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Abstract. In this paper, existence of an Lp-solution for 2DIEs
(Two Dimensional Integral Equations) of the Hammerstein type
is discussed. The main tools in this discussion are Schaefer’s and
Schauder’s fixed point theorems with a general version of Gron-
wall’s inequality.
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1. Introduction

Most of the integral and integro–differential equations arise from math-
ematical modeling of scientific problems such as fluid and solid mechanics
(for example in modeling piezoelectric materials and utilizing of these
materials in nano-tubes), electrical engineering (specially optimal con-
trol), mathematical physics, biology, etc. [1, 4, 10, 13].

As we know, much works have been done on analyzing existence and
uniqueness of solution and developing numerical algorithms for solving
one dimensional nonlinear integral equations [2, 6, 7, 12]. But in two
dimensional nonlinear cases a few studies have been done [3, 5, 11, 16].
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In the present work, we study existence of an Lp-solution for the
2DIEs of the Hammerstein type of the form

(1.1) u(x, t) = f(x, t) + λ

∫ d

c

∫ b

a
k(x, t, y, z)ϕ(y, z, u(y, z))dydz,

where f and k are given real valued functions, ϕ is a nonlinear function
in terms of the unknown function u(x, t), and λ is a real or complex
constant.

The fixed point theorems in Banach spaces are powerful tools to prove
existence and uniqueness of solution for integral and integro-differential
equations. Most of these theorems are based on compactness of oper-
ators on a suitable Banach space. In this study, we use Schaefer’s and
Schauder’s fixed point theorems to prove existence of an Lp-solution of
Eq. (1.1). Since we will not use the function ϕ satisfying the Lipschitz
condition, we claim that our result generalizes literature concerning this
equation.

We recall the following well known definitions and theorems from
[8, 9, 14, 15, 17] which will be used throughout this paper, where Ω =
I × J , I = [a, b] and J = [c, d] are intervals in R.

Definition 1.1. [9] The superposition operator Nϕ associated to ϕ : Ω×
R → R assigns to each function u : Ω → R, the function Nϕu : Ω → R,
defined by

(1.2) Nϕu(x, t) = ϕ(x, t, u(x, t)).

Definition 1.2. [17] Let p, q ≥ 1. A function ϕ : Ω × Rm → Rn is
(p, q)-Carathéodory if the following conditions hold:

(i) If 1 ≤ p < ∞, then |ϕ(x,y)| ≤ C|y|
p
q + ψ(x) for a.e. x ∈ Ω, all

y ∈ Rm and some ψ ∈ Lq(Ω), C ∈ R+;
(ii) If p = ∞, then for every l > 0 there is a ψl ∈ Lq(Ω) with

|ϕ(x,y)| ≤ ψl(x) for a.e. x ∈ Ω and all y ∈ Rm with |y| ≤ l.

Theorem 1.3. [15, 17] Let p ≥ 1 be a real number and let q ≥ 1 be the
conjugate of p (1p + 1

q = 1). Assume that ϕ : Ω × R → R is a (p, q)-

Carathéodory function such that u ∈ Lp(Ω) implies that ϕ(x, t, u(x, t)) ∈
Lq(Ω). Then, the superposition operator G : Lp(Ω) → Lq(Ω) defined
by Gu(x, t) = ϕ(x, t, u(x, t)) is continuous and bounded. In particular,
there exist a constant C > 0 and ψ ∈ Lq(Ω) such that

(1.3) |ϕ(x, t, u(x, t))| ≤ C|u(x, t)|p−1 + ψ(x, t), ∀x ∈ I, t ∈ J.
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Theorem 1.4. (Arzéla-Ascoli) [14] Let X be a compact space and B ⊆
C(X). Then B is compact if and only if B is uniformly bounded and
equicontinuous.

Theorem 1.5. (Schaefer’s fixed point theorem) [14] Let T be a contin-
uous and compact operator of a Banach space X into itself such that the
set

{u ∈ X : u = λTu for some 0 ≤ λ ≤ 1},
is bounded. Then T has a fixed point.

Theorem 1.6. (Schauder’s fixed point theorem) [14] Let K be a closed
convex subset of a Banach space X and T : K → K a compact, contin-
uous operator. Then T has a fixed point in K.

