 and 3 as r. By a similar way in Part A, it is seen that K is a 7^{\prime}-group. Next we prove that K is a p^{\prime}-group where $p \in\{b, c, d\}-\{3,5\}$. Assume the contrary, let $p||K|$ and x be an element of K of order p. By the structure of $\Gamma(G)$, we conclude that $C_{G}(x)$ is a $\{2, p\}$-group, and by the same argument as in Part A, we see that $N_{G}(\langle x\rangle)$ is a $\{2,3,5, p\}$-group. As $G=K N_{G}(\langle x\rangle)$, then 7 must divide the order of K, which is a contradiction. It is enough to show that K is a a^{\prime}-group if $a \neq 5$. Let $a \in \pi(K)$, and x be an element of K of order a. Вy $\Gamma(G), C_{G}(x)$ is a $\{a, 7\}$-group. We use the same technique as before and we can easily see that $N_{G}(\langle x\rangle)$ is a $\{2,3,5,7, a\}$-group. Since by Frattini argument, $G=K N_{G}(\langle x\rangle), r$ must divide the order of K, which is a contradiction. Therefore K is a $\{2,3,5\}$-group.

In addition since $K \neq G, G$ is non-solvable and this completes the proof of Step 1.

Step 2. The quotient $\frac{G}{K}$ is an almost simple group. In fact, $S \unlhd \frac{G}{K} \lesssim$ Aut(S), where S is a finite non-abelian simple group.

Let $\bar{G}=\frac{G}{K}$. If we set $S:=\operatorname{Soc}(\bar{G}), S=P_{1} \times P_{2} \times \ldots \times P_{m}$, where P_{i} 's are finite non-abelian simple groups. In Step 2 of Proposition 3.1, we showed that $S \unlhd \frac{G}{K} \lesssim \operatorname{Aut}(S)$, then it is enough to prove that $m=1$ to complete the proof of Step 2. Suppose that $m \geq 2$. We claim 31 does not divide $|S|$. Assume the contrary and let $31||S|$, on the other hand, $\{2,3\} \subset \pi\left(P_{i}\right)$ (by TABLE 1), hence $2 \sim 31$ and $3 \sim 31$, which is a contradiction. Now, by Step 1, we observe that $31 \in \pi(\bar{G}) \subseteq \pi(\operatorname{Aut}(S))$. But $\operatorname{Aut}(S)=\operatorname{Aut}\left(S_{1}\right) \times \operatorname{Aut}\left(S_{2}\right) \times \ldots \times \operatorname{Aut}\left(S_{r}\right)$, where the groups S_{j} are direct products of isomorphic P_{i} 's such that $S=S_{1} \times S_{2} \times \ldots \times S_{r}$. Therefore, for some $j, 31$ divides the order of an automorphism group of a direct product S_{j} of t isomorphic simple groups P_{i}. Since $P_{i} \in \mathfrak{S}_{31}$, it follows that \mid Out $\left(P_{i}\right) \mid$ is not divisible by 31 (see TABLE 1). Now, by Lemma 2.2, we obtain $\left|\operatorname{Aut}\left(S_{j}\right)\right|=\left|\operatorname{Aut}\left(P_{i}\right)\right|^{t!} \cdot t!$. Therefore, $t \geq 31$ and so 2^{62} must divide the order of G, which is a contradiction. Therefore $m=1$ and $S=P_{1}$.

By TABLE 1 and Step 1, it is evident that $|S|=2^{\alpha} .3^{\beta} .5^{\gamma} .7 .13 .31$, where $2 \leq \alpha \leq 8,1 \leq \beta \leq 2$ and $0 \leq \gamma \leq 6$. Now, using collected results contained in TABLE 1 , we conclude that $S \cong L_{3}(25)$ and by Step $2, L \unlhd \frac{G}{K} \lesssim \operatorname{Aut}(L)$. As $|G|=\left|L: 2_{3}\right|=2|L|$, we deduce $|K|=1$ or 2 .

If $|K|=1, G \cong L: 2_{3}$, because $|G|=2|L|$. As $\operatorname{deg}(7)=1$ in $\Gamma\left(L: 2_{1}\right)$ and $\Gamma\left(L: 2_{2}\right)$ (see pages 23 and 24), G can not be isomorphic to them.

If $|K|=2$, then $K \leq Z(G)$ and so $\operatorname{deg}(2)=5$, which is a contradiction.

Proposition 3.5. If $M=L: 3$, then $G \cong L: 3, \mathbb{Z}_{3} \times L$ or $\mathbb{Z}_{3} . L$.

Proof. By TABLE $1,|L: 3|=2^{7} .3^{3} .5^{6} .7 .13 .31 . \pi_{e}(L: 3)=\{1,2,3,4,5,6,7,8$, $10,12,13,15,16,20,21,24,26,30,31,39,40,48,52,60,78,93,104,120,156,208$, $217,312,624,651\}$, so $D(L: 3)=(3,5,2,2,2,2)$. Since $|G|=|L: 3|$ and $D(G)=D(L: 3)$, we immediately conclude that $\Gamma(G)$ has several possibilities are as follows:

Figure 3.5:

where $\{a, b, c, d\}=\{5,7,13,31\}$.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is a $\{2,3,5\}$-group. In particular, G is non-solvable.
We consider the following different parts:
Part A. Let $31 \in\{d, c\}$. First, we show that K is a 31^{\prime}-group. Assume the contrary and let $31 \in \pi(K)$. Since there is no difference in the proof between choosing d as 31 and c as 31 , we put $d=31$. We know that one of the primes in $\{a, b\}$ is unequal to 5 , we put it r. So r does not divide the order of K. Otherwise, we may suppose that T is a Hall $\{31, r\}$-subgroup of K. It is easy to see that T is a nilpotent subgroup of order $r .31$. Thus, $r .31 \in \pi_{e}(K) \subseteq \pi_{e}(G)$, a contradiction. Thus, $\{31\} \subseteq \pi(K) \subseteq \pi(G)-\{r\}$. Let $K_{31} \in \operatorname{Syl}_{31}(K)$, by Frattini argument $G=K N_{G}\left(K_{31}\right)$. Therefore, $N_{G}\left(K_{31}\right)$ has an element x of order r. Since G has no element of order $r .31,\langle x\rangle$ should act fixed point freely on K_{31}, implying $\langle x\rangle K_{31}$ is a Frobenius group. By Lemma 2.3(b), $|\langle x\rangle| \mid\left(\left|K_{31}\right|-1\right)$. It follows that $r \mid 31-1$, which is a contradiction. So K is a 31^{\prime}-group. Next, we prove that K is a p^{\prime}-group for $p \in\{a, b, c\}-\{5\}$. If we assume $p \| K \mid$ and x is an element of K of order p, we get a contradiction, because if $p \in\{a, b\}-\{5\}$, then by $\Gamma(G), N_{G}(\langle x\rangle)$ is a $\{2,3, p\}$-group and since by Frattini argument $G=K N_{G}(\langle x\rangle), 31$ must divide the order of K, which is impossible. Also if $p \in\{c\}-\{5\}$, we see that $N_{G}(\langle x\rangle)$ is a $\{2,3,31, c\}$-group and by the same argument as before, r must divide $|K|$, which is a contradiction. Therefore K is a $\{2,3,5\}$-group.
Part B. Let $\{31\} \nsubseteq\{d, c\}$. To show that K is a 31^{\prime}-group, we assume on the contrary that $31||K|$. If we put $r=13$ and follow the same technique in Part A, we get a contradiction. Thus K is a 31^{\prime}-group. Next, we prove that K is a p^{\prime}-group where $p \in\{7,13\}$. If we assume $p \| K \mid$ and x is an element of K of order p, we get a contradiction, because $\pi\left(C_{G}(x)\right) \subseteq \pi(G)-\{31\}$ and so is $\pi\left(N_{G}(\langle x\rangle)\right)$. Since by Frattini argument $G=K N_{G}(\langle x\rangle), 31$ must divide the order of K, which is impossible. Therefore K is a $\{2,3,5\}$-group.

