
...

Bulletin of the

.

Iranian Mathematical Society

.

ISSN: 1017-060X (Print)

.

ISSN: 1735-8515 (Online)

.

Vol. 40 (2014), No. 3, pp. 791–807

.

Title:

.

Asymptotics for the infinite time ruin probability
of a dependent risk model with a constant inter-
est rate and dominatedly varying-tailed claim sizes

.

Author(s):

.

K. Wang, F. Ding, H. Wu and T. Pan

.

Published by Iranian Mathematical Society

.

http://bims.ims.ir



Bull. Iranian Math. Soc.
Vol. 40 (2014), No. 3, pp. 791–807
Online ISSN: 1735-8515

ASYMPTOTICS FOR THE INFINITE TIME RUIN

PROBABILITY OF A DEPENDENT RISK MODEL

WITH A CONSTANT INTEREST RATE AND

DOMINATEDLY VARYING-TAILED CLAIM SIZES

K. WANG∗, F. DING, H. WU AND T. PAN

(Communicated by Hamid Pezeshk)

Abstract. This paper mainly considers a nonstandard risk model
with a constant interest rate, where both the claim sizes and the
inter-arrival times follow some certain dependence structures. When
the claim sizes are dominatedly varying-tailed, asymptotics for the
infinite time ruin probability of the above dependent risk model
have been given.
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1. Introduction

In this paper, we consider the infinite time ruin probability of a de-
pendent risk model with a constant interest rate. In this model, the
claim sizes, Xn, n ≥ 1, form a sequence of nonnegative and dependent
identically distributed random variables (r.v.s) with common distribu-
tion F , and the inter-arrival times, Yn, n ≥ 1, form another sequence of
nonnegative and dependent identically distributed r.v.s, which are not
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degenerate at zero. The times of successive claims, τn =
∑n

k=1 Yk, n ≥ 1,
constitute a quasi renewal counting process

N(t) =

∞∑
n=1

1{τn≤ t}, t ≥ 0,

where 1A is the indicator function of the set A. Let λ(t) = EN(t), t ≥ 0,
and assume that λ(t) < ∞ for all 0 < t < ∞. The total amount of
premium accumulated up to time t ≥ 0, denoted by C(t) with C(0) = 0
and C(t) <∞ almost surely (a.s.) for every t ≥ 0, is a nonnegative and
nondecreasing stochastic process. Assume that {Xn, n ≥ 1}, {Yn, n ≥ 1}
and {C(t), t ≥ 0} are mutually independent. Let x ≥ 0 be the initial
capital reserve of the insurance company, and δ > 0 be the constant
interest rate, that is to say, after time t a capital y becomes yeδt. Then
the total reserve up to time t ≥ 0, denoted by U(x, t), satisfies

U(x, t) = xeδt +

∫ t

0−
eδ(t−y)C(dy)−

∫ t

0−
eδ(t−y)S(dy),

where S(t) =
∑N(t)

k=1 Xk is the total amount of claims up to time t ≥ 0
with S(t) = 0 when N(t) = 0. Hence, the infinite time ruin probability
is defined by

ψ(x) = P (U(x, t) < 0 for some t ≥ 0) .

This paper mainly investigates the asymptotics of the infinite time ruin

probability ψ(x) as x → ∞. Assume that C̃(∞) =
∫∞
0− e

−δyC(dy) < ∞
a.s.. Then

(1.1) P

( ∞∑
k=1

Xke
−δτk > x+ C̃(∞)

)
≤ ψ(x) ≤ P

( ∞∑
k=1

Xke
−δτk > x

)
.

We will assume that the distributions of the claim sizes are heavy
tailed. In the following, some heavy-tailed distribution classes will be
given. In this paper, all limit relationships are for x tending to ∞ un-
less stated otherwise. For two positive functions a(·) and b(·), we write
a(x) ≲ b(x) if lim sup a(x)/b(x) ≤ 1, write a(x) ≳ b(x) if lim inf a(x)/b(x)
≥ 1, write a(x) ∼ b(x) if lim a(x)/b(x) = 1, and write a(x) = o(b(x)) if
lim a(x)/b(x) = 0.
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For a proper distribution V on (−∞,∞), let V (x) = 1 − V (x), x ∈
(−∞,∞). Denote the upper and lower Matuszewska index of V , respec-
tively, by

J+
V = − lim

y→∞

log V ∗(y)

log y
and J−

V = − lim
y→∞

log V
∗
(y)

log y
,

where for any y > 1,

V ∗(y) = lim inf
x→∞

V (xy)

V (x)
and V

∗
(y) = lim sup

x→∞

V (xy)

V (x)
.