Theorem 1.7. (General version of Gronwall’s inequality) [8] Suppose
that ϕ is a positive and measurable function over I × J and ρ ∈ L1(Ω)

with ρ(x, t) ≥ 0, ∀x ∈ I, t ∈ J and
∫ d
c

∫ b
a ρ(x, t)ϕ(x, t)dxdt < +∞. If for

some A we have

ϕ(x, t) ≤ A+

∫ d

c

∫ b

a
ρ(x, t)ϕ(x, t)dxdt, ∀x ∈ I, t ∈ J,

then

ϕ(x, t) ≤ A exp (∥ρ∥1), ∀x ∈ I, t ∈ J.

2. Existence of an Lp-solution

We will use the following notations throughout this section:
For every f ∈ Lp(Ω) define

∥f∥p =
(∫ d

c

∫ b

a
|f(x, t)|pdxdt

) 1
p

, for 1 ≤ p <∞,

∥f∥p = ess sup
x∈I,
t∈J

|f(x, t)|, for p = ∞.

Similarly, for every k ∈ Lp(X) where X = Ω× Ω, define

∥k∥p =
(∫ d

c

∫ b

a

∫ d

c

∫ b

a
|k(x, t, y, z)|pdxdtdydz

) 1
p

, for 1 ≤ p <∞,

∥k∥p = ess sup
x,y∈I,
t,z∈J

|k(x, t, y, z)|, for p = ∞.
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Theorem 2.1. Let 1 ≤ p, q ≤ ∞ and let q be the conjugate of p. Suppose
that the operator T : Lp(Ω) → R is defined by

(2.1) Tu(x, t) = f(x, t) + λ

∫ d

c

∫ b

a
k(x, t, y, z)ϕ(y, z, u(y, z))dydz,

and f ∈ Lp(Ω) and there exists a positive constant C and a function
ψ ∈ Lq(Ω) such that

|ϕ(x, t, u(x, t))| ≤ C|u(x, t)|p−1 + ψ(x, t), ∀x ∈ I, t ∈ J,

holds. In addition, suppose that k ∈ Lp(X), where X = Ω × Ω. Then
for every u ∈ Lp(Ω), Tu ∈ Lp(Ω) and T is a compact operator.

Proof. In order to show that T is a compact operator on Lp(Ω), we
rewrite T as T = Tf + Tk, where

Tfu(x, t) = f(x, t),

and

(2.2) Tku(x, t) = λ

∫ d

c

∫ b

a
k(x, t, y, z)ϕ(y, z, u(y, z))dydz,

are defined on Lp(Ω). It is clear that Tf : Lp(Ω) → Lp(Ω) is a rank
one operator and so is a compact operator on Lp(Ω). Thus it suffices to
prove that Tk : Lp(Ω) → Lp(Ω) is a compact operator. First, we show
that for each u ∈ Lp(Ω), we have Tku ∈ Lp(Ω).
Let u ∈ Lp(Ω). Then we have

∥Tku∥pp =
∥∥∥∥λ ∫ d

c

∫ b

a
k(x, t, y, z)ϕ(y, z, u(y, z))dydz

∥∥∥∥p
p

≤ |λ|
∫ d

c

∫ b

a

(∫ d

c

∫ b

a
|k(x, t, y, z)ϕ(y, z, u(y, z))|dydz

)p

dxdt.(2.3)
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By using the Hölder’s inequality and the assumptions of the theorem,
we rewrite (2.3) as

∥Tku∥pp ≤ |λ|
∫ d

c

∫ b

a

(∫ d

c

∫ b

a
|k(x, t, y, z)|pdydz

)
×
(∫ d

c

∫ b

a
|ϕ(y, z, u(y, z))|qdydz

) p
q

dxdt

≤ |λ|∥k∥pp
(∫ d

c

∫ b

a
(C|u(x, t)|p−1 + ψ(x, t))qdydz

) p
q

≤ |λ|∥k∥pp
(
∥C|u|p−1 + ψ∥q

)p
≤ |λ|∥k∥pp

(
C∥|u|p−1∥q + ∥ψ∥q

)p
= |λ|∥k∥pp

(
C∥u∥p−1

p + ∥ψ∥q
)p
.

Consequently, we have

∥Tku∥p ≤ |λ|
1
p ∥k∥p

(
C∥u∥p−1

p + ∥ψ∥q
)
.