In addition since $K \neq G, G$ is non-solvable and the proof of this step is complete.

Step 2. The quotient $\frac{G}{K}$ is an almost simple group. In fact, $S \unlhd \frac{G}{K} \lesssim$ Aut(S), where S is a finite non-abelian simple group.

Let $\bar{G}=\frac{G}{K}$. If we set $S:=\operatorname{Soc}(\bar{G}), S=P_{1} \times P_{2} \times \ldots \times P_{m}$, where P_{i} 's are finite non-abelian simple groups. In Step 2 of Proposition 3.1, we showed that $S \unlhd \frac{G}{K} \lesssim \operatorname{Aut}(S)$, then it is enough to prove that $m=1$ to complete the proof of Step 2. Suppose that $m \geq 2$. We choose one of the primes in $\{d, c\}$ that is unequal to 5 as r. We claim r does not divide $|S|$. Assume the contrary and let $r\left||S|\right.$. Since $2 \in \pi\left(P_{i}\right)$, hence $2 \sim r$, which is a contradiction. Now, by Step 1, we observe that $r \in \pi(\bar{G}) \subseteq \pi(\operatorname{Aut}(S))$. But $\operatorname{Aut}(S)=\operatorname{Aut}\left(S_{1}\right) \times \operatorname{Aut}\left(S_{2}\right) \times \ldots \times \operatorname{Aut}\left(S_{r}\right)$, where the groups S_{j} are direct products of isomorphic P_{i} 's such that $S=S_{1} \times S_{2} \times \ldots \times S_{r}$. Therefore, for some j, r divides the order of an automorphism group of a direct product S_{j} of t isomorphic simple groups P_{i}. Since $P_{i} \in \mathfrak{S}_{31}$, it follows that \mid Out $\left(P_{i}\right) \mid$ is not divisible by r (note that $r \in\{7,13,31\}$ and see TABLE 1). Now, by Lemma 2.2, we obtain $\left|\operatorname{Aut}\left(S_{j}\right)\right|=\left|\operatorname{Aut}\left(P_{i}\right)\right|^{\mid t} . t!$. Therefore, $t \geq r \geq 7$ and so 2^{14} must divide the order of G, which is a contradiction. Therefore $m=1$ and $S=P_{1}$.

By TABLE 1 and Step 1, it is evident that $|S|=2^{\alpha} .3^{\beta} .5^{\gamma} .7 .13 .31$, where $2 \leq \alpha \leq 7,1 \leq \beta \leq 3$ and $0 \leq \gamma \leq 6$. Now, using collected results contained in TABLE 1, we conclude that $S \cong L_{3}(25)$ and by Step $2, L \unlhd \frac{G}{K} \lesssim \operatorname{Aut}(L)$. As $|G|=|L: 3|=3|L|$, we deduce $|K|=1$ or 3 .

If $|K|=1$, then by assumption, $G \cong L: 3$.
If $|K|=3, K \leq C_{G}(K)$ and therefore, $\frac{C_{G}(K)}{K} \unlhd \frac{G}{K} \cong L$ implies that $\frac{C_{G}(K)}{K}=1$ or $\frac{C_{G}(K)}{K} \cong L$ because L is simple. If $\frac{C_{G}(K)}{K}=1$, then $|L|=$ $\left.\left|\frac{G}{K}\right|=\left|\frac{G}{C_{G}(K)}\right|| | \operatorname{Aut}(K) \right\rvert\,=2$, a contradiction. So, $G=C_{G}(K)$. Therefore $K \leq Z(G)$, that is, G is a central extension of K by L. If G splits over K, we obtain $G \cong \mathbb{Z}_{3} \times L$, otherwise, we have $G \cong \mathbb{Z}_{3}$. L.

Proposition 3.6. If $M=L: 2^{2}$, then $G \cong L: 2^{2}, \mathbb{Z}_{2} \times\left(L: 2_{1}\right), \mathbb{Z}_{2} \times\left(L: 2_{2}\right)$, $\mathbb{Z}_{2} \times\left(L: 2_{3}\right), \mathbb{Z}_{4} \times L$ or $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \times L$.
Proof. As $\left|L: 2^{2}\right|=2^{9} .3^{2} .5^{6} .7 .13 .31$ and $\pi_{e}\left(L: 2^{2}\right)=\{1,2,3,4,5,6,7,8,10,12$, $13,14,16,20,24,26,31,40,48,52,62,104,208,217\}$, then $D\left(L: 2^{2}\right)=(5,1,1,2$, $1,2)$. By assumptions $|G|=\left|L: 2^{2}\right|$ and $D(G)=D\left(L: 2^{2}\right)$, we conclude that $\Gamma(G)$ has the following form (like $\Gamma\left(L: 2^{2}\right)$, see page 24):

Figure 3.6:

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is a $\{2,3,5\}$-group. In particular, G is non-solvable.
First, we claim K is a 31^{\prime}-group. Similarly to the former propositions, we assume the contrary that $31 \in \pi(K)$. we easily see 13 does not divide the order of K. Because otherwise, we may suppose that T is a Hall $\{13,31\}$ subgroup of K such that this subgroup is a nilpotent of order 13.31. Thus, $13.31 \in \pi_{e}(K) \subseteq \pi_{e}(G)$, a contradiction. Thus, $\{31\} \subseteq \pi(K) \subseteq \pi(G)-\{13\}$. Now let $K_{31} \in \operatorname{Syl}_{31}(K)$, by Frattini argument $G=K N_{G}\left(K_{31}\right)$. Therefore, $N_{G}\left(K_{31}\right)$ has an element x of order 13. Since G has no element of order 13.31, $\langle x\rangle$ should act fixed point freely on K_{31}, implying $\langle x\rangle K_{31}$ is a Frobenius group. By Lemma $2.3(\mathrm{~b}),|\langle x\rangle| \mid\left(\left|K_{31}\right|-1\right)$. It follows that $13 \mid 31-1$, which is a contradiction, therefore K is a 31^{\prime}-group. To show that K is a p^{\prime}-group for $p=7$ and 13 , we assume the contrary that there exists an element x of K of order p. First put $p=13$. By the structure of $\Gamma(G)$, we see that $C_{G}(x)$ is a $\{2,13\}$-group, then $N_{G}(\langle x\rangle)$ is a $\{2,3,13\}$-group. So since by Frattini argument, $G=K N_{G}(\langle x\rangle)$ then 31 must divide the order of K, which is a contradiction. But for $p=7$, we see that $N_{G}(\langle x\rangle)$ is a $\{2,3,7,31\}$-group and then 13 must divide the order of K, which is impossible. Therefore K is a $\{2,3,5\}$-group. In addition since $K \neq G, G$ is non-solvable and the proof of Step 1 is complete.

Step 2. The quotient $\frac{G}{K}$ is an almost simple group. In fact, $S \unlhd \frac{G}{K} \lesssim$ Aut(S), where S is a finite non-abelian simple group.