Let

LV = lim
y↓1

V∗(y).

Say that a distribution V on (−∞,∞) belongs to the extended regular
variation class, if there are some 0 ≤ α ≤ β <∞ such that for all y > 1,

y−β ≤ V∗(y) ≤ V ∗(y) ≤ y−α,

denoted by V ∈ ERV(−α,−β). Say that a distribution V on (−∞,∞)
belongs to the consistent variation class, denoted by V ∈ C, if LV = 1.
A larger class is the dominated variation class, denoted by D. Say that
a distribution V on (−∞,∞) belongs to the class D, if for all y > 1,
V∗(y) > 0. A related distribution class is the long-tailed distribution
class, denoted by L. Say that a distribution V on (−∞,∞) belongs to
the class L, if for any y > 0,

V (x+ y) ∼ V (x).

It is well known that the above distribution classes have the following
proper relations: for any 0 ≤ α ≤ β <∞,

ERV(−α,−β) ⊂ C ⊂ L ∩ D ⊂ D,

(see, e.g. [1], [4] and [6]).
In this paper, we will assume that both the claim sizes and the inter-

arrival times follow some certain dependence structures. In the follow-
ing, we will introduce some dependence structures. [18] introduced the
widely orthant dependence structure, which can allow some common
negatively dependent r.v.s and also allow some positively dependent
r.v.s (see examples in [18]). The widely orthant dependence structure
has been investigated extensively in the literature, such as [19], [20] and
[22].
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Definition 1.1. For the r.v.s {ξn, n ≥ 1}, if there exists a finite real
sequence {gU (n), n ≥ 1} satisfying for each n ≥ 1 and for all xi ∈
(−∞,∞), 1 ≤ i ≤ n,

(1.2) P

(
n∩

i=1

{ξi > xi}

)
≤ gU (n)

n∏
i=1

P (ξi > xi),

then we say that the r.v.s {ξn, n ≥ 1} are widely upper orthant dependent
(WUOD) with dominating coefficients {gU (n), n ≥ 1}; if there exists a
finite real sequence {gL(n), n ≥ 1} satisfying for each n ≥ 1 and for all
xi ∈ (−∞,∞), 1 ≤ i ≤ n,

(1.3) P

(
n∩

i=1

{ξi ≤ xi}

)
≤ gL(n)

n∏
i=1

P (ξi ≤ xi),

then we say that the r.v.s {ξn, n ≥ 1} are widely lower orthant depen-
dent (WLOD) with dominating coefficients {gL(n), n ≥ 1}. Further, we
say that the r.v.s {ξn, n ≥ 1} are widely orthant dependent (WOD) if
{ξn, n ≥ 1} are both WUOD and WLOD.

Recall that when gL(n) = gU (n) ≡ 1 for any n ≥ 1 in (1.2) and
(1.3), the r.v.s {ξn, n ≥ 1} are called negatively upper orthant depen-
dent (NUOD) and negatively lower orthant dependent (NLOD), respec-
tively, and say that the r.v.s {ξn, n ≥ 1} are negatively orthant depen-
dent (NOD) if {ξn, n ≥ 1} are both NUOD and NLOD (see, e.g. [5] or
[2]). Say that the r.v.s {ξn, n ≥ 1} are pairwise negatively quadrant
dependent (NQD) or pairwise NOD, if for all positive integers i ̸= j, the
r.v.s ξi and ξj are NOD (see, e.g. [13]).

Geluk and Tang (see [7]) introduced a pairwise dependence structure.
Assumption A For the real-valued r.v.s {ξn, n ≥ 1}, it holds that for
any 1 ≤ i ̸= j <∞,

(1.4) lim
min{xi,xj}→∞

P (|ξi| > xi|ξj > xj) = 0.

For the nonnegative r.v.s, it can be verified that the WUOD r.v.s and
pairwise NQD r.v.s satisfy Assumption A.

