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Abstract. In this article, we introduce a new type iterative scheme
for approximating common fixed points of two asymptotically non-
expansive mappings is defined, and weak and strong convergence
theorem are proved for the new iterative scheme in a uniformly
convex Banach space. The results obtained in this article represent
an extension as well as refinement of previous known results.
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1. Introduction

Let E be a uniformly convex Banach space, K a nonempty closed
convex subset of E. Throughout this paper, N denotes the set of all
positive integers and F (T ) := x : Tx = x. A mapping T : K → K is
said to be asymptotically nonexpansive if for a sequence {kn} ⊂ [1,∞)
with limn→∞ kn = 1, one has ∥ Tnx − Tny ∥≤ kn ∥ x − y ∥, for all
x, y ∈ K and for all n ∈ N. This class of asymptotically nonexpansive
mappings was introduced by Goebel and Kirk [8] in 1972. They proved
that, if K is a nonempty bounded closed convex subset of a uniformly
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Two asymptotically nonexpansive mappings 876

convex Banach space E, then every asymptotically nonexpansive self-
mapping T of K has a fixed point. The fixed point iteration process
for asymptotically nonexpansive mapping in Banach spaces, including
Mann and Ishikawa iterations processes, have been studied extensively
by many authors; see ([2]-[22]).

In 1991, Schu ([16, 17]) introduced a modified Mann iteration process
to approximate fixed points of asymptotically nonexpansive self-map
defined on nonempty closed convex and bounded subset of Hilbert space
H.

In 2001, Xu and Ori [22] introduced the following implicit iteration
scheme for common fixed points of a finite family of nonexpansive map-
pings {Ti}Ni=1 in Hilbert spaces:

xn = αnxn−1 + (1− αn)Tnxn, n ∈ N,

where Tn = TnmodN , and they proved weak convergence theorem.
In 2008 Zhao et al. [23] introduced the following iteration scheme for

common fixed points of nonexpansive mapping T in Banach space and
proved weak and strong convergence theorems.:

xn = αnxn−1 + βnTxn−1 + γnTxn, n ∈ N,

where {αn}, {βn} and {γn} are real sequence in [0, 1], and αn+βn+γn =
1.

The Picard and Mann [12] iteration schemes for a mapping T : K →
K are defined by {

x1 = x ∈ K,
xn+1 = Tnxn,

(1.1)

and {
x1 = x ∈ K,
xn+1 = (1− αn)xn + αnT

nxn, n ∈ N,(1.2)

where {αn} is in (0, 1). It is well-known that Picard iteration scheme
converges for contractions but does not converge for nonexpansive map-
ping whereas Mann iteration scheme converges for nonexpansive map-
ping.
Several authors have studied weak and strong convergence problems of
iterative sequence (with errors) for asymptotically nonexpansive type
mappings in a Hilbert space or a Banach space (see [2, 13, 14, 16]). In
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2007, Agrawal et al. [1] introduced the following iteration process: x1 = x ∈ K,
xn+1 = (1− αn)T

nxn + αnT
nyn,

yn = (1− βn)xn + βnT
nxn, n ∈ N

(1.3)

where {αn} and {βn} are in (0,1). They showed that this process con-
verges at a rate the same as that the Picard iteration and faster than
Mann for contractions.

The above process deals with one mapping only. The case of two
mappings in iterative processes has also remained under study since the
work of Das and Debtat [3] on a two mappings process. Also see, for ex-
ample [11] and [19]. The problem of approximating common fixed points
of finitely many mapping plays an important role in applied mathemat-
ics especially in the theory of evaluation equation and the minimization
problems. See ([4, 5, 6, 20]), for example.