To get the proof, follow the method in the proof of Step 2 in Proposition 3.2.
By TABLE 1 and Step 1, it is evident that $|S|=2^{\alpha} .3^{\beta} .5^{\gamma} .7 .13 .31$, where $2 \leq \alpha \leq 9,1 \leq \beta \leq 2$ and $0 \leq \gamma \leq 6$. Now, using collected results contained in TABLE 1 , we conclude that $S \cong L_{3}(25)$ and by Step $2, L \unlhd \frac{G}{K} \lesssim \operatorname{Aut}(L)$. As $|G|=\left|L: 2^{2}\right|=4|L|$, we deduce $|K|=1,2$ or 4 .

If $|K|=1$, then by assumption, $G \cong L: 2^{2}$.
If $|K|=2$, then $K \leq Z(G)$. In this case G is a central extension of \mathbb{Z}_{2} by $L: 2_{1}, L: 2_{2}$ or $L: 2_{3}$. If G splits over K then $G \cong \mathbb{Z}_{2} \times\left(L: 2_{1}\right), \mathbb{Z}_{2} \times\left(L: 2_{2}\right)$ or $\mathbb{Z}_{2} \times\left(L: 2_{3}\right)$, otherwise $|K|$ must divide the Schur multiplier of $L: 2_{1}, L: 2_{2}$ or $L: 2_{3}$, which are 1,1 and 3 respectively, and it is impossible.

If $|K|=4, K \leq C_{G}(K)$ and therefore, $\frac{C_{G}(K)}{K} \unlhd \frac{G}{K} \cong L$ implies that $\frac{C_{G}(K)}{K}=1$ or $\frac{C_{G}(K)}{K} \cong L$ because L is simple. If $\frac{C_{G}(K)}{K}=1$, then $|L|=$
$\left.\left|\frac{G}{K}\right|=\left|\frac{G}{C_{G}(K)}\right|| | \operatorname{Aut}(K) \right\rvert\,=2$ or 6 , a contradiction. So, $G=C_{G}(K)$. Therefore $K \leq Z(G)$, that is, G is a central extension of K by L. If G is a non-split extension of K by L, then $|K|$ must divide the Schur multiplier of L, which is 3 (see [1]), but this is a contradiction. Therefore G splits over K. Hence $G \cong K \times L$. So we have $G \cong \mathbb{Z}_{4} \times L$ or $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \times L$.

Proposition 3.7. If $M=L:\left(D_{6}\right)_{1}$, then $G \cong L:\left(D_{6}\right)_{1}, \mathbb{Z}_{3} \cdot\left(L: 2_{1}\right)$, $\left(\mathbb{Z}_{3} \times L\right) \cdot \mathbb{Z}_{2}$ or $\left(\mathbb{Z}_{3} \cdot L\right) \cdot \mathbb{Z}_{2}$.
Proof. As $\left|L:\left(D_{6}\right)_{1}\right|=6|L|=2^{8} .3^{3} .5^{6} .7 .13 .31$ and $\pi_{e}\left(L:\left(D_{6}\right)_{1}\right)=\{1,2,3,4,5$, $6,7,8,10,12,13,15,16,20,21,24,26,30,31,39,40,48,52,60,62,78,93,104,120$ $, 156,208,217,312,624,651\}$, then $D\left(L:\left(D_{6}\right)_{1}\right)=(4,5,2,2,2,3)$. Since $|G|=$ $\left|L:\left(D_{6}\right)_{1}\right|$ and $D(G)=D\left(L:\left(D_{6}\right)_{1}\right)$, we conclude that there exist several possibilities for $\Gamma(G)$:

Figure 3.7:

where $\{a, b, c\}=\{5,7,13\}$.
Step 1. Let K be the maximal normal solvable subgroup of G. Then K is a $\{2,3,5\}$-group. In particular, G is non-solvable.
First, we show that K is a 31^{\prime}-group. Assume the contrary that $31 \| K \mid$. We know one of the primes in $\{a, b\}$ is unequal to 5 , put it r. Therefore by a similar proof as in Proposition 3.5 (Step 1, Part A) we can get a contradiction and therefore K is a 31^{\prime}-group. Now we prove that K is a p^{\prime}-group for $p \in$ $\{a, b, c\}-\{5\}=\{7,13\}$. Assume the contrary: $p \| K \mid$ and x is an element of K of order p. First, let $p \in\{a, b\}-\{5\}$, then by $\Gamma(G)$ we conclude that $C_{G}(x)$ is a $\{2,3, p\}$-group and therefore so is $N_{G}(\langle x\rangle)$. As $G=K N_{G}(\langle x\rangle)$, then 31 must divide the order of K, which is a contradiction. For $p \in\{c\}-\{5\}, N_{G}(\langle x\rangle)$ is a $\{2,3,31, c\}$-group. Similar to the above discussion, as $G=K N_{G}(\langle x\rangle), r$ have to divide $|K|$, which is impossible. So K is a $\{2,3,5\}$-group. In addition since $K \neq G, G$ is non-solvable and the proof of Step 1 is complete.

Step 2. The quotient $\frac{G}{K}$ is an almost simple group. In fact, $S \unlhd \frac{G}{K} \lesssim$ Aut(S), where S is a finite non-abelian simple group.

Let $\bar{G}=\frac{G}{K}$. If we set $S:=\operatorname{Soc}(\bar{G}), S=P_{1} \times P_{2} \times \ldots \times P_{m}$, where P_{i} 's are finite non-abelian simple groups. In Step 2 of Proposition 3.1, we showed that $S \unlhd \frac{G}{K} \lesssim \operatorname{Aut}(S)$, then it is enough to prove that $m=1$ to complete the proof of Step 2. Suppose that $m \geq 2$. We claim $r(r$ is one of the primes of a and b that is unequal to 5) does not divide $|S|$. Assume the contrary and let $r||S|$, so by considering $|G|_{r}=r$ (note that $r \in\{7,13\}$), we conclude that r just divides the order of one of the P_{i} 's. Without losing generality, we assume that $r \| P_{1} \mid$.

Then the rest of the P_{i} 's must be $\{2,3\}$-group (because only 2 and 3 are adjacent to r in $\Gamma(G)$), this is a contradiction because P_{i} 's are finite non-abelian simple groups. Now, by Step 1, we observe that $r \in \pi(\bar{G}) \subseteq \pi(\operatorname{Aut}(S))$. But $\operatorname{Aut}(S)=\operatorname{Aut}\left(S_{1}\right) \times \operatorname{Aut}\left(S_{2}\right) \times \ldots \times \operatorname{Aut}\left(S_{r}\right)$, where the groups S_{j} are direct products of isomorphic P_{i} 's such that $S=S_{1} \times S_{2} \times \ldots \times S_{r}$. Therefore, for some j, r divides the order of an automorphism group of a direct product S_{j} of t isomorphic simple groups P_{i}. Since $P_{i} \in \mathfrak{S}_{31}$, it follows that $\left|\operatorname{Out}\left(P_{i}\right)\right|$ is not divisible by r (see TABLE 1), so r does not divide the order of $\operatorname{Aut}\left(P_{i}\right)$. Now, by Lemma 2.2, we obtain $\left|\operatorname{Aut}\left(S_{j}\right)\right|=\left|\operatorname{Aut}\left(P_{i}\right)\right|^{t!}$.t!. Therefore, $t \geq r \geq 7$ and so 2^{14} must divide the order of G, which is a contradiction. Therefore $m=1$ and $S=P_{1}$.