Before giving the main results of this paper, we briefly review some
existing results of the infinite time ruin probability ψ(x). When the
claim sizes, Xn, n ≥ 1, and the inter-arrival times, Yn, n ≥ 1, are inde-
pendent and identically distributed (i.i.d.) r.v.s, respectively, the ruin
probability has been investigated by [10]-[12], [15], [16], among others.
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When the claim sizes, Xn, n ≥ 1, have a certain dependence struc-
ture, there are some results about the ruin probability. When the
claim sizes, Xn, n ≥ 1, are pairwise NQD with common distribution
F ∈ ERV(−α,−β) for some 0 < α ≤ β < ∞, the inter-arrival times,
Yn, n ≥ 1, are i.i.d. r.v.s, and the process {C(t), t ≥ 0} is a deterministic
linear function, [3] obtained the asymptotics for ψ(x):

(1.5) ψ(x) ∼
∫ ∞

0−
F (xeδy)λ(dy).

[14] extended the above result and considered the case that the claim
sizes, Xn, n ≥ 1, are pairwise NQD with common distribution F ∈ D
and J−

F > 0, the inter-arrival times, Yn, n ≥ 1, are NLOD, and the
process {C(t), t ≥ 0} is a deterministic linear function. They got the
following result:

LF

∫ ∞

0−
F (xeδy)λ(dy) ≲ ψ(x) ≲ L−2

F

∫ ∞

0−
F (xeδy)λ(dy).(1.6)

For the general stochastic process {C(t), t ≥ 0} and {N(t), t ≥ 0} is a
delayed renewal counting process, [21] also obtained the above results.
when the claim sizes, Xn, n ≥ 1, satisfy Assumption A with common
distribution F ∈ L∩D and J−

F > 0, and the inter-arrival times, Yn, n ≥
1, are WLOD, the asymptotics of the infinite time ruin probability have
been investigated by [22].

Recently, the risk model with a constant interest rate has been ex-
tended by some researchers. Hao and Tang (see [9]) gave a bivariate
Lévy-driven risk model, in which they used two independent Lévy pro-
cesses to represent, respectively, a loss process in a world without eco-
nomic factors and a process describing return on investigates in real
terms. When the Lévy measure of the loss process belongs to the class
ERV(−α,−β) for some 0 < α ≤ β < ∞, the infinite time ruin prob-
ability has been investigated. Guo and Wang (see [8]) introduced a
risk model with risk-free and risk assets, where they used an adapted
càdlàg process to model the log investment returns. When the claim
sizes, Xn, n ≥ 1, are bivariate upper tail independent with common dis-
tribution F ∈ C and the inter-arrival times, Yn, n ≥ 1, are i.i.d., they
investigated the finite time and infinite time ruin probabilities.

In this paper, we still consider the risk model with a constant interest
rate. Since the dependence structure of Assumption A and the WLOD
structure are wider than the pairwise NQD structure and the NLOD
structure, respectively, in this paper, we will consider the case that the
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claim sizes satisfy Assumption A and the inter-arrival times are WLOD
r.v.s. The following is the main result.

Theorem 1.2. Consider the above risk model. Assume that the claim
sizes, Xn, n ≥ 1, satisfy Assumption A with common distribution F ∈ D
and J−

F > 0, and the inter-arrival times, Yn, n ≥ 1, are WLOD r.v.s
with dominating coefficients {gL(n), n ≥ 1} satisfying for any ε > 0,

(1.7) lim
n→∞

gL(n)e
−εn = 0.

Then (1.6) holds.
Particularly, if F ∈ C then (1.5) holds.

Remark 1.3. (1) Theorem 1.2 has extended the corresponding results of
[3] and [14]. When the counting process {N(t), t ≥ 0} has no delays in
[21], their result about the infinite time ruin probability has been extended
by Theorem 1.2.

(2) Compared with Theorem 2 of [22], Theorem 1.2 has extended the
scopes of the distributions of the claim sizes from the class L∩D to the
class D.

These results will be shown in Section 2.

2. Proof of Theorem 1.2

We first give some lemmas, which will be used in the proof of The-
orem 1.2. The first lemma is Proposition 1.1 of [18], which gives some
properties about WUOD and WLOD r.v.s.