By the assumptions of the theorem, we have Tku ∈ Lp(Ω).
To prove the compactness of the operator Tk, we consider the following

cases:
Case 1: Let k ∈ C(X). Let x, x0 ∈ I, t, t0 ∈ J and let u ∈ Lp(Ω) be

arbitrary. Then, we have

|Tku(x, t)− Tku(x0, t0)| ≤ |λ|
∫ d

c

∫ b

a
|k(x, t, y, z)− k(x0, t0, y, z)|

×(C|u(y, z)|p−1 + ψ(y, z))dydz

≤ |λ| sup
y∈I,
z∈J

|k(x, t, y, z)− k(x0, t0, y, z)|

×[(d− c)(b− a)]
1
p (C∥u∥p−1

p + ∥ψ∥q).(2.4)

Since X is compact, k is uniformly continuous on X, thus the inequality
in (2.4) implies that Tku ∈ C(Ω). Hence Tk is an operator from Lp(Ω)
into C(Ω).
Suppose that S = {un}n∈N is a bounded subset of Lp(Ω) (i.e., there
exists a positive constant M such that ∥un∥p ≤ M for each n ∈ N).
We show that Tk is uniformly bounded operator on C(Ω). Let un ∈ S.
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Then

|Tkun(x, t)| ≤ |λ|
∫ d

c

∫ b

a
|k(x, t, y, z)|

(
C|un(y, z)|p−1 + ψ(y, z)

)
dydz

≤ |λ|ess sup
x∈I,
t∈J

|k(x, t, y, z)[(d− c)(b− a)]
1
p (C∥un∥p−1

p + ∥ψ∥q)

≤ |λ|∥k∥∞[(d− c)(b− a)]
1
p (CMp−1 + ∥ψ∥q),

∀n ∈ N, x ∈ I, t ∈ J.

To prove the compactness of Tk, it suffices to show {Tk(un) : un ∈ S} is
equicontinuous. Indeed, for every x, x0, y ∈ I and t, t0, z ∈ J by using
the Hölder’s inequality we have

|Tkun(x, t)− Tkun(x0, t0)| ≤ |λ| sup
y∈I,
z∈J

|k(x, t, y, z)− k(x0, t0, y, z)|

×[(d− c)(b− a)]
1
p (CMp−1 + ∥ψ∥q).

This implies that Tk is equicontinuous on Ω, since k is uniformly contin-
uous on X. By the Arzéla-Ascoli theorem (Theorem 1.4), Tk is compact
on C(Ω). Therefore Tk is compact on Lp(Ω), since C(Ω) is dense in
Lp(Ω).

Case 2: Suppose that k ∈ Lp(X). Then there exists a sequence
{kn}n∈N of continuous kernels such that ∥kn − k∥p → 0 as n → ∞.
Suppose that S is a bounded subset of Lp(Ω) in previous case. Since
k1(x, t, y, z) is a continuous function on X, by using the result of case 1,

Tk1 is a compact operator. Thus there exists a subsequence {u(1)n }n∈N
of {un} such that {Tk1(u

(1)
n )} is convergent. Similarly, there exists a

subsequence {u(2)n }n∈N of {u(1)n } such that {Tk2(u
(2)
n )}n∈N is convergent.

Generally, for each m ∈ N there exists a subsequence {u(m)
n }n∈N of

{u(m−1)
n }n∈N such that {Tkm(u

(m)
n )} is convergent. Considering the di-

agonal subsequence {u(n)n }n∈N, we show that {Tk(u
(n)
n )} is a Cauchy

sequence on Lp(Ω). For every m,n, l ∈ N, we have

∥Tk(u(m)
m )− Tk(u

(l)
l )∥p ≤ ∥Tk(u(m)

m )− Tkn(u
(m)
m )∥p

+∥Tkn(u(m)
m )− Tkn(u

(l)
l )∥p

+∥Tkn(u
(l)
l )− Tk(u

(l)
l )∥p.(2.5)
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Since {Tkn(u
(l)
l )} is convergent, for ϵ > 0, there exists N1 ∈ N such that

(2.6) ∥Tkn(u(m)
m )− Tkn(u

(l)
l )∥p <

ϵ

3
, ∀ m, l ≥ N1.

Also, we have

(2.7) ∥Tk(u(m)
m )− Tkn(u

(m)
m )∥pp ≤ |λ|∥k − kn∥pp(CMp−1 + ∥ψ∥q)p.

Since ∥kn− k∥p → 0 as n→ ∞, for ϵ > 0, there exists N2 ∈ N such that

(2.8) ∥Tk(u(m)
m )− Tkn(u

(m)
m )∥p <

ϵ

3
, ∀n ≥ N2.

By (2.5)-(2.8), we have

∥Tk(u(m)
m )− Tk(u

(l)
l )∥p < ϵ.

Hence, {Tk(u
(n)
n )} is a Cauchy sequence on Lp(Ω) and so it is convergent.