By TABLE 1 and Step 1, it is evident that $|S|=2^{\alpha} .3^{\beta} .5^{\gamma} .7 .13 .31$, where $2 \leq \alpha \leq 8,1 \leq \beta \leq 3$ and $0 \leq \gamma \leq 6$. Now, using collected results contained in TABLE 1 , we conclude that $S \cong L_{3}(25)$ and by Step $2, L \unlhd \frac{G}{K} \lesssim \operatorname{Aut}(L)$. As $|G|=\left|L:\left(D_{6}\right)_{1}\right|=6|L|$, we deduce $|K|=1,2,3$ or 6 .

If $|K|=1$, then $G \cong L:\left(D_{6}\right)_{1}$, because $|G|=6|L|$. Obviously, G can not be isomorphic to $L:\left(D_{6}\right)_{2}$ and $L: 6$, because $\operatorname{deg}(31)=2$ in $\Gamma\left(L:\left(D_{6}\right)_{2}\right)$ and $\Gamma(L: 6)$.

If $|K|=2$, then $K \leq Z(G)$ and so $\operatorname{deg}(2)=5$, which is a contradiction.
If $|K|=3$, then $\frac{G}{K} \cong L: 2_{1}, L: 2_{2}$ or $L: 2_{3}$. But $\frac{G}{C_{G}(K)} \lesssim \operatorname{Aut}(K) \cong \mathbb{Z}_{2}$. Thus $\left|\frac{G}{C_{G}(K)}\right|=1$ or 2 . If $\left|\frac{G}{C_{G}(K)}\right|=1$, then $K \leq Z(G)$, that is, G is a central extension of \mathbb{Z}_{3} by $L: 2_{1}, L: 2_{2}$ or $L: 2_{3}$. If G splits over K, then only $\mathbb{Z}_{3} \times\left(L: 2_{1}\right)$ is possible for G because in $\Gamma\left(\mathbb{Z}_{3} \times\left(L: 2_{2}\right)\right)$ and $\Gamma\left(\mathbb{Z}_{3} \times\left(L: 2_{3}\right)\right)$, $\operatorname{deg}(31)=2$. Otherwise we get a contradiction, because 3 does not divide the Schur multiplier of $L: 2_{1}$ and $L: 2_{2}$ and $\operatorname{deg}(31) \neq 3$ in $\Gamma\left(\mathbb{Z}_{3} .\left(L: 2_{3}\right)\right)$. If $\left|\frac{G}{C_{G}(K)}\right|=2$, then $K<C_{G}(K)$, hence by $1 \neq \frac{C_{G}(K)}{K} \unlhd \frac{G}{K} \cong L: 2_{1}, L: 2_{2}$ or $L: 2_{3}$ and simplicity of L, we obtain $\frac{C_{G}(K)}{K} \cong L$. Since $K \leq Z\left(C_{G}(K)\right)$, $C_{G}(K)$ is a central extension of K by L. Thus $C_{G}(K) \cong \mathbb{Z}_{3} \times L$ or $\mathbb{Z}_{3} . L$. Therefore, $G \cong\left(\mathbb{Z}_{3} \times L\right) \cdot \mathbb{Z}_{2}$ or $\left(\mathbb{Z}_{3} . L\right) \cdot \mathbb{Z}_{2}$.

If $|K|=6$, then $\frac{C_{G}(K) K}{K} \unlhd \frac{G}{K} \cong L$ implies that $\frac{C_{G}(K) K}{K}=1$ or $\frac{C_{G}(K) K}{K} \cong L$, because L is simple. If $\frac{C_{G}(K) K}{K}=1$, then $C_{G}(K) \leq K$ and hence, $|L|=$ $\left|\frac{G}{K}\right|\left|\left|\frac{G}{C_{G}(K)}\right|\right||\operatorname{Aut}(K)|=2$ or 6 , a contradiction. Therefore, $G=C_{G}(K) K$.
Now we consider following cases:
(1) If $K \cong \mathbb{Z}_{6}$, then $G=C_{G}(K)$. Therefore $K \leq Z(G)$ and it follows that $\operatorname{deg}(2)=5$, a contradiction.
(2) If $K \cong D_{6}$, then $C_{G}(K) \cap K=1$. So $C_{G}(K) \cong \frac{C_{G}(K) K}{K}=\frac{G}{K} \cong L$ and therefore $G \cong D_{6} \times L$, which implies that $\operatorname{deg}(2)=5$, a contradiction.

Proposition 3.8. If $M=L:\left(D_{6}\right)_{2}$, then $G \cong L:\left(D_{6}\right)_{2}, \mathbb{Z}_{3} \times\left(L: 2_{2}\right)$, $\left(\mathbb{Z}_{3} \times L\right) . \mathbb{Z}_{2}$ or $\left(\mathbb{Z}_{3} \cdot L\right) \cdot \mathbb{Z}_{2}$.

Proof. As $\left|L:\left(D_{6}\right)_{2}\right|=6|L|=2^{8} .3^{3} .5^{6} .7 .13 .31$ and $\pi_{e}\left(L:\left(D_{6}\right)_{2}\right)=\{1,2,3,4$, $5,6,7,8,10,12,13,15,16,20,21,24,26,30,31,39,40,48,52,60,78,93,104,120$, $156,208,217,312,624,651\}$, then $D\left(L:\left(D_{6}\right)_{2}\right)=(3,5,2,2,2,2)$. Since $|G|=$ $\left|L:\left(D_{6}\right)_{2}\right|$ and $D(G)=D\left(L:\left(D_{6}\right)_{2}\right)$, there exist several possibilities for $\Gamma(G)$ similarly to Proposition 3.5:

Figure 3.8:

where $\{a, b, c, d\}=\{5,7,13,31\}$.
Step 1. Let K be the maximal normal solvable subgroup of G. Then K is a $\{2,3,5\}$-group. In particular, G is non-solvable.
The proof is similar to that of Proposition 3.5.
Step 2. The quotient $\frac{G}{K}$ is an almost simple group. In fact, $S \unlhd \frac{G}{K} \lesssim$ Aut(S), where S is a finite non-abelian simple group.
Again we refer to Step 2 of Proposition 3.5 to get the proof.
By TABLE 1 and Step 1, it is evident that $|S|=2^{\alpha} .3^{\beta} .5^{\gamma} .7 .13 .31$, where $2 \leq \alpha \leq 8,1 \leq \beta \leq 3$ and $0 \leq \gamma \leq 6$. Now, using collected results contained in TABLE 1 , we conclude that $S \cong L_{3}(25)$ and by Step $2, L \unlhd \frac{G}{K} \lesssim \operatorname{Aut}(L)$. As $|G|=\left|L:\left(D_{6}\right)_{2}\right|=6|L|$, we deduce $|K|=1,2,3$ or 6 .

If $|K|=1$, then $G \cong L:\left(D_{6}\right)_{2}$, because $|G|=6|L|$. Obviously G can't be isomorphic to $L:\left(D_{6}\right)_{1}$ and $L: 6$, because $\operatorname{deg}(2)=4$ in $\Gamma\left(L:\left(D_{6}\right)_{1}\right)$ and $\Gamma(L: 6)$.