In 2001, Khan and Takahashi [11] approximated the fixed points of
two asymptotically nonexpansive mappings S, T : K → K through the
sequence {xn} given by x1 = x ∈ K,

xn+1 = (1− αn)xn + αnS
nyn,

yn = (1− βn)xn + βnT
nxn, n ∈ N,

(1.4)

where {αn} and {βn} are sequences in (0, 1).
Recently, Khan et al. [10] modified the iteration process (1.4) to the

case of two mappings as follows: x1 = x ∈ K,
xn+1 = (1− αn)T

nxn + αnS
nyn,

yn = (1− βn)xn + βnT
nxn, n ∈ N

(1.5)

where {αn} and {βn} are sequences in (0, 1).
In this paper, we introduced a new implicit iteration scheme as below: x1 = x ∈ K,

xn+1 = (1− αn)T
nxn + αnS

nyn,
yn = (1− βn)S

nxn + βnT
nxn, n ∈ N,

(1.6)

where {αn} and {βn} are sequences in [0, 1] for fixed points of asymp-
totically nonexpansive mapping T in a uniformly convex Banach space.
Observe that if in (1.6) we set S = I, βn = 0, then the scheme will
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reduce to: {
x1 = x ∈ K,
xn+1 = (1− αn)Txn + αnxn, n ∈ N,(1.7)

where αn is a sequence in [0, 1]. This iteration process is referred to as
Mann iteration process [12] and has been studied extensively by many
authors to approximate fixed points of various mappings including non-
expansive mappings. Obviously if K is a nonempty compact convex
subset of a real Banach space and T : K → K is nonexpansive mapping
then the Mann iteration process converges strongly to a fixed point of T .
Also, the results of Guo et.al. [9] are special cases of our main results.

2. Preliminaries

Let us now gather some pre-requisites. Let X = {x ∈ E : ∥x∥ = 1}
and let E∗ be the dual of E. The space E has :
(i) Gâteaux differentiable norm if

lim
t→0

∥x+ ty∥ − ∥x∥
t

exists for each x, y ∈ S;
(ii) Frèchet differentiable norm (see e.g. [18]) if for each x in S, the
above limit exists and is attained uniformly for y in S and in this case,
it is also well-known that

⟨h, J(x)⟩+ 1

2
∥x∥2 ≤ 1

2
∥x+ h∥2

≤ ⟨h, J(x)⟩+ 1

2
∥x∥2 + b(∥h∥)(2.1)

for all x, h ∈ E, where J is the Frèchet derivative of the function 1
2∥.∥

2 at
x ∈ E, ⟨., .⟩ is the dual pairing between E and E∗, and b is an increasing

function defined on [0,∞) such that limt→0
b(t)
t = 0;

(iii) Opial’s condition [15] if for any sequence {xn} in E, xn ⇀ x implies
that

lim sup
n→∞

∥xn − x∥ < lim sup
n→∞

∥xn − y∥

for all y ∈ E with y ̸= x.
The following are the definitions and lemma used to prove the results

in the next section.
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Definition 2.1. Let K be a nonempty closed convex subset of a uni-
formly convex Banach space E. A mapping T : K → K is said to be
asymptotically nonexpansive on K if there exists a sequence kn, kn ≥ 1
with limn→∞ kn = 1, such that

∥Tnx− Tny∥ ≤ kn∥x− y∥,
for each x, y ∈ K and each n ≥ 1. If kn = 1, then T is known as a
nonexpansive mapping.

Definition 2.2. A mapping T : K → K is uniformly k-Lipschitzian if
for some k > 0, ∥ Tnx − Tny ∥≤ k ∥ x − y ∥, ∀x, y ∈ K and for all
n ∈ N .

Definition 2.3. Let E be a uniformly convex Banach space, K a
nonempty closed convex subset of E, and T : K → K an asymptoti-
cally nonexpansive mapping. Then I − T is said to be demi-closed at 0,
if xn → x converges weakly and xn − Txn → 0 converges strongly, then
it implies that x ∈ K and Tx = x.

Definition 2.4. [7] Two mappings S, T : K → K, where K is a subset
of a normed space E, are said to satisfy condition (A′) if there exists a
nondecreasing function F : [0,∞) → [0,∞) with F (0) = 0 and f(r) > 0
for all r ∈ (0,∞) such that either ∥x−Sx∥ ≥ f(d(x, F )) or ∥x−Tx∥ ≥
f(d(x, F )) for all x ∈ K where d(x, F ) = inf{∥x − p∥ : p ∈ F =
F (S) ∩ F (T )}.
Lemma 2.5. ([21], Lemma 1) : Let {an}, {bn} and {δn} be sequences
of nonnegative real numbers satisfying the inequality

an+1 ≤ (1 + δn)an + bn.