Lemma 2.1. (1) Let {ξn, n ≥ 1} be WLOD (or WUOD) r.v.s with dom-
inating coefficients {gL(n), n ≥ 1} (or {gU (n), n ≥ 1}). If {fn(·), n ≥ 1}
are nondecreasing, then {fn(ξn), n ≥ 1} are still WLOD (or WUOD)
r.v.s with dominating coefficients {gL(n), n ≥ 1} (or {gU (n), n ≥ 1});
If {fn(·), n ≥ 1} are nonincreasing, then {fn(ξn), n ≥ 1} are WUOD
(or WLOD) r.v.s with dominating coefficients {gL(n), n ≥ 1} (or {gU (n),
n ≥ 1}).

(2) If {ξn, n ≥ 1} are nonnegative and WUOD r.v.s with dominating
coefficients {gU (n), n ≥ 1}, then for each n ≥ 1,

E

n∏
i=1

ξi ≤ gU (n)

n∏
i=1

Eξi.
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The following lemma is obtained from Proposition 2.2.1 of [1] and
Lemma 3.5 of [17].

Lemma 2.2. If a distribution V on (−∞,∞) belongs to the class D,
then for any 0 < α < J−

V ≤ J+
V < β, there exist positive constants Ci

and Di, i = 1, 2, such that for all x ≥ y ≥ D1,

V (y)

V (x)
≥ C1

(y
x

)−α

and for all x ≥ y ≥ D2,

V (y)

V (x)
≤ C2

(y
x

)−β
.

Furthermore, for any β > J+
V ,

x−β = o(V (x)).

The following two lemmas will deal with the weighted sums of r.v.s
satisfying Assumption A.

Lemma 2.3. Suppose that ξk, 1 ≤ k ≤ n, are n real-valued r.v.s and for
any 1 ≤ i ̸= j ≤ n, relation (1.4) holds. Then for each nonempty set
I ⊊ {1, 2, · · · , n} and each j ∈ {1, 2, · · · , n}/I,

lim
min{x,y}→∞

P

(∑
i∈I

|ξi| > x

∣∣∣∣ξj > y

)
= 0.

Proof. Since

P

(∑
i∈I

|ξi| > x

∣∣∣∣ξj > y

)
≤
∑
i∈I

P

(
|ξi| > xn−1

∣∣∣∣ξj > y

)
,

by using Assumption A we know that the result of Lemma 2.3 holds. □

Before giving the next lemma, we first introduce a notation. For n
real-valued numbers ci, 1 ≤ i ≤ n, let cn = (c1, · · · , cn).

Lemma 2.4. Suppose that ξk, 1 ≤ k ≤ n, are n r.v.s and for any
1 ≤ i ̸= j ≤ n, relation (1.4) holds.

(1) If ξk, 1 ≤ k ≤ n, are nonnegative r.v.s then for any fixed constant
b > 0,

lim inf
x→∞

inf
cn∈(0,b]n

P (
∑n

k=1 ckξk > x)∑n
k=1 P (ckξk > x)

≥ 1.(2.1)
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(2) If ξk, 1 ≤ k ≤ n, are identically distributed and real-valued r.v.s
with common distribution V ∈ D, then for any fixed constant b > 0,

lim inf
x→∞

inf
cn∈(0,b]n

P (
∑n

k=1 ckξk > x)∑n
k=1 P (ckξk > x)

≥ LV(2.2)

and

lim sup
x→∞

sup
cn∈(0,b]n

P (
∑n

k=1 ckξk > x)∑n
k=1 P (ckξk > x)

≤ L−1
V .(2.3)

Proof. It follows from (1.4) that for any ε > 0 there exists y0 > 0 such
that for any 1 ≤ i ̸= j ≤ n, when xi > y0 and xj > y0,

P (|ξi| > xi|ξj > xj) < ε.(2.4)

(1) We first prove (2.1). By (2.4), for any 1 ≤ i ̸= j ≤ n, when
x > by0 it holds uniformly for cn ∈ (0, b]n that

P (ciξi > x, cjξj > x) = P (ciξi > x|cjξj > x)P (cjξj > x)

≤ ε

n∑
k=1

P (ckξk > x).