If $|K|=2$, then $K \leq Z(G)$ and so $\operatorname{deg}(2)=5$, which is a contradiction.
If $|K|=3$, then $\frac{G}{K} \cong L: 2_{1}, L: 2_{2}$ or $L: 2_{3}$. But $\frac{G}{C_{G}(K)} \lesssim \operatorname{Aut}(K) \cong \mathbb{Z}_{2}$. Thus $\left|\frac{G}{C_{G}(K)}\right|=1$ or 2 . If $\left|\frac{G}{C_{G}(K)}\right|=1$, then $K \leq Z(G)$, that is, G is a central extension of \mathbb{Z}_{3} by $L: 2_{1}, L: 2_{2}$ or $L: 2_{3}$. If G splits over K, then only $G \cong \mathbb{Z}_{3} \times\left(L: 2_{2}\right)$ because in $\Gamma\left(\mathbb{Z}_{3} \times\left(L: 2_{1}\right)\right)$ and $\Gamma\left(\mathbb{Z}_{3} \times\left(L: 2_{3}\right)\right)$, $\operatorname{deg}(2)=4$. Otherwise we get a contradiction, because 3 does not divide the Schur multiplier of $L: 2_{1}$ and $L: 2_{2}$, and $\operatorname{deg}(2)=4$ in $\left(Z 3 .\left(L: 2_{3}\right)\right)$. If $\left|\frac{G}{C_{G}(K)}\right|=2$, then $K<C_{G}(K)$, hence by $1 \neq \frac{C_{G}(K)}{K} \unlhd \frac{G}{K} \cong L: 2_{1}, L: 2_{2}$ or $L: 2_{3}$ and simplicity of L, we obtain $\frac{C_{G}(K)}{K} \cong L$. Since $K \leq Z\left(C_{G}(K)\right)$, $C_{G}(K)$ is a central extension of K by L. Thus $C_{G}(K) \cong \mathbb{Z}_{3} \times L$ or $\mathbb{Z}_{3} . L$. Therefore, $G \cong\left(\mathbb{Z}_{3} \times L\right) \cdot \mathbb{Z}_{2}$ or $\left(\mathbb{Z}_{3} \cdot L\right) \cdot \mathbb{Z}_{2}$.

If $|K|=6$, then $\frac{C_{G}(K) K}{K} \unlhd \frac{G}{K} \cong L$ implies that $\frac{C_{G}(K) K}{K}=1$ or $\frac{C_{G}(K) K}{K} \cong L$, because L is simple. If $\frac{C_{G}(K) K}{K}=1$, then $C_{G}(K) \leq K$ and hence, $|L|=$ $\left|\frac{G}{K}\right|\left\|\frac{G}{C_{G}(K)}|\| \operatorname{Aut}(K)|=2\right.$ or 6 , a contradiction. Therefore, $G=C_{G}(K) K$. Now we consider following cases:
(1) If $K \cong \mathbb{Z}_{6}$, then $G=C_{G}(K)$. Therefore $K \leq Z(G)$ and it follows that $\operatorname{deg}(2)=5$, a contradiction.
(2) If $K \cong D_{6}$, then $C_{G}(K) \cap K=1$. So $C_{G}(K) \cong \frac{C_{G}(K) K}{K}=\frac{G}{K} \cong L$ and therefore $G \cong D_{6} \times L$, which implies that $\operatorname{deg}(2)=5$, a contradiction.

Proposition 3.9. If $M=L: 6$, then $G \cong L: 6, \mathbb{Z}_{3} \times\left(L: 2_{3}\right)$, $\mathbb{Z}_{3} .\left(L: 2_{3}\right)$, $\left(\mathbb{Z}_{3} \times L\right) \cdot \mathbb{Z}_{2}$ or $\left(\mathbb{Z}_{3} \cdot L\right) \cdot \mathbb{Z}_{2}$.

Proof. As $|L: 6|=2^{8} .3^{3} .5^{6} .7 .13 .31$ and $\pi_{e}(L: 6)=\{1,2,3,4,5,6,7,8,10,12,13$, $14,15,16,20,21,24,26,30,31,39,40,42,48,52,60,78,93,104,120,156,208,217$, $312,624,651\}$, then $D(L: 6)=(4,5,2,3,2,2)$ and since $|G|=|L: 6|$ and $D(G)=D(L: 6)$ then the prime graph of G has the following forms:

Figure 3.9:

where $\{a, b, c\}=\{5,13,31\}$.
Step 1. Let K be the maximal normal solvable subgroup of G. Then K is a $\{2,3,5\}$-group. In particular, G is non-solvable.
First, we show that K is a 7^{\prime}-group. Assume the contrary that $7 \| K \mid$. We know that one of the primes in $\{a, b\}$ is unequal to 5 , we put it r. So r does not divide the order of K. Otherwise, we may suppose that T is a Hall $\{7, r\}$ subgroup of K. It is easy to see that T is a nilpotent subgroup of order r.7. Thus, $r .7 \in \pi_{e}(K) \subseteq \pi_{e}(G)$, a contradiction. Thus, $\{7\} \subseteq \pi(K) \subseteq \pi(G)-\{r\}$. Let $K_{7} \in \operatorname{Syl}_{7}(K)$, by Frattini argument $G=K N_{G}\left(K_{7}\right)$. Therefore, $N_{G}\left(K_{7}\right)$ has an element x of order r. Since G has no element of order $r .7,\langle x\rangle$ should act fixed point freely on K_{7}, implying $\langle x\rangle K_{7}$ is a Frobenius group. By Lemma $2.3(\mathrm{~b}),|\langle x\rangle| \mid\left(\left|K_{7}\right|-1\right)$. It follows that $r \mid 7-1$, which is a contradiction, because $r=13$ or 31 . So K is a 7^{\prime}-group. Next, we prove that K is a p^{\prime}-group for $p \in\{a, b, c\}-\{5\}=\{13,31\}$. If we assume $p \| K \mid$ and x is an element of K of order p, we get a contradiction, because if $p \in\{a, b\}-\{5\}$ then by $\Gamma(G)$, $N_{G}(\langle x\rangle)$ is a $\{2,3,5, p\}$-group and since by Frattini argument $G=K N_{G}(\langle x\rangle)$, 7 must divide the order of K, which is impossible. Also if $p \in\{c\}-\{5\}$, we see that $N_{G}(\langle x\rangle)$ is a $\{2,3,5,7, c\}$-group, then we conclude that r must divide the
order of K, which is impossible. Therefore K is a $\{2,3,5\}$-group. In addition since $K \neq G, G$ is non-solvable.

Step 2. The quotient $\frac{G}{K}$ is an almost simple group. In fact, $S \unlhd \frac{G}{K} \lesssim$ Aut(S), where S is a finite non-abelian simple group.

The proof is similar to those in Proposition 3.7. But the reader must replace $t \geq r \geq 7$ and 2^{14} with $t \geq r \geq 13$ and 2^{26} respectively.

By TABLE 1 and Step 1, it is evident that $|S|=2^{\alpha} .3^{\beta} .5^{\gamma} .7 .13 .31$, where $2 \leq \alpha \leq 8,1 \leq \beta \leq 3$ and $0 \leq \gamma \leq 6$. Now, using collected results contained in TABLE 1 , we conclude that $S \cong L_{3}(25)$ and by Step $2, L \unlhd \frac{G}{K} \lesssim \operatorname{Aut}(L)$. As $|G|=|L: 6|=6|L|$, we deduce $|K|=1,2,3$ or 6 .

If $|K|=1$, then $G \cong L: 6$ because $|G|=6|L|$. Obviously G can not be isomorphic to $L:\left(D_{6}\right)_{1}$ or $L:\left(D_{6}\right)_{2}$, because $\operatorname{deg}(7)=2$ in $\Gamma\left(L:\left(D_{6}\right)_{1}\right)$ and $\Gamma\left(L:\left(D_{6}\right)_{2}\right)$.