If
∑∞

n=1 δn < ∞ and
∑∞

n=1 bn < ∞, then limn→∞ an exists. In particu-
lar, if {an} has a subsequence converging to 0, then limn→∞ an = 0.

Lemma 2.6. [16]] : Suppose that E is a uniformly convex Banach space
and 0 < p ≤ tn ≤ q < 1 for all n ∈ N. Let {xn} and {yn} be two
sequences of E such that limsupn→∞∥xn∥ ≤ r, limsupn→∞∥yn∥ ≤ r and
limn→∞∥tnxn+(1−tn)yn∥ = r hold for some r ≥ 0. Then limn→∞ ∥xn−
yn∥ = 0.

3. Main results

In this section, we prove the approximate common fixed points of
two asymptotically nonexpansive mappings for weak and strong sequel
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results. In the consequence, F denotes the set of common fixed point of
the mappings S and T .

Theorem 3.1. Let K be a nonempty closed convex subset of a uniformly
convex Banach space E. Suppose S, T : K → K are asymptotically
nonexpansive mappings with

∑∞
n=1(kn − 1) < ∞ and limn→∞ kn = 1.

Consider a sequence {xn} defined by the iteration process (1.6), where
{αn} and {βn} are sequence in [0, 1]. If F (S) ∩ F (T ) ̸= ϕ, and

∥x− Sny∥ ≤ λ∥Tnx− Sny∥,(3.1)

for all x, y ∈ K, where λ > 1, then

lim
n→∞

∥xn − Sxn∥ = lim
n→∞

∥xn − Txn∥ = 0

for all p ∈ F (S) ∩ F (T ).

Proof. Let p ∈ F (T ), using (1.6), we get

∥yn − p∥ = ∥(1− βn)S
nxn + βnT

nxn − p∥
≤ (1− βn)∥Snxn − p∥+ βn∥Tnxn − p∥
≤ (1− βn)kn∥xn − p∥+ βnkn∥xn − p∥
≤ kn∥xn − p∥.(3.2)

Now, from (1.6) and (3.2), we get

∥xn+1 − p∥ = ∥(1− αn)T
nxn + αnS

nyn − p∥
≤ (1− αn)∥Tnxn − p∥+ αn∥Snyn − p∥
≤ (1− αn)kn∥xn − p∥+ αnkn∥yn − p∥
≤ (1− αn)kn∥xn − p∥+ αnk

2
n∥xn − p∥

≤ (αnk
2
n − αnkn + kn)∥xn − p∥

≤ [1 + (αnkn + 1)(kn − 1)]∥xn − p∥.(3.3)

Since
∑∞

n=1(kn − 1) < ∞, then by Lemma 2.5, limn→∞ ∥xn − p∥ exists.
Suppose limn→∞ ∥xn − p∥ = c, where c ≥ 0 is a real number. Suppose
c > 0.
Now

c = lim
n→∞

∥xn+1 − p∥

= lim
n→∞

∥(1− αn)T
nxn + αnS

nyn − p∥

= lim
n→∞

(1− αn)∥Tnxn − p∥+ αn∥Snyn − p∥,
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thus by Lemma 2.6, we get

lim
n→∞

∥Tnxn − Snyn∥ = 0.(3.4)

Again, by (3.2) , we have

lim sup
n→∞

∥Syn − p∥ ≤ lim sup
n→∞

∥yn − p∥ ≤ lim sup
n→∞

∥xn − p∥,(3.5)

also

lim sup
n→∞

∥Txn − p∥ ≤ lim sup
n→∞

∥xn − p∥ = c.(3.6)

It follows then that from (3.1) and (3.4), we have

∥Tnxn − xn∥ = ∥Tnxn − Snyn∥+ ∥Snyn − xn∥
≤ ∥Tnxn − Snyn∥+ ∥xn − Snyn∥
≤ ∥Tnxn − Snyn∥+ λ∥Tnxn − Snyn∥
≤ (1 + λ)∥Tnxn − Snyn∥
→ 0 as n → ∞.(3.7)

Taking limsup on both sides of the above inequality, we get

lim
n→∞

∥Tnxn − xn∥ = 0,(3.8)

Notice that
∥yn − xn∥ = βn∥Tnxn − xn∥.