Thus Tk is a compact operator on Lp(Ω). □

Theorem 2.2. Consider the 2DIE (1.1). Suppose that 1 ≤ p ≤ 2 and
q ≥ 1 is the conjugate of p, and k ∈ Lp(X), f ∈ Lp(Ω) and ϕ is a
(p, q)-Carathéodory function. Then

(i) If 1 ≤ p < 2, then Eq. (1.1) has an Lp-solution.
(ii) If p = 2 and the following conditions hold for the kernel k:

(a) C|λ|
1
2 ∥k∥2 < 1 where C is the constant given in Theorem

1.3;
(b) k(x, t, y, z) = 0, ∀y ≥ x, ∀z ≥ t and

|k(x, t, y, z)| ≤ |k1(x, t)||k2(y, z)|,

where k1 is bounded and measurable on Ω and k2 ∈ Lp(Ω),
then Eq. (1.1) has an L2-solution.

Proof. Since ϕ is a (p, q)-Carathéodory function, it satisfies Theorem
1.3. Thus by Theorem 2.1 the operator T in (2.1) is compact on Lp(Ω).
To prove existence of an Lp-solution of Eq. (1.1), we use the Schaefer’s
fixed point theorem (Theorem 1.5). First, we show that T is continuous.
Let u ∈ Lp(Ω) and let {un}n∈N be a sequence in Lp(Ω) that converges
to u. Also, let G be the superposition operator defined in (1.2). Then
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by using the Hölder’s inequality, we obtain

∥Tun − Tu∥pp ≤ |λ|
∫ d

c

∫ b

a

(∫ d

c

∫ b

a
|k(x, t, y, z)|

×|Gun(y, z)−Gu(y, z))|dydz
)p

dxdt

≤ |λ|∥k∥pp∥G(un)−G(u)∥pp.(2.9)

Since G is continuous, inequality (2.9) implies that T is continuous.
To prove the existence results, it suffices to show the set 𝟋 = {u ∈

Lp(Ω) : u = λTu for some 0 ≤ λ ≤ 1} is a bounded set. Let u ∈ 𝟋.
Then by reusing (1.3) and the Hölder’s inequality, we have

(2.10) ∥u∥p = |λ|∥Tu∥p ≤ ∥Tu∥p ≤ ∥f∥p + |λ|
1
p ∥k∥p(C∥u∥p−1

p + ∥ψ∥q),

or equivalently,

∥u∥p−1
p (∥u∥2−p

p − |λ|
1
pC∥k∥p) ≤ ∥f∥p + |λ|

1
p ∥k∥p∥ψ∥q.

Since 1 ≤ p < 2, p − 1 and 2 − p are nonnegative constants, then
there exists a positive constant M such that ∥u∥p ≤ M and so 𝟋 is a
bounded set. By using the Schaefer’s fixed point theorem, we conclude
that the operator T has a fixed point in Lp(Ω). Hence Eq. (1.1) has an
Lp-solution.

Let p = 2 and u ∈ 𝟋 and the condition (a) holds. Then from (2.10),
we have

∥u∥2 ≤ ∥Tu∥2 ≤ ∥f∥2 + |λ|
1
2 ∥k∥2(C∥u∥2 + ∥ψ∥2),

or equivalently,

∥u∥2 ≤
∥f∥2 + |λ|

1
2 ∥k∥2∥ψ∥2

1− C|λ|
1
2 ∥k∥2

,

which implies ∥u∥2 ≤M , since C|λ|
1
2 ∥k∥2 < 1. Hence 𝟋 is bounded. It

is evident again from the Schaefer’s fixed point theorem that Eq. (1.1)
has an L2-solution.
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Now, suppose that the condition (b) holds. Then

|u(x, t)| ≤ |f(x, t)|+ |λ|
∫ t

c

∫ x

a
|k(x, t, y, z)||ϕ(y, z, u(y, z))|dydz

≤ ∥f∥∞ + |λ|
∫ t

c

∫ x

a
|k1(x, t)||k2(y, z)|(C|u(y, z)|+ ψ(y, z))dydz

≤ ∥f∥∞ + |λ|∥k1∥∞∥k2∥2∥ψ∥2

+|λ|C∥k1∥∞
∫ t

c

∫ x

a
|k2(y, z)||u(y, z)|dydz

≤ A+

∫ t

c

∫ x

a
ρ(y, z)|u(y, z)|dydz,

where A = ∥f∥∞+|λ|∥k1∥∞∥k2∥2∥ψ∥2 and ρ(y, z) = C|λ|∥k1∥∞|k2(y, z)|
∈ L2(Ω). Since L2(Ω) ⊂ L1(Ω), by Gronwall’s inequality we conclude

∥u∥2 ≤
√

(d− c)(b− a)A exp(∥ρ∥1).