If $|K|=2$, then $K \leq Z(G)$ and so $\operatorname{deg}(2)=5$, which is a contradiction.
If $|K|=3$, then $\frac{G}{K} \cong L: 2_{1}, L: 2_{2}$ or $L: 2_{3}$. But $\frac{G}{C_{G}(K)} \lesssim \operatorname{Aut}(K) \cong \mathbb{Z}_{2}$. Thus $\left|\frac{G}{C_{G}(K)}\right|=1$ or 2. If $\left|\frac{G}{C_{G}(K)}\right|=1$, then $K \leq Z(G)$, that is, G is a central extension of \mathbb{Z}_{3} by $L: 2_{1}, L: 2_{2}$ or $L: 2_{3}$. If G splits over K, then only $G \cong \mathbb{Z}_{3} \times\left(L: 2_{3}\right)$ because in $\Gamma\left(\mathbb{Z}_{3} \times\left(L: 2_{1}\right)\right)$ we have $\operatorname{deg}(31)=3$ and in $\Gamma\left(\mathbb{Z}_{3} \times\left(L: 2_{2}\right)\right)$ we have $\operatorname{deg}(2)=3$. Otherwise only $G \cong \mathbb{Z}_{3} .\left(L: 2_{3}\right)$ because 3 does not divide the Schur multiplier of $L: 2_{1}$ and $L: 2_{2}$. If $\left|\frac{G}{C_{G}(K)}\right|=2$, then $K<C_{G}(K)$, hence by $1 \neq \frac{C_{G}(K)}{K} \unlhd \frac{G}{K} \cong L: 2_{1}, L: 2_{2}$ or $L: 2_{3}$ and simplicity of L, we obtain $\frac{C_{G}(K)}{K} \cong L$. Since $K \leq Z\left(C_{G}(K)\right), C_{G}(K)$ is a central extension of K by L. Thus $C_{G}(K) \cong \mathbb{Z}_{3} \times L$ or \mathbb{Z}_{3}.L. Therefore, $G \cong\left(\mathbb{Z}_{3} \times L\right) \cdot \mathbb{Z}_{2}$ or $\left(\mathbb{Z}_{3} \cdot L\right) \cdot \mathbb{Z}_{2}$.

If $|K|=6$, then $\frac{C_{G}(K) K}{K} \unlhd \frac{G}{K} \cong L$ implies that $\frac{C_{G}(K) K}{K}=1$ or $\frac{C_{G}(K) K}{K} \cong L$, because L is simple. If $\frac{C_{G}(K) K}{K}=1$, then $C_{G}(K) \leq K$ and hence, $|L|=$ $\left|\frac{G}{K}\right|\left|\left|\frac{G}{C_{G}(K)}\right|\right||\operatorname{Aut}(K)|=2$ or 6 , a contradiction. Therefore, $G=C_{G}(K) K$. Now we consider following cases:
(1) If $K \cong \mathbb{Z}_{6}$, then $G=C_{G}(K)$. Therefore $K \leq Z(G)$ and it follows that $\operatorname{deg}(2)=5$, a contradiction.
(2) If $K \cong D_{6}$, then $C_{G}(K) \cap K=1$. So $C_{G}(K) \cong \frac{C_{G}(K) K}{K}=\frac{G}{K} \cong L$ and therefore $G \cong D_{6} \times L$, which implies that $\operatorname{deg}(2)=5$, a contradiction.

Proposition 3.10. If $M=L: D_{12}$, then $G \cong L: D_{12}, \mathbb{Z}_{2} \times\left(L:\left(D_{6}\right)_{1}\right)$, $\mathbb{Z}_{2} \times\left(L:\left(D_{6}\right)_{2}\right), \mathbb{Z}_{2} \times(L: 6), \mathbb{Z}_{3} \cdot\left(L: 2^{2}\right),\left(\mathbb{Z}_{3} \times\left(L: 2_{3}\right)\right) \cdot \mathbb{Z}_{2},\left(\mathbb{Z}_{3} \cdot\left(L: 2_{1}\right)\right) \cdot \mathbb{Z}_{2}$, $\left(\mathbb{Z}_{3} \cdot\left(L: 2_{2}\right)\right) \cdot \mathbb{Z}_{2},\left(\mathbb{Z}_{3} \cdot\left(L: 2_{3}\right)\right) \cdot \mathbb{Z}_{2}, \mathbb{Z}_{4} \times(L: 3),\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \times(L: 3),\left(\mathbb{Z}_{4} \times L\right) \cdot \mathbb{Z}_{3}$, $\left(\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \times L\right) . \mathbb{Z}_{3}, \mathbb{Z}_{6} \times\left(L: 2_{1}\right), \mathbb{Z}_{6} \times\left(L: 2_{2}\right), \mathbb{Z}_{6} \times\left(L: 2_{3}\right),\left(\mathbb{Z}_{6} \times L\right) . \mathbb{Z}_{2}$, $D_{6} \times\left(L: 2_{1}\right), D_{6} \times\left(L: 2_{2}\right), D_{6} \times\left(L: 2_{3}\right), \mathbb{Z}_{12} \times L,\left(\mathbb{Z}_{2} \times \mathbb{Z}_{6}\right) \times L, D_{12} \times L$, $A_{4} \times L, T \times L$.

Proof. As $\left|L: D_{12}\right|=2^{9} .3^{3} .5^{6} .7 .13 .31$ and $\pi_{e}\left(L: D_{12}\right)=\{1,2,3,4,5,6,7,8,10$, 12, 13, 14, 15, 16, 20, 21, 24, 26, 30, 31, 39, 40, 42, 48, 52, 60, 62, 78, 93, 104, 120, 156 , 208, 217, 312, 624, 651\}, then $D\left(L: D_{12}\right)=(5,5,2,3,2,3)$. By assumptions $|G|=\left|L: D_{12}\right|$ and $D(G)=D\left(L: D_{12}\right)$, so the prime graph of G has the following form (like $\Gamma\left(L: D_{12}\right)$, see page 25):

Figure 3.10:

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is a $\{2,3,5\}$-group. In particular, G is non-solvable.

First, by the same way in Proposition 3.6 we can prove that K is a 31^{\prime}-group. Now we show that K is a p^{\prime}-group for $p=7$ and 13 . Suppose the contrary: $p \| K \mid$ and x is an element of K of order p. First put $p=13$. According to $\Gamma(G)$, $C_{G}(x)$ is a $\{2,3,13\}$-group and since $\frac{N_{G}(\langle x\rangle)}{C_{G}(x)} \lesssim \operatorname{Aut}(\langle x\rangle) \cong \mathbb{Z}_{12}$, so is $N_{G}(\langle x\rangle)$. As by Frattini argument, $G=K N_{G}(\langle x\rangle)$ then 31 must divide the order of K, which is a contradiction. Now put $p=7$, then by the same argument as before we see that $N_{G}(\langle x\rangle)$ is a $\{2,3,7,31\}$-group. Since $G=K N_{G}(\langle x\rangle), 13$ must divide $|K|$, which is a contradiction. Therefore K is a $\{2,3,5\}$-group. In addition since $K \neq G, G$ is non-solvable and the proof of this step is completed.

Step 2. The quotient $\frac{G}{K}$ is an almost simple group. In fact, $S \unlhd \frac{G}{K} \lesssim$ Aut(S), where S is a finite non-abelian simple group.