Since ξk, 1 ≤ k ≤ n, are nonnegative r.v.s, for any cn ∈ (0, b]n and x > 0,

P

(
n∑

k=1

ckξk > x

)
≥ P

(
n∪

k=1

{ckξk > x}

)

≥
n∑

k=1

P (ckξk > x)−
∑

1≤i̸=j≤n

P (ciξi > x, cjξj > x).

Thus, by the above two formulae we know that (2.1) holds.
(2) We will prove (2.2). It follows from Lemma 2.3 that for any ε > 0

there exists y1 > 0 such that for any 1 ≤ j ≤ n, when xi > y1 and
xj > y1,

P

 n∑
i=1,i ̸=j

|ξi| > xi

∣∣∣∣ξj > xj

 < ε.(2.5)
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For any x > 0 and any fixed constant L1 > by1,

P

(
n∑

k=1

ckξk > x

)
≥

n∑
i=1

P

(
n∑

k=1

ckξk > x, ciξi > x+ L1

)
−

∑
1≤i<j≤n

P (ciξi > x+ L1, cjξj > x+ L1)

= K1 −K2.(2.6)

Letting x be sufficiently large such that x+ L1 > by0, by (2.4) and the
arbitrariness of ε, it holds uniformly for cn ∈ (0, b]n that

K2 = o

(
n∑

k=1

P (ckξk > x+ L1)

)
= o

(
n∑

k=1

P (ckξk > x)

)
.(2.7)

For K1,

K1 ≥
n∑

i=1

P

 n∑
k=1,k ̸=i

ckξk > −L1, ciξi > x+ L1


=

n∑
i=1

P (ciξi > x+ L1)

−
n∑

i=1

P

 n∑
k=1,k ̸=i

ckξk ≤ −L1, ciξi > x+ L1


= K11 −K12.(2.8)

Since x+L1 > L1 > by1, by (2.5) it holds uniformly for cn ∈ (0, b]n that

K12 ≤
n∑

i=1

P

∣∣∣∣∣∣
n∑

k=1,k ̸=i

ckξk

∣∣∣∣∣∣ ≥ L1

∣∣∣∣∣ciξi > x+ L1


P (ciξi > x+ L1)

≤
n∑

i=1

P

 n∑
k=1,k ̸=i

|ξk| ≥ b−1L1

∣∣∣∣ξi > (x+ L1)c
−1
i


P (ciξi > x+ L1)

≤ ε
n∑

i=1

P (ciξi > x+ L1) = εK11.(2.9)
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Hence, by (2.8), (2.9) since ε is arbitrary, it holds uniformly for cn ∈
(0, b]n that

K1 ≳
n∑

i=1

P (ciξi > x+ L1).

Since V ∈ D, for any θ1 > 1, when x is sufficiently large, it holds
uniformly for cn ∈ (0, b]n that

K1 ≳
n∑

i=1

P (ciξi > xθ1)

≳ V∗(θ1)

n∑
i=1

P (ciξi > x).

Therefore,

lim inf
x→∞

inf
cn∈(0,b]n

K1∑n
i=1 P (ciξi > x)

≥ lim
θ1↓1

V∗(θ1) = LV .

Combining with (2.6) and (2.7) we get that (2.2) holds.
Now we prove (2.3). For any x > 0 and any fixed constant L2 > bny0,

P

(
n∑

k=1

ckξk > x

)

≤
n∑

k=1

P (ckξk > x− L2)

+P

(
n∑

k=1

ckξk > x,
n∪

k=1

{ckξk > xn−1},
n∩

k=1

{ckξk ≤ x− L2}

)
= J1 + J2.(2.10)

For J1, since V ∈ D, for any 0 < θ2 < 1, when x is sufficiently large, it
holds uniformly for cn ∈ (0, b]n that

J1 ≤
n∑

k=1

P (ckξk > xθ2)

≲
(
V∗(θ

−1
2 )
)−1

n∑
k=1

P (ckξk > x).
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Thus,

lim sup
x→∞

sup
cn∈(0,b]n

J1∑n
k=1 P (ckξk > x)

≤ lim
θ2↑1

(
V∗(θ

−1
2 )
)−1

= L−1
V .(2.11)

For J2, since L2 > bny0, by (2.4) when x is sufficiently large, it holds
uniformly for cn ∈ (0, b]n that

J2 ≤
n∑

i=1

P

(
n∑

k=1

ckξk − ciξi > L2, ciξi > xn−1

)

≤
n∑

i=1

n∑
k=1,k ̸=i

P (ckξk > L2(n− 1)−1, ciξi > xn−1)

=

n∑
i=1

n∑
k=1,k ̸=i

P (ξk > L2c
−1
k (n− 1)−1

∣∣ξi > xc−1
i n−1)P (ciξi > xn−1)

≤ ε(n− 1)

n∑
i=1

P (ciξi > xn−1).