Hence by (3.8)

lim
n→∞

∥yn − xn∥ = 0.(3.9)

Now

∥xn+1 − xn∥ = ∥(1− αn)T
nxn + αnS

nyn − xn∥
≤ ∥Tnxn − xn∥+ αn∥Tnxn − Snyn∥.

This gives

lim
n→∞

∥xn+1 − xn∥ = 0.(3.10)

so that

∥xn+1 − yn∥ ≤ ∥xn+1 − xn∥+ ∥yn − xn∥,
→ 0 as n → ∞,

and we find that

lim
n→∞

∥xn+1 − yn∥ = 0.(3.11)
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Moreover, from

∥xn+1 − Snyn∥ ≤ ∥xn+1 − xn∥+ ∥xn − Tnxn∥
+∥Tnxn − Snyn∥

which gives that

lim
n→∞

∥xn+1 − Snyn∥ = 0.(3.12)

Using (3.4), (3.8) and (3.9) we obtain

∥xn − Snxn∥ ≤ ∥xn − Tnxn∥+ ∥Tnxn − Snyn∥
+∥Snyn − Snxn∥

≤ ∥xn − Tnxn∥+ ∥Tnxn − Snyn∥
+k∥yn − xn∥

which implies that

lim
n→∞

∥xn − Snxn∥ = 0.

And

∥xn+1 − Sxn+1∥ ≤ ∥xn+1 − Sn+1xn+1∥+ ∥Sn+1xn+1 − Sxn+1∥
≤ ∥xn+1 − Sn+1xn+1∥+ k∥Snxn+1 − xn+1∥
≤ ∥xn+1 − Sn+1xn+1∥+ k(∥Snxn+1 − Snyn∥

+∥Snyn − xn+1∥)
≤ ∥xn+1 − Sn+1xn+1∥+ k2∥xn+1 − yn∥

+k∥Snyn − xn+1∥.
This implies that

lim
n→∞

∥xn − Sxn∥ = 0.

Now

∥xn+1 − Txn+1∥ ≤ ∥xn+1 − Tn+1xn+1∥+ ∥Tn+1xn+1 − Tn+1xn∥
+∥Tn+1xn − Txn+1∥

≤ ∥xn+1 − Tn+1xn+1∥+ k∥xn+1 − xn∥
+k∥Tnxn − xn+1∥

= ∥xn+1 − Tn+1xn+1∥+ k∥xn+1 − xn∥
+kαn∥Tnxn − Snyn∥,

which yields

lim
n→∞

∥xn − Txn∥ = 0.
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This completes the proof.
□

Example 3.2. 3.1 : Let E be the real line with the usual norm |.| and
suppose K = [0, 1]. Define S, T : K → K by

Tx =
2− x

2

and

Sy =
2y + 1

4
for all x, y ∈ K. Obviously both S and T are asymptotically nonexpan-
sive with the common fixed point 2

3 for all x, y ∈ K. Now we check
that our condition ∥x − Sy∥ ≤ λ∥Tx − Sx∥ for all x, y ∈ K is true. If
x, y ∈ [0, 1] and λ > 1, then

|x− Sy| = |x− (2y + 1)

4
|

= |4x− 2y − 1

4
|,

and

|Tx− Sy| = |2− x

2
− 2y + 1

4
|

= |4− 2x− 2y − 1

4
|.

Clearly, |4x−2y−1
4 | ≤ λ|4−2x−2y−1

4 |, where λ > 1, so that |x − Sy| ≤
λ|Tx − Sx| exists, for all x, y ∈ K. Now, we check that S and T are
quasi-nonexpansive type mappings. In fact, if x ∈ [0, 1] and p = 0 ∈
[0, 1], then

|Tx− p| = |2− x

2
− 0| = |2− x

2
|

= |2− x

2
| ≤ |x| = |x− 0| = |x− p|,

that is

|Tx− p| ≤ |x− p|.
Similarly, we prove that

|Sx− p| ≤ |x− p|.