The proof is similar to Step 2 of Proposition 3.7, by replacing r with 13.
By TABLE 1 and Step 1, it is evident that $|S|=2^{\alpha} .3^{\beta} .5^{\gamma} .7 .13 .31$, where $2 \leq \alpha \leq 9,1 \leq \beta \leq 3$ and $0 \leq \gamma \leq 6$. Now, using collected results contained in TABLE 1 , we conclude that $S \cong L_{3}(25)$ and by Step $2, L \unlhd \frac{G}{K} \lesssim \operatorname{Aut}(L)$. As $|G|=\left|L: D_{12}\right|=12|L|$, we deduce $|K|=1,2,3,4,6$ or 12 .

If $|K|=1$, then by assumption $G \cong L: D_{12}$.
If $|K|=2$, then $\frac{G}{K} \cong L:\left(D_{6}\right)_{1}, L:\left(D_{6}\right)_{2}$ or $L: 6$ and $K \leq Z(G)$. It follows that G is a central extension of K by $L:\left(D_{6}\right)_{1}, L:\left(D_{6}\right)_{2}$ or $L: 6$. If G splits over K, then $G \cong \mathbb{Z}_{2} \times\left(L:\left(D_{6}\right)_{1}\right), \mathbb{Z}_{2} \times\left(L:\left(D_{6}\right)_{2}\right)$ or $\mathbb{Z}_{2} \times(L: 6)$. Otherwise 2 must divide the Schur multiplier of $L:\left(D_{6}\right)_{1}, L:\left(D_{6}\right)_{2}$ or $L: 6$, which is impossible.

If $|K|=3$, then $\frac{G}{K} \cong L: 2^{2}$. But $\frac{G}{C_{G}(K)} \lesssim \operatorname{Aut}(K) \cong \mathbb{Z}_{2}$. Thus $\left|\frac{G}{C_{G}(K)}\right|=$ 1 or 2 . If $\left|\frac{G}{C_{G}(K)}\right|=1$, then $K \leq Z(G)$, that is, G is a central extension of K by $L: 2^{2}$. If G splits over K, then $G \cong \mathbb{Z}_{3} \times\left(L: 2^{2}\right)$. We get a contradiction, because 3 does not divide the Schur multiplier of $L: 2^{2}$, which
is 1. If $\left.\left\lvert\, \frac{G}{C_{G}(K)}\right.\right) \mid=2$, then $K<C_{G}(K)$, hence by $1 \neq \frac{C_{G}(K)}{K} \unlhd \frac{G}{K} \cong L$: 2^{2} and simplicity of L, we obtain $\frac{C_{G}(K)}{K} \cong L: 2_{1}, L: 2_{2}$ or $L: 2_{3}$. Since $K \leq Z\left(C_{G}(K)\right), C_{G}(K)$ is a central extension of K by $L: 2_{1}, L: 2_{2}$ or $L: 2_{3}$. If $C_{G}(K)$ splits over K then $C_{G}(K) \cong \mathbb{Z}_{3} \times\left(L: 2_{1}\right)$, Therefore, $G \cong\left(\mathbb{Z}_{3} \times\left(L: 2_{1}\right)\right) \cdot \mathbb{Z}_{2},\left(\mathbb{Z}_{3} \times\left(L: 2_{2}\right)\right) \cdot \mathbb{Z}_{2},\left(\mathbb{Z}_{3} \times\left(L: 2_{3}\right)\right) \cdot \mathbb{Z}_{2}$, or $\left(\mathbb{Z}_{3} \cdot\left(L: 2_{3}\right)\right) \cdot \mathbb{Z}_{2}$.

If $|K|=4$, then $\frac{G}{K} \cong L: 3$ and $K \cong \mathbb{Z}_{4}$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. In this case we have $\frac{G}{C_{G}(K)} \lesssim \operatorname{Aut}(K) \cong \mathbb{Z}_{2}$ or D_{6}. Thus $\left|\frac{G}{C_{G}(K)}\right|=1,2,3$ or 6 . If $\left|\frac{G}{C_{G}(K)}\right|=1$, then $K \leq Z(G)$, that is, G is a central extension of K by $L: 3$. If G splits over K, then $G \cong \mathbb{Z}_{4} \times(L: 3)$ or $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \times(L: 3)$. Otherwise we get a contradiction because 4 must divide the Schur multiplier of $L: 3$, which is 3 . If $\left|\frac{G}{C_{G}(K)}\right| \neq 1$, as $\left|\frac{G}{C_{G}(K)}\right|=2,3$ or 6 , then $K<C_{G}(K)$, and by simplicity of L, we conclude that $1 \neq \frac{C_{G}(K)}{K}$ must be an extension of L. So only $\left|\frac{G}{C_{G}(K)}\right|=3$ is acceptable and therefore $\frac{C_{G}(K)}{K} \cong L$. Now since $K \leq Z\left(C_{G}(K)\right), C_{G}(K)$ is a central extension of K by L. If $C_{G}(K)$ splits over $K, C_{G}(K) \cong \mathbb{Z}_{4} \times L$ or $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \times L$, otherwise $|K|$ must divide the Schur multiplier of L, which is impossible. Therefore $G \cong\left(\mathbb{Z}_{4} \times L\right) . \mathbb{Z}_{3}$ or $\left(\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \times L\right) . \mathbb{Z}_{3}$.

If $|K|=6$, then $\frac{G}{K} \cong L: 2_{1}, L: 2_{2}$ or $L: 2_{3}$ and $K \cong \mathbb{Z}_{6}$ or D_{6}.
If $K \cong \mathbb{Z}_{6}$, then $\frac{G}{C_{G}(K)} \lesssim \mathbb{Z}_{2}$ and so $\left|\frac{G}{C_{G}(K)}\right|=1$ or 2 . If $\left|\frac{G}{C_{G}(K)}\right|=1$, then $K \leq Z(G)$, that is G is a central extension of \mathbb{Z}_{6} by $L: 2_{1}, L: 2_{2}$ or $L: 2_{3}$. If G splits over K, we obtain $G \cong \mathbb{Z}_{6} \times\left(L: 2_{1}\right), \mathbb{Z}_{6} \times\left(L: 2_{2}\right)$ or $\mathbb{Z}_{6} \times\left(L: 2_{3}\right)$, otherwise we get a contradiction because 6 must divide the Schur multiplier of $L: 2_{1}, L: 2_{2}$ or $L: 2_{3}$, and it is impossible. If $\left|\frac{G}{C_{G}(K)}\right|=2$, then $K<C_{G}(K)$, hence by $1 \neq \frac{C_{G}(K)}{K} \unlhd \frac{G}{K} \cong L: 2_{1}, L: 2_{2}$ or $L: 2_{3}$ and simplicity of L, we obtain $\frac{C_{G}(K)}{K} \cong L$. Since $K \leq Z\left(C_{G}(K)\right), C_{G}(K)$ is a central extension of K by L. If $C_{G}(K)$ splits over $K, C_{G}(K) \cong \mathbb{Z}_{6} \times L$ and if $C_{G}(K)$ is a non-split extension of K by $L,|K|$ must divide the Schur multiplier of L, which is impossible. Therefore $G \cong\left(\mathbb{Z}_{6} \times L\right) \cdot \mathbb{Z}_{2}$.
If $K \cong D_{6}$, then $\frac{G}{C_{G}(K)} \lesssim D_{6}$ and so $\left|\frac{G}{C_{G}(K)}\right|=1,2,3$ or 6 . If $\left|\frac{G}{C_{G}(K)}\right|=1$, then $K \leq Z(G)$, a contradiction. If $\left|\frac{G}{C_{G}(K)}\right|=2$, then we have $\left|K C_{G}(K)\right|=$ 6. $|G| / 2=3|G|$ because $K \cap C_{G}(K)=1$, that is a contradiction. If $\left|\frac{G}{C_{G}(K)}\right|=3$, then we have $\left|K C_{G}(K)\right|=6 .|G| / 3=2|G|$ because $K \cap C_{G}(K)=1$, that is a contradiction. If $\left|\frac{G}{C_{G}(K)}\right|=6$, then $\frac{G}{C_{G}(K)} \cong D_{6}$. Thus $C_{G}(K) \neq 1$. Then, $1 \neq C_{G}(K) \cong \frac{C_{G}(K) K}{K} \unlhd \frac{G}{K} \cong L: 2_{1}, L: 2_{2}$ or $L: 2_{3}$, follows that $C_{G}(K) \cong L: 2_{1}, L: 2_{2}$ or $L: 2_{3}$. Therefore $G \cong D_{6} \times\left(L: 2_{1}\right), D_{6} \times\left(L: 2_{2}\right)$ or $D_{6} \times\left(L: 2_{3}\right)$.