Then the Schaefer’s fixed point theorem implies that Eq. (1.1) has an
L2-solution. □

Theorem 2.3. Let p, q ≥ 1 and let q be the conjugate of p. Suppose
that f ∈ Lp(Ω) and k ∈ Lp(X) and there exist a positive constant C ′

and ψ ∈ Lp(Ω) such that

|ϕ(y, z, u(y, z))| ≤ C ′|u(y, z)|+ ψ(y, z) for a.e. y ∈ I, z ∈ J.

Suppose that there exists a weight function ω on Ω (i.e., ω is nonnega-
tive, measurable and a bounded function on Ω) such that the function

Φ(x, t) =


∫ d
c

∫ b
a |k(x, t, y, z)|q(ω(y, z))

−q
p dydz)

1
q , p > 1,

sup
y∈I,
z∈J

|k(x, t, y, z)|
ω(y, z)

, p = 1,

belongs to Lp(Ω, dω). If ∥λC ′Φ∥p,ω < 1, then Eq. (1.1) has an Lp-
solution.

Proof. The weighted space Lp(Ω, dω) is the space of real functions pro-
duced by the norm

∥f∥p,ω =

(∫ d

c

∫ b

a
|f(x, t)|pω(x, t)dxdt

) 1
p

.
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It is easy to show that the norms ∥·∥p and ∥·∥p,ω are equivalent. Hence,
a bounded set of Lp(Ω, dω) is also bounded on Lp(Ω). Consider the ball

Sα = {f ∈ Lp(Ω, dω) : ∥f∥p,ω ≤ α},
in Lp(Ω, dω). Since the operator Tk given by (2.2) is compact on Lp(Ω)
and Sα is a bounded subset of Lp(Ω), T (Sα) is relatively compact on
Lp(Ω) ⊂ Lp(Ω, dω).
Let u ∈ Sα. Then

|Tku∥pp,ω ≤ |λ|
∫ d

c

∫ b

a
ω(x, t)

(∫ d

c

∫ b

a

|k(x, t, y, z)|

(ω(y, z))
1
p

×(ω(y, z))
1
p |ϕ(y, z, u(y, z))|dydz

)p
dxdt

≤ |λ|
∫ d

c

∫ b

a
ω(x, t)

(∫ d

c

∫ b

a
|k(x, t, y, z)|q(ω(y, z))

−q
p dydz

) p
q

×
(∫ d

c

∫ b

a
ω(y, z)|ϕ(y, z, u(y, z))|pdydz

)
dxdt

≤ |λ|
∫ d

c

∫ b

a
ω(x, t)

(∫ d

c

∫ b

a
|k(x, t, y, z)|q(ω(y, z))

−q
p dydz

) p
q

×
(∫ d

c

∫ b

a
ω(y, z)(C ′|u(y, z)|+ ψ(y, z))pdydz

)
dxdt

≤ |λ|∥C ′u+ ψ∥pp,ω
∫ d

c

∫ b

a
ω(x, t)

×
(∫ d

c

∫ b

a
|k(x, t, y, z)|q(ω(y, z))

−q
p dydz

) p
q

dxdt

≤ |λ|(C ′∥u∥p,ω + ∥ψ∥p,ω)p∥Φ∥pp,ω.(2.11)

Since Tu = f + Tku and ∥u∥p,ω ≤ α, (2.11) implies

∥Tu∥p,ω ≤ ∥f∥p,ω + |λ|∥ψ∥p,ω∥Φ∥p,ω + |λ|C ′∥u∥p,ω∥Φ∥p,ω.
Thus, if ∥λC ′Φ∥p,ω < 1, then there exists ε > 0 such that for each α ≥ ε,
we have

α ≥ |f∥p,ω + |λ|∥ψ∥p,ω∥Φ∥p,ω
1− |λ|C ′∥Φ∥p,ω

,

and so T (Sα) ⊆ Sα. Therefore T maps the closed convex subset Sα into
itself. Since T (Sα) is compact, by the Schauder’s fixed point theorem
(Theorem 1.6) T has a fixed point. This completes the proof. □
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3. Conclusion

In this paper, we proved a major existence theorem for 2DIEs which is
important in the numerical solution of these types of equations. It may
be extended to the higher dimensional integral equations by authors as
a future work.
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