Hence, by V ∈ D,

lim sup
x→∞

sup
cn∈(0,b]n

J2∑n
k=1 P (ckξk > x)

≤ lim
ε↓0

lim sup
x→∞

sup
cn∈(0,b]n

ε(n− 1)
∑n

k=1 P (ckξk > xn−1)∑n
k=1 P (ckξk > x)

= 0.

Combining with (2.10) and (2.11), we get (2.3). □

Now we prove Theorem 1.2.

Proof. We first prove that

lim inf
x→∞

P
(∑∞

k=1Xke
−δτk > x

)∑∞
k=1 P (Xke−δτk > x)

≥ 1(2.12)

and

lim sup
x→∞

P
(∑∞

k=1Xke
−δτk > x

)∑∞
k=1 P (Xke−δτk > x)

≤ L−2
F .(2.13)
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For any positive integer n, it follows from Lemma 2.4 that

P

( ∞∑
k=1

Xke
−δτk > x

)
≥ P

(
n∑

k=1

Xke
−δτk > x

)

=

∫
{0≤t1≤···≤tn<∞}

P

(
n∑

k=1

Xke
−δtk > x

)
P (τ1 ∈ dt1, · · · , τn ∈ dtn)

≳
n∑

k=1

∫
{0≤t1≤···≤tn<∞}

P
(
Xke

−δtk > x
)

P (τ1 ∈ dt1, · · · , τn ∈ dtn)

=
n∑

k=1

P
(
Xke

−δτk > x
)

=

( ∞∑
k=1

−
∞∑

k=n+1

)
P
(
Xke

−δτk > x
)
.(2.14)

By Lemma 2.2, when x is sufficiently large,

∞∑
k=n+1

P
(
Xke

−δτk > x
)

=
∞∑

k=n+1

∫ ∞

0−
F (xeδu)P (τk ∈ du)

≤
∞∑

k=n+1

∫ ∞

0−
C−1
1 e−δαuF (x)P (τk ∈ du)

= C−1
1 F (x)

∞∑
k=n+1

Ee−δατk .

On the other hand, when x is sufficiently large,

∞∑
k=1

P
(
Xke

−δτk > x
)

≥
∫ ∞

0−
F (xeδu)P (τ1 ∈ du)

≥ C−1
2 F (x)Ee−δβτ1 .(2.15)
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Hence, by Lemma 2.1 and (1.7),

lim
n→∞

lim sup
x→∞

∑∞
k=n+1 P

(
Xke

−δτk > x
)∑∞

k=1 P (Xke−δτk > x)

≤ C2C
−1
1 (Ee−δβτ1)−1 lim

n→∞

∞∑
k=n+1

gL(k)(Ee
−δατ1)k

= 0,(2.16)

which, combining with (2.14), yields that (2.12) holds.
We will prove (2.13). For any 0 < θ < 1 and any positive integer n,

P

( ∞∑
k=1

Xke
−δτk > x

)
≤ P

(
n∑

k=1

Xke
−δτk > (1− θ)x

)

+P

( ∞∑
k=n+1

Xke
−δτk > θx

)
.(2.17)

By Lemma 2.4,

P

(
n∑

k=1

Xke
−δτk > (1− θ)x

)

≲ L−1
F

n∑
k=1

P
(
Xke

−δτk > (1− θ)x
)

= L−1
F

n∑
k=1

∫ ∞

0−
F ((1− θ)xeδu)P (τk ∈ du)

≲ L−1
F

n∑
k=1

∫ ∞

0−
(F∗((1− θ)−1))−1F (xeδu)P (τk ∈ du)

≤ L−1
F (F∗((1− θ)−1))−1

∞∑
k=1

P
(
Xke

−δτk > x
)
.