Before processing the last case, we recall the following fact.
There exist five non-isomorphic groups of order 12. Two of them are abelian and three are non-abelian. The non-abelian groups are: alternating group A_{4},
dihedral group D_{12} and the dicyclic group T with generators a and b, subject to the relations $a^{6}=1, a^{3}=b^{2}$ and $b^{-1} a b=a^{-1}$.

$$
\text { If }|K|=12, \text { then } \frac{C_{G}(K) K}{K} \unlhd \frac{G}{K} \cong L \text { implies that } \frac{C_{G}(K) K}{K}=1 \text { or } \frac{C_{G}(K) K}{K} \cong L
$$ because L is simple. If $\frac{C_{G}(K) K}{K}=1$, then $C_{G}(K) \leq K$ and hence, $|L|=$ $\left|\frac{G}{K}\right|\left|\left|\frac{G}{C_{G}(K)}\right|\right||\operatorname{Aut}(K)| \leq 12^{\left[\log _{2} 12\right]}$, a contradiction. Therefore, $G=C_{G}(K) K$. Now we consider following cases:

(1) If $K \cong \mathbb{Z}_{12}$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{6}$, then $G=C_{G}(K)$. Therefore $K \leq Z(G)$, that is G is a central extension of K by L. If G splits over K, we obtain $G \cong \mathbb{Z}_{12} \times L$ or $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{6}\right) \times L$, and otherwise we get a contradiction because $|K|$ must divide the Schur multiplier of L, which is 3 .
(2) If $K \cong D_{12}$, then $G=K . L$ and $\frac{G}{C_{G}(K)} \cong \frac{K}{Z(K)} \cong D_{6}$. Since $\frac{C_{G}(K)}{Z(K)} \cong$ $\frac{C_{G}(K) K}{K}=\frac{G}{K} \cong L$ and $Z(K) \leqslant Z\left(C_{G}(K)\right)$, we conclude that $C_{G}(K)$ is a central extension of $Z(K) \cong \mathbb{Z}_{2}$ by L. If $C_{G}(K)$ is a non-split extension, then 2 must divide the Schur multiplier of L, which is 3 and it is impossible. Thus $C_{G}(K) \cong \mathbb{Z}_{2} \times L$ and hence G is a split extension of K by L. Now, since $\operatorname{Hom}\left(L, \operatorname{Aut}\left(D_{12}\right)\right)$ is trivial, we have $G \cong D_{12} \times L$.
(3) If $K \cong A_{4}$, then $\frac{G}{C_{G}(K)} \cong \frac{K}{Z(K)} \cong A_{4}$, then $C_{G}(K) \neq 1$. Thus $1 \neq C_{G}(K) \cong \frac{C_{G}(K) K}{K} \unlhd \frac{G}{K} \cong L$. Hence $L \cong C_{G}(K)$ because L is simple. Therefore $G \cong A_{4} \times L$, because $Z\left(A_{4}\right)=1$.
(4) If $K \cong T$, then by the similar way in case $K \cong D_{12}$, we can conclude that G is a split extension of T by L. Also, since $\operatorname{Hom}(L, \operatorname{Aut}(T))$ is trivial, we have $G \cong T \times L$.

The proof of our main Theorem is complete.

According to what we said before the proof, here we diagram $\Gamma(M)$ by $|M|$ and $\pi_{e}(M)$, where M is an almost simple group related to $L=L_{3}(25)$.
$\Gamma(L):$

$$
\begin{aligned}
& \Gamma\left(L:\left(D_{6}\right)_{1}\right): \\
& \Gamma\left(L:\left(D_{6}\right)_{2}\right):
\end{aligned}
$$

$\Gamma(L: 6):$
$\Gamma\left(L: D_{12}\right):$

Acknowledgments

The authors would like to thank professor Derek Holt and professor Alexander Hulpke for sending us the set of element orders of all possible extensions of $L_{3}(25)$ by subgroups of the outer automorphism, and also the referee for his/her valuable comments.

References

[1] J. H. Conway, R. T. Curtis, S. P. R. Norton, A. Parker and R. A. Wilson, Atlas of Finite Groups, Oxford University Press, Eynsham, 1985.
[2] D. Gorenstein, Finite Groups, Chelsea Publishing Co., New York, 1980.
[3] A. A. Hoseini and A. R. Moghaddamfar, Recognizing alternating groups A_{p+3} for certain primes p by their orders and degree patterns, Front. Math. China. 5 (2010), no. 3, 541-553.
[4] A. R. Moghaddamfar, A. R. Zokayi and M. R. Darafsheh, A characterization of finite simple groups by the degree of vertices of their prime graphs, Algebra Colloq. 12 (2005), no. 3, 431-442.
[5] J. S. Robinson Derek, A Course in the Theory of Groups, Springer-Verlag, New York, 2003.
[6] A. Zavarnitsin, Finite simple groups with narrow prime spectrum, Sib. Elektron. Mat. Izv. 6 (2009) 1-12.
[7] L. C. Zhang and W. J. Shi, OD-characterization of almost simple groups related to $L_{2}(49)$, Arch. Math. (Brno) 44 (2008), no. 3, 191-199.
[8] L. C. Zhang and W. J. Shi, OD-characterization of simple K_{4}-groups, Algebra Colloq. 20 (2013), no. 3, 61-368.
[9] L. C. Zhang and W. J. Shi, OD-characterization of almost simple groups related to $U_{6}(2)$, Acta Math. Sci. Ser. B Engl. Ed. 31 (2011), no. 2, 441-450.
(Mohamamad Reza Darafsheh) Department of Mathematics, University of Tehran, Tehran, Iran

E-mail address: darafsheh@ut.ac.ir
(Gholam Reza Rezaeezadeh) Department of Mathematics, University of Shahrekord, Shahrekord, Iran

E-mail address: rezaeezadeh@sci.sku.ac.ir
(Masoumeh Sajjadi) Department of Mathematics, University of Shahrekord, Shahrekord, Iran

E-mail address: sajadi-mas@yahoo.com
(Masoumeh Bibak) Department of Mathematics, University of Shahrekord, Shahrekord, Iran

E-mail address: m.bibak62@gmail.com

[^0]: Article electronically published on June 17, 2014.
 Recieved: 26 May 2012, Accepted: 29 May 2013.

 * Corresponding author.