Therefore, S and T are quasi-nonexpansive type mappings.
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Lemma 3.3. : Let K be a nonempty closed convex subset of a uniformly
convex Banach space E. Suppose {xn} is the sequence defined in Theo-
rem 3.1 with F ̸= ϕ. Then, for any p1, p2 ∈ F , limn→∞⟨xn, J(p1 − p2)⟩
exists. In particular, ⟨p− q, J(p1 − p2)⟩ = 0 for all p, q ∈ ωω(xn).

Proof. Take x = p1−p2, with p1 ̸= p2 and h = t(xn−p1) in the inequality
(2.1) to get:

1

2
∥p1 − p2∥2 + t⟨xn − p1, J(p1 − p2)⟩

≤ 1

2
∥txn + (1− t)p1 − p2∥2

≤ 1

2
∥p1 − p2∥2 + t⟨xn − p1, J(p1 − p2)⟩+ b(t∥xn − p1∥).

As supn≥1∥xn − p1∥ ≤ M ′ for some M ′ > 0, it follows that

1

2
∥p1 − p2∥2+ t lim sup

n→∞
⟨xn − p1, J(p1 − p2)⟩

≤ 1

2
lim
n→∞

∥txn + (1− t)p1 − p2∥2

≤ 1

2
∥p1 − p2∥2 + b(tM ′) + t lim inf

n→∞
⟨xn − p1, J(p1 − p2)⟩.

That is,

lim sup
n→∞

⟨xn − p1, J(p1 − p2)⟩ ≤ lim inf
n→∞

⟨xn − p1, J(p1 − p2)⟩+
b(tM ′)

tM ′ M ′.

If t → 0, then limn→∞⟨xn − p1, J(p1 − p2)⟩ exists for all p1, p2 ∈ F . In
particular, we get

⟨p− 1, J(p1 − p2)⟩ = 0

for all p, q ∈ ωω(xn). □
Theorem 3.4. Let E be a uniformly convex Banach space satisfying
Opial condition and let K,T, S and {xn} be taken as Theorem 3.1. If
F (S) ∩ F (T ) ̸= ϕ, I − T and I − S are demiclosded at zero, then {xn}
converges weakly to a common fixed point of S and T .

Proof. Let p ∈ F (S)∩F (T ). Then as proved in Theorem 3.1, lim
n→∞

∥xn−
p∥ exists. Since E is uniformly convex. Thus there exists a subsequence
{xnk

} of {xn} such that {xnk
} converges weakly to z1 ∈ K. From

Theorem 3.1, we have

lim
n→∞

∥xnk
− Txnk

∥ = 0,
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lim
n→∞

∥xnk
− Sxnk

∥ = 0.

Since I − T and I − S are demiclosed at zero, therefore, Sz1 = z1.
Similarly Tz1 = z1. Again by the same way, we can prove that z2 ∈
F (S) ∩ F (T ). Next, we prove the uniqueness. From Theorem 3.1
limn→∞ ∥xn − z2∥ exists. For this suppose that z1 ̸= z2. Then by
the Opial’s condition

lim
n→∞

∥xn − z1∥ = lim
ni→∞

∥xni − z1∥

< lim
ni→∞

∥xni − z2∥

= lim
n→∞

∥xn − z2∥

= lim
nj→∞

∥xnj − z2∥

< lim
nj→∞

∥xnj − z1∥

= lim
n→∞

∥xn − z1∥.

This is a contradiction so z1 = z2. Hence {xn} converges weakly to a
common fixed point of T and S. □

Theorem 3.5. Let E be a real uniformly convex Banach space and
K,S, T, F, {xn} as in Theorem 3.1. Then {xn} converges strongly to a
point of F if and only if

lim inf
n→∞

d(xn, F ) = 0,

where d(x, F ) = inf{∥x− q∥ : p ∈ F}.