Hence,

lim
θ↓0

lim sup
x→∞

P
(∑n

k=1Xke
−δτk > (1− θ)x

)∑∞
k=1 P (Xke−δτk > x)

≤ L−1
F lim

θ↓0
(F∗((1− θ)−1))−1

= L−2
F .(2.18)
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In order to prove (2.13), we need to prove that

lim
n→∞

lim sup
x→∞

P
(∑∞

k=n+1Xke
−δτk > θx

)∑∞
k=1 P (Xke−δτk > x)

= 0.(2.19)

Since F ∈ D, by (2.15) we know that (2.19) holds if the following relation
is satisfied:

lim
n→∞

lim sup
x→∞

P
(∑∞

k=n+1Xke
−δτk > θx

)
F (θx)

= 0.(2.20)

We will prove (2.20) along the line of the proof of (4.5) in [3]. For any
positive integer n satisfying

∑∞
k=n+1 k

−2 < 1, we have

P

( ∞∑
k=n+1

Xke
−δτk > θx

)
≤

∞∑
k=n+1

P (Xke
−δτk > θxk−2).

Since F ∈ D and J−
F > 0, for some 0 < α < J−

F ≤ J+
F < β < ∞, the

results of Lemma 2.2 hold for V = F . Let A1(k, x) = {k−2eδτk ≤
D2(θx)

−1}, A2(k, x) = {D2(θx)
−1 < k−2eδτk ≤ 1} and A3(k, x) =

{k−2eδτk > 1}. Hence,

P

( ∞∑
k=n+1

Xke
−δτk > θx

)
≤

3∑
j=1

∞∑
k=n+1

P (Xke
−δτk > θxk−2, Aj(k, x))

=

3∑
j=1

Ij(n, x).(2.21)

By Markov’s inequality, Lemmas 2.1 and 2.2 and (1.7), we have

I1(n, x) ≤ Dβ
2 (θx)

−β
∞∑

k=n+1

k2βgL(k)(Ee
−βδτ1)k

= o(F (θx)).(2.22)

Still by Markov’s inequality, Lemmas 2.1 and 2.2, when x is sufficiently
large,

I2(n, x) ≤ C2F (θx)

∞∑
k=n+1

k2βgL(k)(Ee
−βδτ1)k

and

I3(n, x) ≤ C−1
1 F (θx)

∞∑
k=n+1

k2αgL(k)(Ee
−αδτ1)k.
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Hence, by (1.7),

lim
n→∞

lim sup
x→∞

Ij(n, x)

F (θx)
= 0, j = 2, 3.(2.23)

By (2.21)-(2.23) we know that (2.20) holds.
Thus, it follows from (2.17)-(2.19) that (2.13) holds.
Now we prove (1.6). Since

∞∑
k=1

P
(
Xke

−δτk > x
)
=

∫ ∞

0−
F (xeδu)λ(du),

by (1.1) and (2.13) we get

lim
x→∞

ψ(x)∫∞
0− F (xe

δu)λ(du)
≤ L−2

F .

On the other hand, let Z = C̃(∞), for any fixed T > 0, it follows from
(1.1) and (2.12) that

ψ(x) ≥ P

( ∞∑
k=1

Xke
−δτk > x+ Z

)

≥
∫ T

0
P

( ∞∑
k=1

Xke
−δτk > x+ z

)
P (Z ∈ dz)

≳
∫ T

0

∞∑
k=1

P
(
Xke

−δτk > x+ z
)
P (Z ∈ dz)

≥
∞∑
k=1

P
(
Xke

−δτk > x+ T
)
P (Z ≤ T ).

For any r > 1, when x is sufficiently large, it holds uniformly for k ≥ 1
that

P
(
Xke

−δτk > x+ T
)

≥ P (Xke
−δτk > rx)

=

∫ ∞

0−
F (rxeδu)P (τk ∈ du)

≳ F∗(r)P (Xke
−δτk > x).
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Hence,

lim inf
x→∞

ψ(x)∫∞
0− F (xe

δu)λ(du)
≥ lim

T→∞
lim
r↓1

F∗(r)P (Z ≤ T )

= LF .

This completes the proof of (1.6).
□
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