Proof. Necessity is evident. Conversely, let lim infn→∞d(xn, F ) = 0.
From Theorem 3.1, limn→∞ ∥xn − q∥ exists for all q ∈ F , so that
limn→∞ d(xn, F ) exists. Since by hypothesis, lim infn→∞d(xn, F ) = 0,
we get

lim
n→∞

d(xn, F ) = 0.

Next, we show that {xn} is a Cauchy sequence in K. Suppose ϵ > 0 is
arbitrarily chosen. Since limn→∞ d(xn, F ) = 0, there exists a positive
integer n0 such that

d(xn, F ) <
ϵ

4
, ∀n ≥ n0.
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In particular, inf{||xn0 − q∥ : p ∈ F} < ϵ/4. Thus there exists q ∈ F
such that ∥xn0 − q∥ < ϵ/2. Now, for all m,n,≥ n0, we have

∥xn+m − xn∥ ≤ ∥xn+m − q∥+ ∥xn − q∥
≤ 2∥xn0 − q∥

< 2× (
ϵ

2
) = ϵ.

Hence {xn} is a Cauchy sequence in closed subsetK of a Banach space E
and therefore it converges to a point q in K. But limn→∞ d(xn, F ) = 0,
which implies that d(q, F ) = 0. Therefore we have q ∈ F . □

Using theorem 3.5, we obtain a strong convergence theorem of the
iteration scheme (1.6) under the condition (A′) as below:

Theorem 3.6. Let E be a uniformly convex Banach space and K,S,
T, F, {xn} be as in Theorem 3.1. Let S, T satisfy the condition (A′) and
F ̸= ϕ. Then {xn} converges strongly to a point of F .

Proof. We proved in Theorem 3.1, that

lim
n→∞

∥xn − Sxn∥ = 0 = lim
n→∞

∥xn − Txn∥.(3.13)

Then from the definition of condition (A′) and (3.13), we obtain

lim
n→∞

f(d(xn, F )) ≤ lim
n→∞

∥xn − Txn∥ = 0,

or
lim
n→∞

f(d(xn, F )) ≤ lim
n→∞

∥xn − Sxn∥ = 0.

In the above cases, we get

lim
n→∞

f(d(xn, F )) = 0.

But f : [0,∞) → [0,∞) is a nondecreasing function satisfying f(0) =
0, f(r) > 0 for all r ∈ (0,∞), thus we get

lim
n→∞

d(xn, F ) = 0.

All the condition of Theorem 3.5 are satisfied, therefore by its conclusion,
{xn} converges strongly to a fixed point of F . □
Corollary 3.7. Let K be a nonempty closed convex subset of a uni-
formly convex Banach space E. Suppose T is an asymptotically nonex-
pansive mapping of K. Let {xn} be defined by the iteration (1.3), where
{αn} and {βn} are sequences in [0, 1] for all n ∈ N. Then {xn} converges
strongly to a fixed point of T .
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Proof. Take S = T in the above theorem. □

Corollary 3.8. Let K be a nonempty closed convex subset of a uni-
formly convex Banach space E. Suppose T is a asymptotically nonex-
pansive mapping of K. Let {xn} be defined by the iteration (1.2), where
{αn} is a sequence in [0, 1] for all n ∈ N. Then {xn} converges strongly
to a fixed point of T .

Proof. Suppose T = I in the above theorem. □

Corollary 3.9. Suppose E is a Banach space satisfying Opial condition
and let K and T be taken as in Theorem 3.1. Let F (T ) ̸= ϕ. Now
if the mapping I − T is demiclosed at zero, then {xn} defined by (1.3)
converges weakly to a fixed point of T .

Corollary 3.10. Let E be a uniformly convex Banach space which has
a Frechet differentiable norm and let K and T be taken as theorem 3.1.
Let F (T ) ̸= ϕ. Then {xn} defined by (1.2) converges weakly to a fixed
point of T .

Corollary 3.11. Let E be a uniformly convex Banach space satisfying
Opial condition and let K and T be taken as in Theorem 3.1. Let F (T ) ̸=
ϕ. If the mapping I−T is demiclosed at zero, then {xn} defined by (1.2)
converges weakly to a fixed point of T .
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